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Abstract—Several optimizations must be considered for the sending/receiving a given number of data. A comparison
design of streaming applications (e.g. multimedia or netwk petween SDF and CSDF can be found in [3]. More recently,

packet processing). These applications can be modelled as g js shown in [4] that CSDF can be even considered to model
set of processes that communicate using buffers. Cyclo-Si@a
another class of channels.

Dataflow graphs, which are an extension of Synchronous
Dataflow graphs, allow to consider a large class of industria
applications. The aim of the paper is to prove that the methodology

developed in [5] to minimize the surface of the buffers for

: a minimum fixed throughput for a SDF can be extended to
global surface of the buffers for a Cyclo-Static Dataflow grph handle CSDE hs. Thi bl . v studied
under a given throughput constraint. It is proved that, if the anaie grapns. IS problem was previously studie

processes are periodic, each buffer introduces a linear cstraint Y [6] using a model checking approach: an optimal solution
described analytically. The optimization problem is then nodelled is sought, but the combinatorial explosion limits drameatic

by an Integer Linear Program. A polynomial algorithm based the size of the instances considered.

on its relaxation provides a quasi-optimal solution for red life
problems. The resolution of the optimization problem for a Reed-
Solomon Decoder application is then detailed.

This paper presents an original methodology to minimize the

Our approach is closely related to the results developed
in [7], [8]. The authors proved that, if a periodic schedule
of the processes is supposed, the constraints induced by a
buffer can be expressed linearly using the starting times of
the first execution of the adjacent processes. An algorithm
is developed to compute each equation. Linear Programming

. INTRODUCTION AND RELATED WORK is then considered to minimize a linear function of these

Embedded systems are becoming increasingly compleparting times.
because of the consumers expectations. As example, mobile
phones are now supposed to take and display photosin this paper, an original methodology using Linear
download and play multimedia contents, and naturally a||0Wrogramming to minimize the surface of the buffers for
to hold a telephone conversation. Most of these application CSDF graph is developed. Buffers are supposed to be
consists in data stream processing and can be splitted iAtfmogeneousj.e. each buffer stores data of the same
a set of processes performing specific treatments infinitedymension. Their surface depends then linearly on the
often, and a set of buffers for data exchanges. dimension of the data and the size of the buffer. We show

mathematically for a periodic schedule of the phases that a

Synchronous Dataflow graphs (in short SDF), introducesliffer induces a linear inequality between the startingem
by Lee and Messerschmitt in [1] are widely used to modek the first execution: equations are described analyticall
communications between processes. An application is reddeand the problem is then modeled using an Integer Linear
by a directed graph were nodesegp. arcs) correspond to Program. Its relaxation is solved using simplex algorithm
processes r¢sp. buffers). Each process consumemsp. and a quasi-optimum solution is built in polynomial time.
produces) data in its inputesp.output) buffer. Moreover, the A small practical example is then presented. Due to its low
processes production/consumption rates are fixed at cempime-complexity, this methodology may be extended to solve
time. problems with an important number of processes.

Index Terms—Buffer minimization, Cyclo-Static Dataflow
graph, Periodic schedule, Linear Programing, Streaming apli-
cations.

Cyclo-Static DataFlow graphs (in short CSDF) were The paper is organized as follows: CSDF graphs and our
introduced by [2] to model more complex communicationotations are presented in Sectidnlt is proved in Section
scheme between two processes: each execution of a progeskat each buffer induces a couple of linear inequalities
t is decomposed intap(t) > 0 phases, each of themexpressed using the starting times of the first executiohef t

_ _ _ " adjacent processes. Sectibis dedicated to the formulation of

This work has been submitted to the IEEE for possible putitina

Copyright may be transferred without notice, after whicls thersion may the prOblem USing Integer Linear Prlogr?mmin_g- The mOde"ng
no longer be accessible. of a Reed-Solomon Decoder application using CSDF graph



and its minimum solution are lastly presented in Section A path of G of lengthp € N — {0} is defined by a list

