
Improved Fault Tolerant Broadcasts in CAN

Luís Miguel Pinho
ISEP, Polytechnic Institute of Porto

Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto, Portugal

E-mail: lpinho@dei.isep.ipp.pt

Francisco Vasques
FEUP, University of Porto

R. Dr. Roberto Frias
4200-465 Porto, Portugal
E-mail: vasques@fe.up.pt

Abstract - It is generally considered that the Controller Area
Network (CAN) guarantees atomic broadcast properties
through its extensive error detection and signalling
mechanisms. However, it is known that these mechanisms
may fail, and messages can be delivered in duplicate by some
receivers or delivered only by a subset of the receivers. This
misbehaviour may be disastrous if the CAN network is used
to support replicated applications.
In order to prevent such inconsistencies, a set of atomic
broadcast protocols is proposed, taking advantage of CAN
synchronous properties to minimise its run-time overhead.
This paper presents such set of protocols, and demonstrates
how they can be used for the development of distributed
real-time applications.

I. INTRODUCTION

Controller Area Network (CAN) [1] is a fieldbus
network suitable for small-scale Distributed Computer
Controlled Systems (DCCS), being appropriate for
transferring short real-time messages. The CAN protocol
implements a priority-based bus, with a carrier sense
multiple access with collision avoidance (CSMA/CA)
MAC. In this protocol, any node can access the bus when
it becomes idle. However, contrarily to Ethernet-like
networks, the collision resolution is non-destructive, in the
sense that one of the messages being transmitted will
succeed.

This priority-based medium access control enables the
use of CAN as the communication support for real-time
distributed systems. Several studies on how to guarantee
the real-time requirements of messages in CAN networks
are available (e.g. [2]), providing the necessary pre-run-
time schedulability conditions for the timing analysis of
the supported traffic, even for the case of networks
disturbed by temporary errors [3].

CAN networks also have extensive error
detection/signalling mechanisms, which impose the
retransmission of the message when an error is detected.
However, it is known that these mechanisms may fail
when an error is detected in the last but one bit of the
frame [4]. This problem may cause messages to be
delivered in duplicate by some receivers (inconsistent
message duplicate), or, if the sender fails before re-
transmitting the message, to the message being delivered
only by a subset of the receivers (inconsistent message
omission), leading to inconsistencies in the supported
applications.

This misbehaviour may be disastrous if the CAN
network is used to support replicated applications, since
these applications require that replicated components
provide the same results, when they are correct. Thus, the
consistency of the delivered messages must be guaranteed
by atomic broadcast mechanisms, which guarantee that
messages are delivered by all (or none) of the component
replicas’ and that they are delivered only once.
Furthermore, there is the need to agree also in the order by
which broadcasts are delivered. Thus, it is necessary to
provide protocols that guarantee these properties in spite
of CAN inconsistencies, while at the same time preserving
CAN real-time characteristics (thus allowing the offline
analysis of the messages’ response time).

This paper presents a set of atomic broadcast protocols
intended to guarantee reliable real-time communication in
CAN networks, in spite of inconsistency in message
deliveries. The paper is structured as follows. The
following Section presents a brief description of the
problem of inconsistency in CAN communication. The
proposed set of atomic broadcast is then presented in
Section 3. Section 4 presents a numerical example, while
Section 5 presents a comparison with other relevant
approaches. An annex is also provided, with the
specification of the proposed protocols.

II. INCONSISTENCY IN CAN
 COMMUNICATION

The use of CAN networks to support DCCS
applications requires not only time-bounded transmission
services, but also the guarantee of consistency for the
supported applications. In spite of the extensive CAN
built-in mechanisms for error detection and recovery [1],
there are some known reliability problems [4], which can
lead to an inconsistent state of the supported applications.

Such misbehaviour is a consequence of different error
detection mechanisms at the transmitter and receiver
sides. A message is valid for the transmitter if there is no
error until the end of the transmitted frame. If the message
is corrupted, a retransmission is triggered according to its
priority. For the receiver, a message is valid if there is no
error until the last but one bit of the received frame, being
the value of the last bit treated as 'do not care'. Thus, a
dominant value in the last bit does not lead to an error, in
spite of violating the CAN rule stating that the last 7 bits
of a frame are all recessive.

