
HAL Id: hal-03759394
https://hal.science/hal-03759394

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocating and Scheduling Tasks in Multiple Fieldbus
Real-Time Systems

Michael Richard, Pascal Richard, Francis Cottet

To cite this version:
Michael Richard, Pascal Richard, Francis Cottet. Allocating and Scheduling Tasks in Multiple Field-
bus Real-Time Systems. IEEE Conference on Emerging Technologies and Factory Automation (ETFA
2003), Sep 2003, Lisbonne, Portugal. pp.137-144, �10.1109/ETFA.2003.1247699�. �hal-03759394�

https://hal.science/hal-03759394
https://hal.archives-ouvertes.fr


Allocating and Scheduling Tasks in Multiple
Fieldbus Real-Time Systems

Michael Richard Pascal Richard Francis Cottet
Laboratory of Applied Computer Science

LISI - ENSMA
1, avenue Cl´ement Adler Téléport 2
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Abstract— We consider real-time systems connected via several
fieldbuses. Validating such systems consists in prooving that
tasks meet their end-to-end deadlines. Tasks are scheduled on
processors by fixed-priority schedulers. We propose an automatic
method for allocating tasks on processors and assigning priorities
to tasks so that every deadline is met. Allocation and scheduling
are simultaneously achieved. We do not limit the search space
to a specific priority rule (such as Rate Monotonic or Deadline
Monotonic). Feasible schedules are validated by a Holistic Anal-
ysis. Numerical results of the method are lastly presented on a
real-size application. Our tool will be a beneficial help to design
real-time distributed systems.

I. I NTRODUCTION

Due to their potential for high performance and high reli-
ability, distributed systems are being used for an increasing
number of real-time applications. These applications are com-
posed of tasks that communicate by exchanging messages via
a communication device. No common memory is assumed
to be available. Tasks are time-critical, meaning that each
task must be completed by its deadline, otherwise serious
consequences may ensue. Under this framework, fieldbuses
have been developed with the specific requirements of tight
real-time capabilities [1]. Fieldbuses have to strive to respect
deterministic response times. For example, in automotive
applications, a wildly used network is the CAN (Controller
Area Network).

In [2], we proposed a method that automatically assigns
priorities to tasks and messages. In the present paper, we
extend this method to deals with task allocation to sets
of identical processors. In many applications processors are
identical and Input/Output devices can be easily connected
from one to another. Some real-time functions can be allocated
to several processors without any problem. Designers have to
allocate these functions to sets of processors and then have to
connect correctly controlled devices to processors.

Allocating tasks is a��-hard problem [3], thus there is
no efficient algorithm to solve the schedulability problem
for multiprocessor real-time systems. For uniprocessor real-
time systems and synchronously released fixed-priority tasks,
verifying that tasks meet their deadlines can be computed in
pseudo-polynomial time [4], but it is not known if a fully

polynomial time algorithm exists. In the literature, works
dealing with allocation and scheduling of tasks differ from
their objectives:

� To validate the application. Allocation and scheduling are
usually considered as two independent stages. In many
works, the scheduling policy is a priori known, as in [5],
[6], [7], [8], [9]. These approaches mainly focus on the
allocation process.

� To optimize the workload balancing [10], the number of
used processors [11] or the response time of tasks [12],
[13].

In this work, we propose a method that simultaneously
allocates tasks to processors and assigns priorities to tasks and
messages. Note that no necessary and sufficient schedulability
condition is known for real-time distributed systems. Our
method is based on the holistic analysis [14], [15] to verify
that tasks are schedulable. In practice, there exists feasible
schedules that are not validated by a holistic analysis. The
method limits its search within the subset of schedules that
can be validated by a holistic analysis. We call this subset:
holistic schedules. Our method is optimal in the sense that if
there exist feasible holistic schedules then our method always
find one of them.

The next section presents software and hardware archi-
tectures supported by our method. Section 3 presents the
Branch and Bound Method. Section 4 deals with numerical
experimentations and lasly we conclude.

II. REAL-TIME DISTRIBUTED SYSTEMS

We present in this section the characteristics and assump-
tions of supported hard real-time distributed systems. Tasks
and processors are grouped into pools. All processors belong-
ing to a pool are identical. Tasks are allocated step by step to
processors of the pool in which they belong to.