Section6 is our conclusion. of macro-tasksy = (t!,#2,---,tP) such that for anyk €

{1,---,p— 1}, (tk,¢kT1) € A. A circuit is a path such that
Il. CYCLO-STATIC DATAFLOW GRAPHS t? = t1. The weight of a pathv is the ratio
A Cyclo-Static Dataflow graph (CSDF) is a directed graph Wy — wg - 1

where nodes model macro-tasks and arcs correspond to (v) = H Vg -1

buffers. It is denoted by = (T, A) whereT' (resp. A) is acy

the set of nodesrésp.arcs). Each bufferb(a) has an initial number of dat&/;(a) € N.
In the example of Figure 1, the buffer is initially empfyg.

A. Macro-tasks Mo(a) = 0.

Every macro-task € T is decomposed intgp(t) € N—{0}
phases; for every valué € {1,---,¢(t)}, the kth phase C. Schedules
of t is denoted byt, and has a fixed duratiof,(k). One A feasible schedule associated with a CSDF graph is a
execution of the macro-taske 7" corresponds to the orderedfunctions that associates, for every trip(e, k, n) with t € T',
executions of the phases,- - ,t, and has a duration k¥ € {1,---,¢(#)} andn € N — {0} a starting times(t, n)
61 = ng 0,(k). for the nth execution oft;, such that the number of data in

- every buffera € A remains non negativé.e. no data is read

Moreover, every macro-task € T is executed several before it is produced. The starting times of a macro-task
times: for every integer. € N — {0}, (¢, n) denotes theuth coincide with those of its first phasee. s(t,n) = s(t1, n).
execution oft. Similarly, for every phasé € {1,--- ,o(t)}, ) )
(ty,n) denotes theuth execution of thekth phase of. It is We also consider the existence of a macro-tésk 7' for

also supposed that two phases or two successive executihich a throughput of valug* is required. The throughput of
of a macro-task cannot overlap. the system for a scheduleis then defined as

§(s) = lim ——
For every couple(k,n) € {1,---,¢(¢t)} x N — {0}, n—oo s(t*,n)
Pred(ty,n) is the preceding execution phase(of, n). More g4 must verify §(s)

formally,

= ¢*. This constraint comes from
streaming applications, for which an exact input or/ancpatit

 (tk-1,m) if k>1 throughput is required.

Pred(ty,n) = { (toyn—1) if k=1

The executiont ), 0) is fictitious and is only introduced to
simplify the definition of Pred.

A CSDF graph is said to be consistent if there exists a func-
tion My such that a feasible schedule exists. Next Theorem
proved in [9], [10], [11] expresses a necessary condition of
consistency that is assumed to be true throughout the gresen

B. Buffers paper:
Every arca = (t,t') € A represents a buffe(a) of un- . . Lo
bounded size from the macro-tasko t'. Vk € {1,--- ,¢(t)}, 'I;?Eacc))rinl 1.1 G is consistent, then, for every circuitof G,

it is supposed thaby (a) data are produced i(a) at the end
of an execution of. Similarly, V&' € {1,--- ,o(¥)}, vi (a) Rougthly speaking, for any circui¢ of G, W(c) can be
data are read frond(a) before the execution of;,. We set viewed as the production rate of data anSo, if W(c) < 1,

wy -1 = ng wa(k) andu, - 1 = ng) o (k). the whole number of data stored in bufferscalecreases after
a finite firing sequence and therefore it leads to a deadlock
situation.
o =1,4,1] L2 = [2,5]

1 2,3,1] (2, 5] 2 D. Precedence constraint
0 The set of constraints induced by an aic = (¢,t')

Fio. 1. An unbounded bufidr@), a — (11.£). w(t!) — 3 and () — 2 on execgtions of macro-taskis an(_j t’ may be expressgd_
Thgé arc is labeled by the two vectors, :’[27?;7501}’ v — [2’5]9;“1 by the as cla55|call precedence constraints. More; formally, it is
initial number of datal/o (a) = 0. said thata induces a precedence constraint frofty,n)
to (t.,,n') with k& € {1,---,o@®)}, K € {1,---,¢(t)}
Figure 1 shows an unbounded buffe) from ¢! to ¢2. and(n,n’) € (N—{0})? if the two following conditions hold:
t! (resp. t?) has three resp. two) phasesi.e, ¢(t!) = 3