In Fig. 1, the Sender node transmits a frame to
Receivers A and B. Receiver B detects a bit error in the
last but one bit of the frame. Therefore, it rejects the frame
and sends an Error Frame (requesting the frame
retransmission) starting in the following bit (last bit of the
frame). As for receivers the last bit of a frame is a ‘do not
care’ bit, Receiver A will not detect the error and will
accept the frame. However, the transmitter re-schedules
the frame, as there was an error. As a consequence,
Receiver A will have an inconsistent message duplicate.
The use of sequence numbers in messages can easily solve
this problem, but it does not prevent messages from being
received in different orders, thus not guaranteeing total
order of atomic broadcasts.

Error detected
Receiver rejects

the frame

r dReceiver A

Error detected
Sender schedules frame for
retransmission

‘Do not care’ bit
Receiver accepts

 the frame

At this moment, Receiver A has accepted the frame,
while Receiver B has rejected it

- If the sender retransmits the frame, then Receiver B
will have it, while Receiver A will have a duplicate
frame (inconsistent message duplicate)

- If the sender fails before the retransmission, then
Receiver B will never have the frame
(inconsistent message omission)r dSender

ddReceiver B

Receiver B signals the Error,
starting an Error Frame in the last
bit of the frame

Fig. 1. Inconsistency in CAN.

On the other hand, if the Sender fails before being able
to successfully retransmit the frame, then Receiver B will
never receive the frame, although Receiver A has
delivered it. This situation causes an inconsistent message
omission. This is a more difficult problem to solve, than in
the case of inconsistent message duplicates.

In [4], the probability of message omission and/or
duplicates is evaluated, in a reference period of one hour,
for a 32 node CAN network, with a network load of
approximately 90%. Bit error rates were used ranging
from 10-4 to 10-6, and node failures per hour of 10-3 and
10-4. For inconsistent message duplicates the results
obtained were from 2.87 x 101 to 2.84 x 103 duplicates per
hour, while for inconsistent message omissions the results
ranged from 3.98 x 10-9 to 2.94 x 10-6 omissions per hour.

These values demonstrate that for reliable real-time
communications, CAN built-in mechanisms for error
recovery and detection are not sufficient. Thus, the use of
CAN to support reliable real-time communications must
be carefully evaluated and appropriate mechanisms must
be devised.

III. FAULT-TOLERANT BROADCASTS IN CAN

The proposed set of broadcast protocols encompasses
several protocols with different failure assumptions and
different behaviours in the case of errors. The IMD
(Inconsistent Message Duplicate) protocol provides an
atomic broadcast that just addresses the inconsistent
message duplicate problem. The 2M (Two Messages)
protocol provides an atomic broadcast addressing both

inconsistent message duplicates and omissions, where
messages are not delivered in an error situation. Finally,
the 2M-GD (Guaranteed Delivery) protocol is an
improvement of the 2M protocol, which guarantees the
message delivery, if at least one node has correctly
received it. The Unreliable protocol is a simple broadcast
protocol that does not any guarantees.

These atomic broadcast protocols provide the system
engineer with the possibility of trading efficiency by
reliability, since they can be simultaneously used in the
same system. The IMD protocol uses less bandwidth, but
it does not cover the inconsistent omission failure
assumption. On the other side, the use of protocols with
higher assumption coverage (e. g. the 2M protocol)
introduces extra overheads in the system. Hence, streams
with higher criticality may use protocols with higher
assumption coverage, while streams with lower criticality
may use lighter protocols.

Identifier Field

Protocol Information
3 bits

LSB

Protocol Bits Message Type
0 0 0 Data Msg.
0 0 1 Confirmation Msg.
0 1 0 Retrans. Msg.

2M-GD Protocol

0 1 1 Data Msg.
1 0 0 Confirmation Msg.
1 0 1 Abort Msg.

2M Protocol

1 1 0 IMD Protocol
1 1 1 Unreliable Protocol

Fig. 2. Identifier field and protocol information.