A. Software architecture

Tasks can be allocated to any processor belonging to the
same pool. Every task�� has a worst-case exectution time
��, a deadline�� and a period�� between two successive
releases. An occurrence of a task is called aninstance. A task



�� is schedulable if its worst-case response time��� is less
than or equal to��. A schedule is feasible if, and only if,
every task is schedulable.

We consider that each processor runs a real-time kernel
that implements a fixed-priority scheduler. The priority of a
task �� is denoted��; 0 is the highest priority level. At any
time, the available task assigned to highest priority level is
scheduled. The start of a task can be postponed due to input
communications. This delay after the release of an instance of
a task�� is called the release jitter and is denoted��. Initially,
tasks are assigned to pools but they are not allocated to
processors within pools and they also have not been assigned
priorities.

Distributed tasks exchange data by sending messages on
networks (e.g. fieldbuses). To every message� � is associated
a worst-case tranmission delay�� and a period��. A deadline
can be easily assigned to a message by considering deadlines
of tasks that receive it. For instance, the deadline of a message
is defined by the smallest quantity�� � �� , where � is
a receiver of the message��. Assigning deadline to every
message allows to detect faster that a schedule is unfeasible
without checking end-to-end deadlines.

Communicating tasks that are allocated to the same pro-
cessor exchange data via the local memory of the site. Thus,
no message is needed for that purpose. Precedence relations
between tasks and messages are modeled by thecommuni-
cation graph. Since our method deals with one task at each
stage, then the communication graph is updated when two
communicating tasks are allocated to the same processor. Let
	 �
� be the allocated processor to the task��; if �� is not yet
allocated, then we note	 �
� � �. We now formally define the
communication graph:� � ������, where�� is the set
of vertices ( is the set of tasks,� is the set of messages)
and� is the set of precedence relations between tasks and
messages. Let�
 (resp.
�) the set of immediat predecessors
(resp. successor) of a vertex
. � is a bipartite graph (an edge
cannot connect two tasks or two messages together). If a task
sends a message to another task that is allocated to the same
processor, then the vertex corresponding to the message is
deleted as well as incident edges.

Definition 1: A communication graph� � � � ����,
for a given allocation, is a bipartite graph that verifies the
following properties :
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When tasks are allocated, then vertices and edges of the
communication graph can be deleted, but no new edge or
vertex can be inserted while searching a feasible schedule.
Hereafter we assume that tasks or messages belonging to the
same connected component in the communication graph have
identical periods. Such an assumption is not restrictive since
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Fig. 1. A real-time distributed systems with 3 pools of processors:
����� � � � � � ���� ������ ����� � � � � � ���

if communicating tasks do not work at the same rate, then
sooner or later, the slowest one will miss its deadline or an
overflow will occur in a buffer of messages.

B. Hardware architecture

We consider distributed systems composed of set of proces-
sors (calledpool) and several fieldbuses.

Definition 2: A pool of processors	 �� is defined by:

� a set of �� identical processors, denoted	��� � 
�  ��. These processors are all connected to the
same network. Some of them can be gateways to other
networks.

� a set of tasks associated to the pool, denoted��, to be
allocated to the processors of the pool.

Currently supported networks are based on fixed-priority to
schedule frames on the communication medium, as in CAN.
Others networks could be considered like TTCAN, TTP/C,
etc. Figure 1 presents a supported distributed architecture.

III. A B RANCH AND BOUND METHOD

A Branch and Bound method stores feasible solutions into
a search tree. Every node in the tree is a partial allocation
and priority assignment of tasks. Every node corresponds
to simultaneously allocating and assigning a priority to one
task. Separating a node consists in exhausting all subsequent
scheduling decisions. When a leaf is reached in the search tree
(i.e., all scheduling decisions have been taken), then an holistic
analysis allows to conclude if this corresponding solution is
feasible or not. To limit the combinatorial explosion while
enumerating scheduling decisions, evaluations are performed
to prune nodes that do not lead to feasible schedules.

