
Advance in Multiply Sectioned Bayesian Networks: Sensor Network
Practitioners’ Perspective

Y. Xiang
Dept. Computing and Information Science,

yxiang@cis.uoguelph.ca

K. Zhang
University of Guelph, Canada

zhangk@uoguelph.ca

Abstract

Multiply sectioned Bayesian networks provide a proba-
bilistic framework for reasoning about uncertain domains
in cooperative multiagent systems. Several advances have
been made in recent years on modeling, compilation and
inference under the framework. This paper links these ad-
vances together through a case study and presents them
from the perspective of practitioners in intelligent sen-
sor networks. We demonstrate how the framework can
be applied to multisensor fusion and how intelligent sen-
sor agents developed by independent vendors can be inte-
grated into a coherent sensor fusion system.

1 Introduction

Built upon the success of Bayesian Networks (BN) [1],
multiply sectioned Bayesian networks (MSBN) [2] pro-
vide a probabilistic framework for reasoning about uncer-
tain domains in cooperative multiagent systems (MAS).
Several advances have been made in recent years on mod-
eling, compilation and inference under the framework,
making the framework more suited to field application.
Before a general technological framework can be turned
into deployed applications, practitioners must well under-
stand how theoretical intricacies map to practical reality.
The contribution of this paper is to facilitate this process
by linking together key technological steps involved in ap-
plying the MSBN framework through a case study in a
laboratory setting.

Under the MSBN framework, a complex problem do-
main can be populated by a set of agents, each of which
holds its partial perspective (a subnet over a subdomain).
They reason autonomously as well as through limited
communication and their beliefs areexact governed by
Bayesian probability theory. The purpose of such rea-
soning is to determine what is the state of the domain so
that agents can act accordingly. The domain of our case
study is a moderately sized sensor network for monitoring
a combinational digital system. We demonstrate how such
a domain can be modeled as an MSBN-based MAS, how
the MAS can be compiled into an efficient run-time rep-
resentation, and how agents can cooperate to monitor the
digital system and isolate faults (for repairing). The op-

erations are demonstrated using a state of the art software
tool kit, WebWeavr, developed by the first author. To serve
its purpose, the paper will be kept as informal as possible,
with pointers to references containing formal details.

2 Sensor Net for Digital System Monitoring

We consider monitoring a combinational digital sys-
tem. It consists of remotely located components
U0, ..., U4 supplied by five independent venders.

Each component has some external inputs, such as sig-
nal v54 in U0. It may accept signals from other compo-
nents, e.g.,U1 accepting signalb0 from U0, and may out-
put signals to others, e.g.,U1 outputting signalc0 to U2.

Signals exchanged between components are labeled
identically, e.g.,c0, ..., c9 betweenU1 andU2. All signals
are binary. Each digital device has a 0.01 probability to
be faulty at any given time. A faulty NOT gate produces
incorrect output 50% of time. The corresponding prob-
abilities for AND and OR gates are 0.8 and 0.3, respec-
tively. The digital system is used here as an example of
any complex system made of multiple components, each
of which can be further decomposed into simpler units,
that together implement some functions, that may be elec-
trical, mechanical, chemical, and so on.

To monitor such a system is to know whether, at any
given time, it functions as intended and what units are
faulty if it does not. A sensor network can be used to
collect necessary information. We assume that each exter-
nal input and the output of each gate (with some excep-
tion to be detailed later) can be observed through a sensor.
Whether a gate is faulty cannot be observed and can only
be inferred. These assumptions allow the case study to
demonstrate the general nature of partial observability of
practical sensor networks.

3 Integration of MSBN-based MAS

The digital system is monitored with an MAS. Each
agent is responsible for one component and related sen-
sors. The multiagent paradigm is well suited to the task:
Sensor outputs related to one components are processed
locally, reducing communication bandwidth and simplify-
ing processing. Each agent is developed by the vendor of
the component, protecting its know-how and removing the

need for a centralized know-it-all expert. The core knowl-
edge of an agent is a BN, called asubnet. The subnet con-
sists of a set of discrete variables, called thesubdomain
of the agent, a directed acyclic graph (DAG), where each
node corresponds to a variable and each arc corresponds
to a causal dependence relation, and a probability distribu-
tion over the subdomain, specified by a set of conditional
probability distributions (CPTs) one associated with each
nodex in the form ofP (x|π(x)) whereπ(x) is the parent
nodes ofx.