The proposed atomic broadcast protocols use the less
significant bits of the frame identifier (Fig. 2) to carry
protocol information, identifying the type of each
particular message without interfering with the message
criticality (defined by the most significant bits of the
frame identifier).

Knowing that CAN frames are simultaneously received
in every node, the atomic broadcast properties are
guaranteed by delaying the deliver of a received frame
during a specific (bounded) time. The approach is similar
to the ∆-protocols [5], where, in order to obtain order,
message delivery is delayed during a specific time (∆).
The difference is that, in the proposed approach, delivery
delays are evaluated on a stream by stream basis,
increasing the system throughput, as messages are delayed
accordingly to their worst-case response times.

A) Failure Assumptions

In the proposed protocols it is assumed that:
- A single message can be disturbed by at most kdup

duplicates. As the probability of an inconsistent
message duplicate is approximately 10-4 (the
transmission of 2.87 x 107 messages per hour results

in, at most, 2.84 x 103 duplicate messages [4]), it is
not foreseen the necessity of a kdup greater than 2.

- During a time T, greater than the worst-case delivery
time of any message in the network, at most one
single inconsistent message omission occurs.
Considering the existence of 3.98 x 10-9 to 2.94 x 10-6

inconsistent message omissions per hour [4], the
occurrence of a second omission error in a period T
of, at most, several seconds has an extremely low
probability.

- There are no permanent medium faults, such as the
partitioning of the network. This type of faults must
be masked by appropriate network redundancy
schemes.

B) IMD Protocol

The IMD protocol provides an atomic broadcast that
just addresses the inconsistent message duplicate problem.
In order to guarantee that duplicates are correctly
managed, every node, when receiving a message marks it
as unstable, tagging it with a tdeliver stamp (current time
plus a δdeliver delay). If a duplicate is received before tdeliver

(Fig. 3), the duplicate is discarded and tdeliver is updated
(since in a node not receiving the original message tdeliver

refers to the duplicate).
For the transmitter (if it also delivers the message), as

the CAN controller will only acknowledge the
transmission when every node has received it correctly
(no more retransmissions), there will be no duplicates.
Thus the transmitter can deliver the message after its
δdeliver.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Automatic
Retransmission

δdeliver Deliver

δdeliver

Duplicated
Messages

Error detected and
signalled by Receiver 3 but

not by Receivers 1 and 2

Fig. 3. Inconsistent message duplicate.

C) 2M Protocol

The 2M protocol addresses both inconsistent message
duplicates and inconsistent message omissions,
guaranteeing that either all or none of the receivers will
deliver the message. For the latter, not delivering a
message is equivalent to a transmitting node crash before
sending the message.

In the 2M protocol, a node wanting to send an atomic
broadcast transmits the data message, followed by a
confirmation message, which carries no data. A receiving
node before delivering the message, must receive both the
message and its confirmation. If it does not receive the
confirmation before tconfirm (Fig. 4 presents an example of
an inconsistent message), it broadcasts the related abort
frame. This implies that several aborts can be
simultaneously sent (at most one from each consumer
node). A message is only delivered if the node does not
receive any related abort frame (until after tdeliver) since a
node receiving the message but not the confirmation, does
not know if the transmitter has failed while sending the
message, or while sending the confirmation. In Fig. 5 an
example of this situation (for an inconsistent confirmation
message) is presented.

When a message is received, the node marks it as
unstable, tagging it with tconfirm and tdeliver stamps. A node
receiving a duplicate message discards it, but updates both
tconfirm and tdeliver. As the data message has higher priority
than the related confirmation (due to the protocol
information field in the identifier), then all duplicates will
be received before the confirmation. Duplicate
confirmation messages will always be sent before any
abort (confirmation messages have higher priority than
related abort messages), thus they will confirm an already
confirmed message.

The advantage of the 2M protocol is that in a fault-free
execution behaviour there is only one extra frame (without
data) per broadcast. More protocol related messages in the
bus will only be transferred in the case of an error (low
probability).

Note that the transmission of an abort only occurs in
the case of a previous failure of the transmitter. Therefore,
from the failure assumptions presented (there is no second
inconsistent message omission in the same period T), this
abort will be free of inconsistent message omissions.