(resp. p(t2) = 2). The arc is labeled by vectors of 1) (t,,n') may be executed at the completion @f, n);
production/consumption rates;, = [2,3,1] andv, = [2,5].  2) Pred(t},,n’) may be executed before the end(of, n)
t! (resp. t?) is associated with its duratiof: = [1,4,1] but not (t),,,n').

(resp. 2 = [2,5]).



Let us defineD [ (t;, n) as the total number of data produce®y Lemma 1, there exists a precedence constraint ffgns)
by ¢ in the bufferb(a) at the completion oft;,n). Then, it to (t3,2).
verifies the sequence
Now, let us note for every are = (¢t,t') € A,

da: d a']laala"'aa t/ ;
with the initializationD (t,,(;),0) = 0. Similarly, the number gc ged(w va(1) va(p(t')))
of data consumed by in the bufferb(a) at the completion where ged is the greatest common divisor of a given list

D (ty,n) = DI Pred(ty,n) + w, (k)

of (t}.,n') is defined by the sequence of non negative integers. For every integer we also set
gcda _ « . H H
Do (th,n') = Do Pred(ty, n') + va (k) ] = gcdaJ gcd,. The following lemma refines the

upper bound from Lemma 1.

, o L B
with the initialization D; {t,,;,), 0) = 0. Lemma 2. Leta = (¢,t') € A and the couple of exe-

cutions (tx,n) and (t},,n') with £ € {1,--- ,¢(t)}, k' €

L--,0)} and (n,n’) € (N —{0})2. We setH, .. (k) =
—%Mo(a)Jng“ — | D Pred(ty, 1)]°“* — gedy + D (i, 1)
and H,,in (k, k') = max{0, we(k) — v4 (k') } — Mp(a).

Functions D and D, may be used to build a
precedence constraint between the executions of
macro-tasks. For bufferb(a) in Figure 1, we have
Df(th,3) = 13, DH(t},3) = 16, D, (t3,2) = 9 . :
and D-(2,2) — 14. Since, D (t5.3) > D= (i2,2), t/The/n, _tfrfu.are exists a precedence constraint frgmn) to
(t3,2) can be executed at the completion @f,3). As, (oo ), i -

Dg (t3,2) > Df (t1,3) > D (1,2), (t1,2) can be executed 1 (k) > D} (ty,n) — D (thy,n') > Hypin (k, K').
after (t1,3) but not (t2,2). Thus, there exists a precedence
constraint from(¢}, 3) to (¢3,2). Proof: By definition of D, Vn € N — {0}

+ — D+ _ +

The following lemma provides a mathematical criterion that Dy {te,n) = Dyt n — 1) + Dy {t, 1)
catches this intuitive definition of a precedence constraigng

between two executions. DF(ty, 1) = D Pred(ty, 1) + wq (k).

Lemma 1. Leta = (¢,¢') € A. There exists a precedenceThe left inequality of Lemma 1 becomes

constraint from (t;,n) to (t;,,n') with k € {1,---, (¢},

K e{l, -, o)} and (n,n') € (N - {0})* iff : —(Mo(a)+DJ Pred(ty, 1)) > D} (t,),n—1)—D, (t},,n').
wa(k) > Mo(a) + D} (tg,n) — D, (t},,n') > Since D (t, 1), n—1) — D (t},,n’) is divisible by gcd,, the

max{0, wa (k) — va (k') strict inequality may be replaced by:
cdg geda
Proof: According to the definition of a precedence con=([Mo(a) |*“*+| Dy Pred(ty,1)|" " +geda) >
straint, the first condition implies D {to),n — 1) — Dy (th,0)