We enumerate pool one by one and within a pool tasks
are enumerated one by one. At each stage, the current task is
allocated to a processor and it is assigned to a priority level.
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Fig. 2. Allocation and priority assignment in path of the search tree

Tasks�� ��� ��

1 1 0
2 1 1
3 1 2

4 2 0
5 2 1

TABLE I

ALLOCATIONS AND PRIORITY ASSIGNEMENTS OFFIGURE 2

Definition 3: For a partial solution� of the scheduling
problem,���� is the communication graph associated to�
and���� is the current task of the node�.

The transformation of the communication graph associated
to current vertex�� of the search tree is defined below:

� if all receivers of� are allocated to the current processor,
then the message� and all its adjacent edges are deleted
.

� otherwise, the edge between� and�� is deleted.

A. The search tree

We extend the principles presented in [16] to enumerate
without redundancy allocations and priority assignments. We
first detail the enumeration of one pool; the complete search
tree will be described at the end of this section. Two kinds of
vertices are defined:

� circle node: one task is allocated to the current processor
to the next priority level.

� square node: one task is allocated to the highest priority
on the next processor, that becomes the current processor.

The enumeration principle is presented in Figure 2 and the cor-
responding allocations and priority assignments are presented
in Table I.

The search tree corresponding to a given pool is defined by
the following rules:

1) a fictitious node defines the root of the search tree.
2) the first level is defined by� � � � � square nodes,

where� is the number of tasks to allocate and� is the
number of processors in the pool.

3) A path from the root to a node in the level
 cannot be
extended by a square node or a circle node if the rules
4,5,6 and 7 are not satisfied.

4) Every task is enumerated once.
5) A square node� cannot extend the current path if there

exists a square node�, such that� � �, and belonging
to the path joining the root and�.

6) Every path from the root to a leaf contains��������
square nodes (i.e. every processor is used).

7) If a task � receives a message from a task
, both
allocated to the current processor, then� cannot be
inserted in the search tree. This rule ensures that a sender
always has a higher priority than a receiver when they
are allocated to the same processor. As a consequence,
the precedence relation between senders and receivers is
enforced.

The same principle is used to enumerate remaining pools.
Lastly, priority assignment for messages are performed. The
corresponding subtrees contain only circle nodes, modeling
the priority assignment to messages. All subtrees are joined
by fictitious roots. The complete structure of the search tree
is presented in Figure 3.

B. Branching rules

Several branching rules have been implemented:
� pools are sorted in non-decreasing order of their weighted

workloads: �
��

���
���

��

��
.

� tasks are sorted in non decreasing order of their dead-
lines. Thus, the first enumerated path corresponds to the
Deadline Monotonic policy for each processor.

� a depth-first search strategy is performed in order to
avoid a combinatorial explosion in space. Such a strategy
ensures that the required memory to run the method is
polynomially bounded in the size of the problem. To
speed up the method, we also perform depth-first searches
in several paths of the search tree. Paths are explored one
by one according to a round-robin policy. Furthermore,
such an approach can be more beneficial if a parallel
computer is used to run the method.

C. Evaluation

To every leaf of the search tree, an holistic analysis is exe-
cuted. The holistic analysis computes the worst-case response
time of tasks and messages subjected to release jitters. We use
the same principle to compute lower bounds (��) of worst-
case response times (���), and thus to evaluate lower bounds
of release jitters. Let���� � ����� be the communication
graph of the current node in the search tree, then we solve the
following system of recurrent equations:
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The fixed-point is the smallest positive integer� such that:
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The���� function computes worst-case response times of
tasks and messages assuming that release jitters are fixed.
Then, the function	����� updates release jitters according
to the results obtained by���� functions.
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Fig. 3. General structure of the search tree

1) Updating release jitters: The function	����� updates
release jitters of tasks and messages. If a task has no input
communication, then it has no release jitter (i.e.,� � � �).

� a task �� : if ��
� � �, then������ � �. Otherwise, the
lower bound of the release jitter is obtained by:

������ � �	

������

��������� 	
 
 

� a message �� : when a message�� is considered, then
receiver and sender of the message�� are not allocated
to the same processor. Thus, there exists a task�� 
 ��
�.
The release jitter associated to message�� is equal to the
worst-case response time of��.