The transmitter can automatically confirm the message,
since if it does not fail, every node will correctly deliver
the message and the confirmation. The situation is the
same as for the IMD protocol, since if the transmitter
remains correct and delivers the message, then it will re-
transmit any failed message.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

δconfirm

δdeliver

Abort

Transmitter fails before
retransmiting

Receiver 3 signals
the error

Fig. 4. Inconsistent message omission while sending the
message.

Transmitter

Receiver 1

Receiver 2

Receiver 3

Message

Confirmation

δconfirm

δdeliver

Receiver 3 does not
know if others have
received the message

Transmitter fails before
retransmiting

Receiver 3 signals
the error

Abort

Fig. 5. Inconsistent message omission while sending the
confirmation.

Using the 2M protocol to send atomic multicasts, error
situations are handled as follows:
- There is an inconsistent message omission while the

transmitter is sending the data message, and it does
not send the confirmation. In this case the nodes that
have correctly received the message (but not the
confirmation) disseminate an abort message.

- The transmitter correctly sends the data message, but
a bit error causes this message to be duplicated in
some of the nodes. As a duplicate message will
always be sent before any confirmation, thus before
the related message being delivered or aborted, it will
be discarded (but δdeliver and δconfirm have been
updated).

- The transmitter correctly sends the data message, but
it crashes before sending the confirmation. In this
case no receiver gets the confirmation, thus they do
not deliver the message.

- The transmitter correctly sends the data message, but
a fault causes the confirmation to be inconsistent. In
this case some of the receivers will not receive the
confirmation, thus they will abort the message, even
for those nodes which receive a correct confirmation.

- The transmitter correctly sends the data message, but
a bit error causes the confirmation to be duplicated in
some of the nodes. As a duplicate confirmation will
always be sent before any abort, it will confirm an
already confirmed message.

The 2M protocol can be modified to guarantee the
delivery of a transmitted message to all nodes, if it is
correctly received by at least one node. In the 2M-GD
protocol, nodes receiving the message but not the
confirmation retransmit the message (instead of an abort).
This protocol is however less efficient than the 2M
protocol (in error situations), since messages are
retransmitted with the data field. It also requires an extra
delay (δdeliver_after_error) to guarantee order of delivery, for
the case of duplicate retransmissions.

D) Timing Analysis

In order to guarantee the timeliness requirements of
real-time applications it is necessary to provide the model
and assumptions for the evaluation of the message
streams’ response time, considering the use of the

proposed protocols. As these protocols are based on
delaying of the delivery phase, the response time analysis
is constrained by the evaluation of these delays.

Due to the lack of space, this model is not presented
here; the reader is referred to [6] where a set of
pre-run-time schedulability conditions is presented,
enabling the timing analysis of the supported
communication protocols. These conditions allow
determining the delays required for the proper behaviour
of the proposed protocols, and also the worst- and best-
case response times of each message stream.

One of the main targets of the proposed protocols is to
introduce reliability in CAN communication, while at the
same time preserving CAN real-time characteristics. Such
target is achieved, since the predictability of message
transfers is guaranteed [6].

IV. NUMERICAL EXAMPLE

In order to clarify the use of the presented model, a
simple example is used. In this example (Fig. 6), a system
where a distributed hard real-time application executes is
considered. The system is constituted by four nodes,
connected by a CAN network at a rate of 1 Mbit/sec.

The application is constituted by four tasks (τ1..τ4),
which are spread over the nodes. As component
replication is also used, then some of these tasks are also
replicated. In this simple application, each task outputs its
results to the following task.

C1

C2’’

C3’
C3

τ1 τ2’’

τ2’ τ4
τ4’τ3’

C2’
τ2 τ3

C2

τ3’’

C3’’

τ4’’

Application Configuration

CAN

τ1 τ2 τ3 τ4

Application Structure

M1 M3 , M4 , M5

Messages

M2

Fig. 6. Application example.

Table 1 presents each task’s characteristics, while
Table 2 presents the characteristics of the necessary
message streams (all values are in milliseconds).