The subdomainV0 of S0 consists of two type of vari-
ables:gate variableandsensor variable. A gate variable
represents the state of a digital gate: whether it is normal
or faulty (denoted asgood and bad). For instance,vn4

represents a NOT gate. A sensor variable represents the
logical value of a signal perceived by a sensor (denoted as
0 and 1). For instance,vt5 represents the sensed output of
gatevn4. We assume that sensors are reliable, although
unreliable sensors can also be modeled with slightly in-
creased complexity.

Suppose that a sixth independent vendor, calledAssem-
bler, assembles the five components into the final digital
system. It also assembles the five corresponding agents
into an MAS.

In the figure, the agent organization is drawn, that is a
tree structure [2] (called ahypertree), where each node is
labeled by the logic name of an agent. The organization
defines to whom an agent can communicatedirectly.

As part of the organization specification, each agent is
associated with a set ofpublic variables. For instance,
A0 has public variablesb0, ..., b10: signals exchanged be-
tweenU0 andU1. Each public variable in an agent must
be associated with at least another adjacent agent (other-
wise, the variable is not really public). For each pair of ad-
jacent agents, the two sets of public variables must have
a non-empty intersection (otherwise, probabilistic infor-
mation cannot be exchanged between them). If two non-
adjacent agentsAi andAj have a common public variable,
then it must be a public variable in each agent along the
hypertree pathway betweenAi andAj (otherwise, infor-
mation fromAi on the variable cannot be communicated
to Aj).

Integrator tool gives feedbacks to Assembler during or-
ganization specification until the above conditions are sat-
isfied. Note that as Assembler, the vendor is in a unique
position (responsible to interface components together) to
negotiate with other vendors in deciding the public vari-
ables. The MAS is nowlogically specified and ready to
bephysicallyset up.

To do so, Assembler uses WebWeavr Binder tool.
Binder has the access of MAS organization specification
and waits for each agent to register by sending its physical
address. After all agents have registered, Binder notifies
each of them with the physical address of each adjacent
agent on the hypertree as well as the set of common public
variables, calledagent interface. The MSBN-based MAS
is now integrated, as each agent knows to whom it can

communicate directly, how to reach thm, and what infor-
mation should be exchanged during communication.

4 Model Verification

In addition to the hypertree agent organization, two
other conditions are critical to exact reasoning. First,
when agent subnets are viewed as a whole (by merging
their public variables), it must be a DAG. This require-
ment maintains the causal interpretation of the depen-
dence relations of the domain. Although each subnet is
a DAG (as mentioned above), when multiple DAGs are
merged together, it may be cyclic and violate causal inter-
pretation. As each subnet isprivate (built by an indepen-
dent vendor), the global DAG condition cannot be verified
by physically merging individual subnets.

Furthermore, given the hypertree organization, public
variables in an agent interface play the role of passingall
relevant information from one side of the hypertree to an-
other. This is possible only if each public variablex is
a d-sepnode. That is, if we denote parent nodes ofx by
π(x), taking into account all subnets that containx, then
there exists one subnet that containsπ(x). Again, because
each subnet isprivate, the d-sepnode condition cannot be
verified by physically merging individual subnets.

The verification tool DVerify in WebWeavr tool kit
implements algorithms [3, 4] that verify both conditions
without merging individual subnets. The verifications are
performed by message passing among agents along the
hypertree, initiated by any agent (referred to as theroot).
A message reveals only whether a given agent has any
parent or child of a public node, but reveals neither the
number of parents or children nor what they are. During
verification, each agent executes a copy of DVerify

5 Agent Interface Enhancement

An MSBN-based MAS that has passed the above ver-
ification can support autonomous and exact multiagent
probabilistic reasoning. It does not, however, ensure that
the inference computation is efficient. An agent commu-
nicates with an adjacent agent by sending its subjective
probability distribution over their interface. If the inter-
face consists ofm variables and each hask possible val-
ues, the message containskm values. For instance, the
interface betweenA1 andA3 has 12 binary variables and
a message between them then has a size of 4096.