������ � ���

2) Lower bounds: The function ���� computes lower
bounds (��) of worst-case response times of tasks or mes-
sages. From a practical point of view, a message can be viewed
as a task scheduled upon a non-preemptive processor (i.e. a
network). Both cases will be next considered.
Calculting worst-case response time is a classical problem
in the literature [17], [4]. When fixed-priority schedulers are
considered, the worst-case response time of a task (or a
message) assigned to the priority level
 is obtained in an
interval of time in which the processor runs tasks having a
priority higher or equal to
. Such an interval of time, is
called a 
-level Busy Period [4]. The longuest busy period
is obtained when tasks are synchronously released at the
beginning of the busy period (i.e., a critical instant [17]).
We extend these classical results to compute lower bounds



of worst-case response times of tasks and messages. Next, we
assume that�
� is the index of the task assigned to the
�	

priority level.
Calculating����	 consists in examinating the instance of

���	 executed in a
-level busy period. If the task has been
assigned a priority by the Branch and Bound algorithm, then
the function���� is defined by:

�����
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Task: The function ���, that calculates the workload of
higher priority tasks, depends on tasks having higher prior-
ities than��. Two cases have to be considered according to
prioritized or unprioritized tasks (i.e. tasks that have not be
considered in the search tree).

� if the task�� has been allocated and has a priority�, then
higher priority tasks are also known. A lower bound of
the worst-case response time can be computed by:
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The fixed point is reached for the smallest integer� such
that:

��� � �����
�� � ������

� If task �� is unprioritized, we separately study two cases
depending on the index of the current processor. Let	� �
be the current processor in the enumerated pool	 � �.

– If 	�� is the last processor of	 �� and if �� 
 �,
then tasks allocated to	 �� have a higher priority than
the evaluated task. Then, a subset of tasks having
higher priorities than�� is known. As a consequence,
a lower bound of the worst-case response time of� �
is calculated by:
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The fixed point is defined by the smallest integer�

such that:
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A lower bound of the worst-case response time of� �
is calculated by:

�� ����� � ���� �� ����

– If 	�� is not the last processor of	 �� or if �� �
 �,
then no information is known about task having a
higher priority than�� (e.g.�� can be assigned to the
highest priority level on the next processor). Thus, a

lower bound of the worst-case response time of� � is
defined by:

������� � ������ � ��

Message:results obtained for preemtive tasks can be easily
extended to non-preemptive dispatching strategies. The longest
busy period is not necessarily started by a critical instant.
When preemption is not allowed, the critical instant of a
-
level busy period can be postponed by the longest task having
a priority lower than
. Such a delay is called ablocking time in
the literature. Thus, the worst-case delay occurs when a lower
priority task is begun just before a critical instant (at time 0
minus �, where� is an arbitrary small number). The Lower
bound of worst-case response times of messages is defined by
the lower bound of the release jitter plus a lower bound of the
worst-case interference due to higher priority messages and the
non-preemptive dispatching strategy. We also have to consider
two cases according to the status of the message: prioritized
or not.

� If the message�� is prioritized: all tasks have been
allocated and prioritized. The set of messages is given
by the communication graph associated to the currently
explored vertex in the search tree. Furthermore, messages
having a higher priority than� � are also known since
priorities are allocated in non-decresing order of the
priority levels. Let�

 be the set of unprioritized message.
A lower bound of the blocking time is obtained while
considering the longest task in the set�

 . The worst-case
interference for the evaluated message is defined by:
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� if the message�� is unprioritized: let	 � be the network
associated to��:

– If 	 �� � 	 � then all tasks have been prioritized. If
the evaluated message has not yet be prioritized, then
it can be scheduled with a lower priority level. As
a consequence the only possible lower bound on the
blocking time is 0. Otherwise if it is prioritized, the
worst-case interference supported by� � is defined
by (assuming that it is assigned to priority level�):
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– If 	 �� �� 	 � then all tasks have not been scheduled.
Since scheduling decisions for messages are taken
when all scheduling decisions have been taken for
tasks (in order to determined exactly the communca-
tion graph) then a lower bound of the worst-case
response time of the evaluated message is obtained



by considering that it is assigned the highest priority
level. Thus, we obtain:

��� � �� (1)

Lastly, if all tasks and messages have been allocated and
prioritized then our evaluation process is exactly an holistic
analysis.