Table 1. Tasks’ characteristics.

Task Type WCET Period Comp. Nodes

τ1 Per. 2 5 C1 1

τ2 Per. 2 10 C2 1,2,3

τ3 Spo. 3 10 C2 1,2,4

τ4 Per. 4 15 C3 2,3,4

Table 2. Messages streams’ characteristics.

Msg Bytes Period From To Prot.
M1 4 5 τ1 τ2,τ2’,τ2’’ 2M-GD
M2 8 10 τ2’’ τ3’’ IMD
M3 6 10 τ3 τ4,τ4’,τ4’’ 2M
M4 6 10 τ3’ τ4,τ4’,τ4’’ 2M
M5 6 10 τ3’’ τ4,τ4’,τ4’’ 2M

Note that messages from τ2 to τ3 and τ2’ to τ3’ are
internal to the node, since they are intra-component, and
both tasks are in the same node. Since message M1 is a 1-
to-many communication, the 2M-GD protocol is used in
order to guarantee that every replica of task τ2 delivers the
message. Therefore, there will be an extra confirmation
message with the same period of M1, but without data
bytes. Since it is considered that an inconsistent message
omission may occur, then it is also necessary to account
for the possible 3 retransmission messages (one from each
receiving node).

Message M2 is internal to a component (although the
component is spread between nodes 3 and 4), and it is a 1-
to-1 communication. Therefore, it is sufficient to use the
IMD protocol, since only duplicates are to concern.
Messages M3 to M5 are messages from replicated τ3 to
replicated τ4, therefore they need consolidation in every
replica of τ4. As this consolidation will mask node failures
of the senders, then it is sufficient to use to 2M protocol
for the transmission of messages. Therefore there will be
an extra confirmation message for each message sent (and
possible abort messages).

In this analysis, the model of [3] is used, with the
following error assumptions:
- a maximum of 2 errors in each 10 ms time interval,

resulting from a bit error rate of approximately 10-4,
which is an expectable range for bit error rates in
aggressive environments;

- possible existence of an inconsistent message
omission during the period of analysis;

- possible existence of one duplicate in the
transmission of a message (kdup = 1);

- a ∆node equal to 100 µS and a maximum deviation
between clocks (ε) of 100 µS.

The target of this example is to analyse the
responsiveness of the proposed protocols, for both the
response time and the delivery time of messages.
Response time is considered as the time interval between
requesting a message transfer until the message is fully
received at the receiver side. Delivery time is considered
as the time interval between requesting a message transfer
until the Communication Manager delivers the message to
the upper layers. If broadcast protocols are not used, these
times are equivalent, as it can be assumed that messages
are delivered when they are correctly received.

Table 3 presents the response time for each message
stream and the network load when broadcast protocols are
not used, that is, the Unreliable protocol is used instead of
IMD/2M/2M-GD protocols. Rm

NP represents the worst-
case response time (NP: no protocols), P is the periodicity
and Cm is the actual time taken to transmit a message. U is
the network utilisation.

Table 3. Messages’ response time without protocols.

Msg P Cm Rm
NP

M1 5 0.089 0.519
M2 10 0.127 0.630
M3 10 0.108 0.741
M4 10 0.108 0.852
M5 10 0.108 0.852
U 6.590 %

As it can be seen, the worst-case response time of
messages is considerably greater than its actual
transmission time. Although interference from higher
priority messages is one of the factors leading to such
difference, the main factor is the network bit error rate.
For instance, a message of stream M1 in an error free
environment would have a worst-case response time of
0.219 ms. The possible existence of errors in the network
more than duplicates its worst-case response time, even
when broadcast protocols are not used.

Table 4. Protocol-related delays.

Msg Prot. δconfirm δdeliver δdel_aft_er

M1 2M-GD 0.350 0.969 0.389
M2 IMD - 0.848 -
M3 2M 0.901 2.013 -
M4 2M 1.065 2.341 -
M5 2M 1.229 2.558 -

Table 5. Messages’ delivery time
considering protocols.