Mo(a) + Dg (ty,n) — D (tjy,n) > 0. . : . . .
The left inequality of the lemma is obtained by adding
Since Pred(t;,,n') may be executed before the end oD (¢;,1). The right part of the inequality is a consequence

(tr,m), of Lemma 1, which concludes the proof. [ |

My (a) + D Pred(ty,n) — D, Pred(t},,n') >0
E. Bounded buffers
In a CSDF graph, an are is associated with a bufféif(a)
Mo(a) + D (ty,,n) — D, {ti,,n') > wa(k) — va (k). with a non-limited sizej.e. the number of data stored simul-
. taneously inb(a) may be infinite. However, this hypothesis is
Lastly, once(tx,n) and (t},,n’) are executed, the/numberunacceptable for real-life systems. Stugjkal. [6] noticed that
of remaining data iru is less thanw,(k), otherwise(t;,,n’)  a pufferb(a) with a bounded size fromto ¢’ may be modeled
can be executed before the completion(af, n). Thus, by adding a reverse ar¢ = (',t) in the associated CSDF
+ s ey T, graph with, for everyk € {1,---,¢(t)}, va (k) = wq (k)
wa(k) > Mo(a) + Dy (tk,n) — D, (tp,n') and for everyk’ € {1,---,p(t")}, wp(d) = vp(a) (see

and thus

which concludes the proof. m Figure 2). The size of the bufféxa) is then equal to the sum
Mo (a) + Mo(a).
For the example pictured by Figure 1, we def (t,3) = 0
16 and D (t2,2) = 14. Sincew,(2) = 3 andwv,(2) = 5, the @){2,3, 1] [2,5] (@
following inequality is true: MO.(a’)

3> DIt 3) — D (t2,2) > max{0,3 — 5}. Fig. 2. A bounded buffeb(a).



Without loss of generality, it is assumed that the applarati computed faster, leading to a better computation of buffers

is modelled using a connected CSDF graph. Now, if all buffesszes.
have a bounded size, the graph obtained by adding reverse
. . e
arcs is strongly connectedd. for every couple of macro-tasks
(t,t') € T?, there exists a path from to ') and is said

orem 3. There exists a set of rationals3,,a € A} such
that, every periodic schedule which verifies:

symmetrical. 1) per = 5 and¥t € T — {t*}, py = pug- W (4 ) Where
vy~ 1S a path ofG from ¢ to ¢*.
The following theorem holds for symmetrical graphs: 2) Va=(t,U') € A,
Theorem 2. If G is consistent and symmetrical, then, for every st 1) —s(t,1) > — o 1 | Mo(a) |9 + B,
circuit ¢ of G, W(c) = 1. Wa -
is feasible.

Proof: Let us consider a circuit of G. Since G is
symmetrical, the patlk’ constructed using reverse arcs of Proof: Let us suppose that = (¢¢') induces a
is also a circuit. By Theorem 1, singgis consistent, we get precedence constraint fronk¥,n) to (t,,,n’) with &k €
W(c) > 1. Now, if W(c) > 1 thenW () = A~ < 1and {1,---,0®)}, K € {1,---,p(t)} and(n,n’) € (N—{0})>.

- . Wi(c) M
thus g is inconsistent. m By definition,
The following corollary is used to derive the minimum .
throughput of macro-tasks. s(tk,n) + b(k) < s(th,n')-

Corollary 1. Let (¢,#') € T?. If G is consistent and symmet-Sinces is periodic, this equation becomes
: , :
rical, then, all paths betweenandt’ have the same weight. s(t,1) = s(t,1) > f(k, k) + (n— D — (0 — Dy

Proof: Let us suppose that there exists two disjoint path\§',ith

v1 and vy, from ¢ to ¢ with two different weightsiV (v,) # . ;:1 (1) l;zlgt, ()

W (v2). Since the graph is symmetrical, we may construct a (k. k") = = =———p + (k) — =" ———pv.
circuit ¢ by concatenating the path with the reverse path of i ! !