D. Elimination rule

Lower bounds previously defined are used to prune the current
vertex�� in the search tree. For that purpose we defined the
following rule.

Theorem 1: If there exists
 
 � in ����� � �����
such that������� � �� then the current allocation and
priority assignment cannot lead to a feasible schedule. As a
consequence, no child of the current vertex will be considered
and a backtracking is operated.
Proof: We only detail the proof sketch. Let� and� � be two
vertices in the search tree such that� � � �, the proof is defined
by two stages :

� The communication graphs of� end� � satisfy the follow-
ing property:��� �� � ����. This is a direct consequence
of the transformation process of the communication
graph.

� Lower bounds of worst-case response times of tasks and
messages are non-decreasing in every path starting from
the root and ending by any vertex. This is a direct
property of our evaluation process based on the principles
of the holistic analysis.

As a consequence, extending a path in the search tree such
that������� � �� for some task or message
 
 � cannot
lead to a feasible schedules since��� � ������� for all

 
 � . �

The Branch and Bound completes when a leaf leading to a
feasible holistic schedule is reached. Implementation details
are presented in [18].

IV. N UMERICAL EXPERIMENTATIONS

We detail two kinds of numerical experimentations:

� Randomly generated set of tasks.
� A real-size application corresponding to the architecture

presented in Figure 1.

A. Randomly generated configurations

In order to evaluate the capabilities to allocate tasks, we
randomly generate set of tasks to be run upon a multiprocessor
system. There is one pool and one network (CAN). For
a fixed number of tasks and processors, we generate 50
instances. A time limit has been set to one hour. Thus, if
no feasible has been found within the time limit, then the
configuration is unvalidated. Our experimentations have shown
that if workloads of processors are high or low, then our
method fastly reaches a feasible schedule or proves that there
is no feasible holistic schedule. The longest execution times
of the method are obtained when processors are loaded at a
level closed to 50 percent.

Figure 4 gives the mean execution time of the method
(within the time limit) for configurations having workloads
belonging to: ���� ���, ���� ��� and ���� ���. The holistic
analysis is often viewed as a very pessimistic analytic tool.
Our experimentations shows that instances of problems can
have processor with a worload of 70 percents (this is a huge
workload for a hard real-time system).
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Figure 5 gives the number of validated configutations in
function of the number of processors, messages and tasks.
In all these experimentations, the workload of every pools of
processors belongs to the interval���� ��� percents.
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B. A real-size system

We consider the system presented in Figure 1. 24 tasks have
to be allocated upon 5 indentical processors of the first pool.
The second pool consists in a single processor and has to run
7 tasks. Precedence relations are given in Figure 6. Lastly, the
third pool has 3 processors and 13 tasks. The first CAN has to
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TABLE II

REAL-TIME SOFTWARE ARCHITECTURE

transport 12 messages and the second one 7 messages. Table II
summaries the software architecture, parameters of tasks and
messages.
The Table III gives the results of the Branch and Bound.
A bullet means that the message has not been sent upon a
network but is associated to a local communication within the
local memory of a processor (sender and receiver are allocated
to the same processor). The running time of our algorithm for
the presented case study is 182 seconds upon a standard PC1.

V. CONCLUSION

We have presented a Branch and Bound method that au-
tomatically allocates tasks to processors and assigns fixed-
priority to tasks. The main contributions in this paper are the
following: to simultaneously allocate tasks and assign their
priorities and to use the principles of the holistic analysis
to calculate lower bounds of worst-case response times for
tasks and messages. Numerical experimentations show that the
method can find feasible schedules even if the workdload of
the system is high and the method is applicable for real-size
application. Other computational results are presented in [18].

1Pentium IV, 512 Mo RAM.
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Fig. 6. Precedence relations among tasks and messages

The actual version of the method is mainly useful to validate
applications. In further works we want to take into account
more practical factors such as allocation constraints and size
of available memory to task allocations, and also economical
factors such as minimizing the number of required processors,
etc. These extensions should be very helpful at the design step
of a real-time distributed system.
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