Msg Rm
MP Wm Bm Wm/Rm

MP

M1 0.519 3.394 1.058 6.54
M2 0.959 2.655 0.975 2.77
M3 1.070 3.984 2.121 3.72
M4 1.234 4.640 2.449 3.76
M5 1.287 5.074 2.666 3.94
U 9.09 %

Tables 4 and 5 present the messages’ delays and
delivery times considering the use of the proposed
broadcast protocols. Rm

MP represents the worst-case
response time of a message stream when broadcast
protocols (MP) are considered. Wm and Bm are,
respectively, the worst- and best-case delivery time for
message stream Mm.

As it can be seen in Table 5, the worst-case delivery
time is greater than the related worst-case response time,
because apart from the broadcast-related introduced
delays, it is assumed that each message may be disturbed
by one duplicate. For instance, the worst-case delivery
time for message stream M5 is not only given by the
message stream response time plus its δdeliver, but also by
summing an extra δconfirm due to the possible existence of a
message duplicate.

The last column of Table 5, presents the ratio worst-
case delivery time/worst-case response time, when
considering the use of broadcast protocols. It is obvious
that the IMD protocol is the one that introduces smaller
delays (Message M2), while the 2M-GD protocol is the
one with the higher delays (Message M1). Therefore, the
system’s engineer can use this reasoning to better balance
reliability and efficiency in the system. Moreover, the

broadcast protocols increase network utilisation less than
50%, since broadcast-related retransmissions only occur in
inconsistent message omission situations. Although this
network load increase is still large, it is much smaller than
in other approaches, and it is the strictly necessary to cope
with inconsistent message omission using a software-
based approach. Moreover, the real-time capabilities of
CAN are preserved, since predictability of message
transfers is guaranteed [6].

V. COMPARISON WITH OTHER
APPROACHES

The problem of inconsistent messages in CAN
networks has been given some research in the last years.
In [4], a set of fault-tolerant broadcast protocols is
proposed, which solve the message omission and
duplicate problems. The RELCAN protocol is similar to
the 2M-GD protocol, being based in the transmission of a
second data-free message (CONFIRM message), to signal
that the sender is still correct. If this confirm message does
not arrive before a specific timeout (the way to determine
this timeout is not presented), the message is
retransmitted. However, this retransmission is performed
using a lower layer protocol (EDCAN), which is based in
the retransmission of messages by every node in the
system (that has correctly received the message). When a
node receives a retransmission, it will retransmit it again
(even if it already has retransmitted the original message).
This behaviour leads to a huge number of messages in the
network. Although the authors refer the possibility of
several identical messages being clustered in the bus (all
transmitted at the same time), this situation can not always
be assumed. It is possible that some of these messages are
not simultaneously transmitted, since sender nodes have
distinct processing delays. Therefore, the worst-case
response time grows exponentially with the number of
stations in the network, which is not the case for the 2M-
GD protocol.

In the RELCAN protocol, the transmission request of
the CONFIRM message is only made after receiving
information from the CAN controller that the data
message has already been sent. This two-phase approach
is necessary to guarantee that there is no order inversion,
that is, the CONFIRM message is only sent after the
related data message. In the 2M (and 2M-GD) protocol
this non-inversion guarantee is provided by giving to the
confirmation message a lower priority than its related data
message. Therefore, the request for transmission of both
the data and confirmation messages can be atomically
performed, reducing the worst-case response time of the
related message stream.

On of the disadvantages of the RELCAN protocol is
that it does not provide total order (thus it can not be used
to achieve atomic broadcasts). When a data message is
received, it is immediately delivered. Therefore, in the
presence of inconsistent message errors, the order is not
preserved. In [4], total order is addressed by the TOTCAN
protocol. This protocol is also based in a two-phase
approach, but the transmission of an ACCEPT message

(similar to the CONFIRM message) is performed using
the EDCAN protocol. Therefore, multiple retransmissions
will occur in normal operation, even if no error occurs.
Hence, the TOTCAN protocol incurs in a higher
overhead, increasing significantly the network utilisation.
For instance, when transmitting a fault-free message in a
network with four nodes, in addition to the message there
will be the ACCEPT message plus three retransmissions.
Therefore, in the best-case (data message with 8 bytes),
the overhead is approximately 150%, compared with the
40% of the 2M protocol. In case of sender failure it does
not deliver the message (it guarantees that the message is
delivered by all or none of the recipients as the 2M
protocol).