vy. S0,W(c) = %;i By Theorem 2 is consistent implies -€t US define now

W (c) = 1 which leads to a contradiction because this involvqg«k’ n), (k',n')) = Dt n)—D (th,,n)
W(I/l) = W(VQ). o
In the following, it is supposed that the graph is symmetrBy definition of D} and D

- H((k,m), (') = (n = 1w T — (0 = Dg - T+ gk, k)
Ill. PERIODIC SCHEDULES with g(k, k") = D} (tx,1) — D, (t,,,1). It is deduced that
Our study is limited to periodic schedules as defined by 1

Wiggerset al[8]. An execution of a macro-tagkis scheduled n—1 = (H((k,n), (K',n')) + (n" = Dva - 1 — g(k, k"))
periodically everyu; time units. Starting times of phases

t1,-- ,t,«) are spread oveg, using their time execution. and thus,

Wq 1

More formally, s is a periodic schedule if every tagke T s(t',1) = s(t,1) > f(k, k') — (n" — 1) (Mt' - wu% 7V ]1)
is associated with a periog; such that: “

1) ¥n>0,s(t,n) = s(t,1) +(n— e = s(t1, 1) + (n — D, e T (H((k,n), (K", n")) — g(k,k")).

2) Vk {2, ,0(t)}, s(tk,n) = s(tk—1,m) + tgt 1 M According to Lemr%nuaa 2, for any couple,, n’) and for every
This definition ensures that two successive phases do Ot H ((k,n), (k',n')) < Hpq.(k), and then the right part of
overlap. Note that the throughput of a periodic schedule flse previous inequality is less or equal to

1
exactly —.

Hex r(k,k',n') = f(k, k') — (n' = 1) (Ht/ - Vg - ]l>
Wq - 1
A. A sufficient condition of existence for a periodic schedul 1
. . - +— (Homaz(k) — g(k, k")),
The following theorem characterizes a periodic schedule W - 1

a
such that all precedence constraints as defined in Sectiod NUS: {0 preserve the minimum delay betw;e;étj, 1) and
II-D are fulfilled. Every arca = (¢,#') induces a relationship s(t,1), it is sufficient to consider the delayF, &', n). Then,
between the couple of periodsu, si/). A minimum delay e new considered inequality is
between the _first phases starting tim@_sé(s_’, 1) —s(t,1) su_ch s(t',1) — s(t,1) > r(k, K, n').
that no data is consumed by before it is produced by is
also expressed. Our equations are similar to [8]. However, 0 This inequality must be true for any valu€, so uy —
valuess, may be smaller and are evaluated analytically on gﬁva -1 > 0 and thenv’:—f_’]l > w‘:f_]l. Since the graph
smallest set of relevant values. Our values are minimum aisdsymmetrical, there exists a circuit that includesa. By




Theorem 2, sinceG is consistent,W(c) = 1, and then

L = S Thusp, = %24, So,
Wq - 1
Ya = (¢, 1), uy = — /,
(t, 1), e va-]l'ut

and then, for a pathy;., we get

pr =W (vgee ) -

Now, by Corollary 1, all paths front to t* have the same

IV. PROBLEM FORMULATION AND RESOLUTION

Let us suppose a symmetrical CSDF graph= (7', A) in
which every bufferb(a) is modeled using a couple of arcs
(a,a’). The size ofb(a) equals toMy(a) + My(a’) as seen in
Section II-E. This size can be set or not by the designer. In
the first case, valued/;(a) and My(a’) can be unknown. A
buffer b(a) is initialized if its initial number of datally(a)
is set.

weight W (v+ ), thus the previous equality always holds. So A consequence of Theorem 3 is that, for any are A,

the first part of the theorrem is proved.

My(a) is a multiple ofged,,. Thus, if My(a) is set, it can be

Now, by replacing-(k, k', n") and Hmq. (k) by their values replaced by| My(a) 7. Otherwise, only multiples ofcd,

in the precedent inequality we get

Ht

e (Mo (a) 7+ £ (k) +

st 1)—s(t,1) > —

Ht
Wq - 1

and thus
Ht

Wy - 1

et I+ geda ., -

w, - 1 ( |_Du, (tr—1, 1>J + D, ()., 1) gcda) .
This inequality must be trugk € {1, -, p(¢)} andVk’' €

st 1)—s(t,1) > — | Mo(a) |9+ f (k, k) +

{1,---,p(t')}. Thus, it must be true for the right term equal

to — 5| Mo (a) 7™ + B, with
k—1 E'—1
_ L) (D)
Zal=1 “t\°) _ Za=1 *t )
ﬁ—m{ =t ) — S
Mt gedq _
w, - 1 (_ LD;<tk_1’1>J + D, <ti’c’71> _nga)}-

B. Computation of the sufficient condition

In this subsection, we evaluate the time complexity o
the computation of periods and equations as defined in

previous subsection for a given graph= (A, T).

Computation of 5,: Let a =

G and let 3, be the value as defined in the proo
terms depending
can be splitted to obtain:

Theorem 3. We observe that

respectively of & and &’
k—1 0.(1 .
/Ba = mkax {Mﬂt —|—€t(k) — ﬁ LDj<tk—17 1>J9 da}

of

4 -1

SE () pe o
— — D, {ty, 1) — da
+n}gx et/':ﬂ. wa'ﬂ( a<k7> ge )

and thus, onlyp(t) + ¢(t') steps are needed to evaluge

My +

Computation ofu;,t € T As seen in the proof of Theorem

3, periods of two adjacent macro-tasksand ¢’ with a =
(t,t') € A verify p; = Yol Starting fromt* for which

Vo1

(= (LD b2, )" = geda + DF (b1, 1) = g(k. )

are sought forMy(a). Let us denote by, (resp.As) the set
of arcs for which the value ol is known fesp.unknown).

Moreover, buffers are homogeneois, data stored in any
buffer b(a) have all the same dimensidfa).

For a given throughput, our problem may be formulated by
the following Integer Linear Program:

min (3 ,c4 0(a)Mo(a))  subject to
Va = (t,t/) S Al,
s(t',1) = s(t, 1) > B — 5 | Mo(a))**

Va = (t,tl) € A,

s(t',1) = s(t,1) > Ba — L5 Mo(a)
Va = (t,t') € Az, Mo(a) = mo(a) - ged,
Va = (t,t') € Aa,mp(a) € N
vteT, s(t,1) >0

The first fesp. second) inequality expresses the sufficient
condition associated with an initializedegp. uninitialized)
arca € A; (resp.a € A,) following Theorem 3. The other
constraints restrict the values thafy(a), a € As, can take
to multiples ofged,, .

¢ This problem is a generalization of an NP-Hard problem
]. In order to compute a good solution efficiently, we first

solve the linear program relaxation by removing the intygri

constraints on the values df/y(a), a € A,. Then, to get a

(t,#') an arc of feasible solution, for every arg < As, we roundMy(a) to
fhe next greater multiple ofcd,,.

V. EXPERIMENTAL RESULTS

Our method was tested on two particular industrial ap-
plications. The first one concerns a Reed Solomon Decoder
application RSD. The second one is an MP3 Playback model
extracted from [8].

A. RSD application

It is used to detect and correct errors that may occur during
wireless communications. The input of our application is a
frame of 896 bytes, composed of 864 data bytes and 32 parity

the periodu,« is set, the period of every macro-taskcan bytes. The output is 4 frames of 216 bytes called codewords.
be computed by a Depth-First Search algorithm [12]. Let Usach codeword is associated with the number of errors that
considerdeg(t), the degree of € T. The computation of were detected in it and whether they were all corrected or not
periods may take (), . deg(t)) time units which is linear This determines the status of the frame received (accepted o
in the size of the graph. rejected).
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Fig. 3. Block diagram of a Reed-Solomon Decoder. Eachuamepresents a Fig. 4. The CSDF graph modelling the 3 blocks (Syndrome, @eizaver

buffer and is labeled by the dimensiéiia) expressed in bits and the numberg,q Euclid) and the channels between these blagks= [864x1, 32x0] and
of data transferred during the treatment of one frame. wg, = [1,0,0,0].