Another approach presented in the literature is to use a
hardware-based solution [7] to prevent message
inconsistencies. This approach is based in a hardware
error detector, which automatically retransmits messages
that could potentially be omitted in some nodes. This
detector (SHARE) detects the bit pattern that occurs in an
inconsistent message failure, and automatically
retransmits the received frame, even if the transmitter
handles this failure.

Although this hardware-based approach solves the
inconsistent message omission problem of CAN, it does
not provide solution to total order, as duplicates may
occur (furthermore, inconsistent message omissions are
transformed in inconsistent message duplicates). In order
to achieve order, it is necessary to complement this
mechanism with an off-line analysis [8]. In this, messages
must be separated in hard and soft real-time. Only hard
real-time messages have guaranteed worst-case response
time inferior to the deadline, but it is necessary to use
fixed time slots, off-line adjusting these messages to never
compete for the bus.

In the approach proposed in this paper, a tool can easily
perform the necessary off-line analysis, since it is based in
the Response Time Analysis approach (as in [2]), and no
message adjustment is required. However, it is clear that,
by using a software-based approach in the proposed
protocols, the network load increases and messages are
delayed. Nevertheless, this is the strictly necessary to cope
with inconsistent message omissions using a
software-based approach, whilst preserving the real-time
capabilities of CAN by guaranteeing the predictability of
message stream transfers.

VI. CONCLUSIONS

In spite of its built-in error detection/signalling
mechanisms, CAN networks may cause inconsistencies in
the supported applications, as messages can be delivered
in duplicate by some receivers or delivered only by a
subset of the receivers. In order to preclude such incorrect
behaviour, a set of atomic broadcast protocols has been
proposed. Total order is guaranteed through the
transmission of just an extra message (without data) for
each message that must tolerate inconsistent message
omissions. Only in case of an inconsistent message

omission (low probability) there will be more protocol-
related retransmissions.

These protocols explore the CAN synchronous
properties to minimise their run-time overhead, and thus
to provide a reliable and timely service to the supported
applications. The evaluation of these protocols
demonstrates that the real-time capabilities of CAN are
preserved, since predictability of message transfers is
guaranteed.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous
referees for their helpful comments. This work was
partially supported by FCT (projects DEAR-COTS
14187/98 and CIDER 33139/99).

VIII. REFERENCES

[1] ISO 11898. Road Vehicle - Interchange of Digital
Information - Controller Area Network (CAN) for
High-Speed Communication. ISO, 1993.

[2] Tindell, K., Burns, A. and Wellings, A. “Calculating
Controller Area Network (CAN) Message Response
Time”. In Control Engineering Practice, Vol. 3, No.
8, pp. 1163-1169., 1995

[3] Pinho, L., Vasques, F. and Tovar, E. “Integrating
inaccessibility in response time analysis of CAN
networks”. In Proceedings of the 3rd IEEE
International Workshop on Factory Communication
Systems, pages 77–84, Porto, Portugal, September
2000.

[4] Rufino, J., Veríssimo, P., Arroz, G., Almeida, C. and
Rodrigues, L. “Fault-Tolerant Broadcasts in CAN”.
In Proc. of the 28th Symposium on Fault-Tolerant
Computing, Munich, Germany, June 1998.

[5] Cristian, F., Aghili, H., Strong, R. and Dolev, D.
“Atomic Broadcast: From Simple Message Diffusion
to Byzantine Agreement”. In Information and
Control, 118:1, 1995.

[6] Pinho, L. and Vasques, F., “Timing Analysis of
Reliable Real-Time Communication in CAN
Networks”. Proc. 13th Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, 2000.

[7] Kaiser, J. and Livani, M. “Achieving Fault-Tolerant
Ordered Broadcasts in CAN”. In Proc. of the 3rd

European Dependable Computing Conference,
Prague, Czech Republic, September 1999, pp. 351-
363, 1999.