22 22
A block diagram of this application is shown in Figure 3. barpy éfﬁ iy iy

To decode Reed-Solomon codes, an Euclidean decodir@)mwpg 480 SRCha1 1 (APP)1 1 (@
algorithm is used and it is implemented by Boclid block. ® ® ®
g p y B N— By N Bj

The Syndromeblock performs the syndrome calculation using
; Fig. 5. MP3 Playback,urrps = [0,0,18x32,0,18x32]. Durations:
32 parity bytes. Lrrp3 = [670, 2700, 18x40, 2700, 18x40)us, £sre € {2.5,5, 7.5, 10}ms.

)

To enhance the throughput, foluclid blocks are used in
parallel to decode an interlaced data frame. Dieénterleaver oy algorithm runs on &.3Ghz AMD processor and
block is used to deinterlace a framess#t bytes (buffei) into | jnyx pased system. The solver used to resolve the linear
4 codewords o216 bytes (buffers3! to 3%). Each codeword program relaxation iSSLPK [14].
is treated by a separafaiclid block able to detect 7 errors and
to correct at most 3. To perform its task, Boclidblock needs  The algorithm computes several solutions of the same
a syndrome oBx8 bits which is delivered by th&yndrome minimum cost1001 bytes. Two of them are shown in Table
block (buffersy, to 7). _ ~ I. The first solution sets the size of bufferto its minimum
The peqod of the system is needed to be 1152 cycle timgnich is 33 bytes, and sizes of buffers;,i € {1,---,4}
The duration of one cycle depends on the technology usedare set t0234 bytes. The second solution does the opposite
_ ) ) _ ~and reduces the amount of buffers betweenDieinterleaver
Figure 4 shows a cyclo static modelling of this applicationock and Euclid blocks to its minimumdx1 bytes. In this
Because of symmetry only the filgtuclid block is represented. case, the minimum size of is 965 bytes. Adopting a solution

Also, due to space constraints, several macro-tasks ham® bgyiher than the other depends on architectural choices. Our

merged. designers preferred merging memory so they opted for the

) second solution.
The Syndromeblock is composed of two macro-tasls

and S2. S! reads a frame o864 data bytes and2 parity BUREER S17ES FZARBT'-FFER'SDAPPUCAHON
bytes. It writes data bytes one by one (cycle by cycle) on e byies) = a+ (81 + B2 + B3 + Ba) + 8(71 + 2 +v3 + 74)-

the buffer . Once all parity bytes are read?> computes

the syndrome and writes it on buffey;, which takes7 [Solution] o [ B, ¢€{1---4} [ v, ¢ € {1---4} ]| Cost]
cycles time. Theny(S!) = 896,w, = [864x1,32x0] and 1 33 234 1 1001
Vi e {1,---,896}, Lg1(k) =1. ¢(S?) =1 andlg(1) =17. 2 965 1 1 1001

The unique macro-task of thBeinterleaverblock has4
phases (as many as the number Eiclid blocks). Every o
phase takes cycle timei.e., Vk € {1,---,4}, ¢pi(k) = 1. B- MP3 Playback application
During the phase, it writes the data just read from buffer The MP3 playback model presented in [8] allows us to
on the bufferd* and nothing on the three others. compare our results with [6], [8].

The Euclid block is composed of three macro-tasks. They We obtain the same buffer sizes as in [8] for different
all have one phasee. , (E') = p(E?) = ¢(E®) = 1. execution time of the converter SRC (See Table Il). This
(1) =89, lp2(1) =1 andlgs(1) = 3. artefact is due to the application structure (a chain). Thei



objective function minimizes the sum of the first starting

times of macro-tasks which does not coincide with the surfy;

of buffer sizes for general graphs. 2
However our algorithm is fasterl(—>s vs 10~2s) due to

the analytical technique presented here for the computatid3]

of 3,. This speed factor is to be appreciated in large systems
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