[8] M. Livani and J. Kaiser, “Evaluation of a Hybrid
Real-Time Bus Scheduling Mechanism for CAN”,
in Proc. 7th Int. Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS ´99), San
Juan, Puerto Rico, pp. 425-429, April 1999.

ANNEX: PROTOCOL SPECIFICATIONS

A) IMD Protocol Specification

Transmitter

1: when atomic_multicast (id, data):

2: send (id, data)

3: when sent_confirmed (id, data):

4: received_messages_set := received_messages_set ∪ msg(id,data)

5: tdeliver(id) := clock + δdeliver(id)

6: deliver:

7: for all id in received_messages_set loop

8: if tdeliver(id) < clock then

9: state(id) := delivered

10: end if

11: end loop

Receiver

1: when receive (id, data):

2: if id ∉ received_messages_set then

3: received_messages_set := received_messages_set ∪ msg(id,data)
4: state(id) := unstable

5: end if

6: tdeliver(id) := clock + δdeliver(id)

7: deliver:

8: for all id in received_messages_set loop

9: if state(id) = unstable and tdeliver(id) < clock then

10: state(id) := delivered

11: end if

12: end loop

B) 2M Protocol Specification

Transmitter

1: when atomic_multicast (id, data):

2: send (id, message, data)

3: send (id, confirmation)

4: when sent_confirmed (id, message, data):

5: received_messages_set := received_messages_set ∪ msg(id,data)
6: state(id) := confirmed

7: tdeliver(id) := clock + δdeliver(id)

8: deliver:

9: for all id in received_messages_set loop

10: if state(id) = confirmed and tdeliver(id) < clock then

11: state(id) := delivered

12: end if

13: end loop

Receiver

1: when receive (id, type, data):

2: if type = message then

3: if id ∉ received_messages_set then

4: received_messages_set := received_messages_set ∪ msg(id,data)
5: state(id) := unstable

6: end if

7: tdeliver(id) := clock + δdeliver(id)

8: tconfirm(id) := clock + δconfirm(id)
9: elsif type = confirmation then

10: state(id) := confirmed

11: elsif type = abort then

12: if id ∈ received_messages_set then
13: received_messages_set := received_messages_set - msg(id)

14: end if

15: end if

16: deliver:

17: for all id in received_messages_set loop

18: if state(id) = confirmed and tdeliver(id) < clock then

19: state(id) := delivered

20: elsif state(id) = unstable and tconfirm(id) < clock then

21: send (id, abort)

22: received_messages_set := received_messages_set – msg(id)

23: end if

24: end loop

C) 2M-GD Protocol Specification

Transmitter

1: when atomic_multicast (id, data):

2: send (id, message, data)

3: send (id, confirmation)

4: when sent_confirmed (id, message, data):

5: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
6: state(id) := confirmed

7: tdeliver(id) := clock + δdeliver(id)

8: deliver:

9: for all id in receivedMsgSet loop

10: if state(id) = confirmed and tdeliver(id) < clock then

11: deliver(receivedMsgSet(id))

12: end if

13: end loop

Receiver

1: when receive (id, type, data):

2: if type = message then

3: if id ∉ receivedMsgSet then

4: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
5: state(id) := unstable

6: end if

7: tdeliver(id) := clock + δdeliver(id)

8: tconfirm(id) := clock + δconfirm(id)
9: elsif type = confirmation then

10: state(id) := confirmed

11: elsif type = retransmission then

12: if id ∉ receivedMsgSet then

13: receivedMsgSet := receivedMsgSet ∪ msg(id,data)
14: end if

15: state(id) := confirmed

16: tdeliver(id) := clock + δdeliver_after_error(id)
17: end if

18: deliver:

19: for all id in receivedMsgSet loop

20: if state(id) = confirmed and tdeliver(id) < clock then

21: deliver(receivedMsgSet(id))

22: elsif state(id) = unstable and tconfirm(id) < clock then

23: send (id, retransmission, data)

24: end if

25: end loop

26: when sent_confirmed (id, retrans, data): -- if retransmitted

27: state(id) := confirmed

28: tdeliver(id) := clock + δdeliver_after_error(id)