To reduce the message size while supporting exact in-
ference, it may be possible to factorize the distribution
over the interface. For instance, if variablese0, ..., e4 are
conditionally independent ofe8, ..., e11 given e5, e6, e7,
then the message betweenA1 andA3 can be encoded into
two distributions overe0, ..., e7 ande5, ..., e11 with a total
size of 256+128 = 384.

What if there are no conditional independence relations
within the interface or those that exist cannot reduce the
message size sufficiently? A solution is to enhance the

2

interface with additional variables that bring some condi-
tional independence within the subdomain into the inter-
face. Identifying these variables among a large number
of alternatives is non-trivial and must take into account of
both dependence relations within and across subnets. In-
stead of burdening the agent developers with the task, it
may be better performed by a multiagent search.

To protect the privacy of subnets during enhancement,
each agent vendor can specify variables in its subnet into
three sets: private, public, and preferably private. The
private set should be kept so absolutely. Thepublic set
is included in the initial agent interface. Thepreferably
private set is initially private, but the agent is allowed to
make some elements public if it believes that the disclo-
sure improves inference efficience. The agent is required,
however, to keep the disclosed subset as small as possible.

A suite of algorithms for multiagent interface en-
hancement has been developed [5]. Through multiagent
search, each of the four agent interfaces are enhanced.
For example, the interface betweenA1 and A3 (con-
sisting of e0, ..., e11) is enhanced with additional vari-
ables yd82, yd101, yd106, w14, wr16, wr18. These vari-
ables bring several independence relations into the inter-
face. For instance,e0, e1, e2 are independent ofe3, e4, e5

givenwr16, yd106. As the result of enhancement, the mes-
sage size between each pair of adjacent agents is reduced
significantly, as shown in Table 1, with the new message
size to be as low as about 4% of the original (betweenA3

andA4).

Table 1. The message size between each
pair of adjacent agents before and after in-
terface enhancement.

Interface A0 − A1 A1 − A2 A1 − A3 A3 − A4

Before 2048 1024 4096 4096
After 136 136 336 160

6 Compilation into Linked Cluster Trees

Inference computation in an MSBN-based MAS con-
sists local inference at individual agents and communica-
tion among agents. Local inference involves updating the
agent’s belief (subjective probability distribution) over its
subdomain based on local observations. Communication
from one an agent involves passing its subjective probabil-
ity distribution (the message) over an agent interface. The
two computations are intertwined: A message for com-
munication must be derived from the sending agent belief,
and a message received must be absorbed into the receiv-
ing agent belief.

To allow both computations to be efficient, each agent
compiles its subnet into a cluster tree, where variables are

grouped intoclusterswith intersections of adjacent clus-
ters referred to asseparators. The cluster tree is so con-
structed such that the intersection of any two clusters is
contained in every cluster on the path between them. Each
cluster is associated with a probability distribution over its
member variables. These cluster distributions are more ef-
ficient in space, yet uniquely define the agent’s subjective
probability distribution over its subdomain

To compute the message to an adjacent agent, an agent
compiles its cluster tree into a reduced cluster tree, called
a linkage tree[6]. It contains only variables in the inter-
face between the pair of agents. Each cluster in the linkage
tree is called alinkage. Each linkage has a corresponding
cluster in the cluster tree, called itshost, that contains the
linkage. Each linkage is associated with a probability dis-
tribution that is derived from the distribution associated
with its host. From these linkage distributions, the agent
subjective probability distribution over the agent interface
can be constructed. Although the distribution over the in-
terface has a size of 32768, the inter-agent message made
of linkage distributions has a total size of 136.

The above compilation effectively converts the MSBN-
based knowledge representation into a set of linked cluster
trees. It has been shown [8] that, if the MSBN is sparse,
local inference and communication using linked cluster
trees are efficient.

7 Sensor Net Monitoring and Fault Isola-
tion

To monitor the digital system domain, each agent will
collect sensor outputs and reason about the state of its
subdomain autonomously. Less frequently, agents may
choose to communicate in order to benefit from infor-
mation in other agents. Through interleaving local infer-
ence and communication, agents can determine whether
the digital system functions normally and isolate faults if
not.

WebWeavr DMasMsbn tool supports agent sensing, in-
ference and communication. We demonstrate digital sys-
tem monitoring through the followingscenario: AND gate
wa130 in U1 and OR gatey049 in U3 are faulty and pro-
ducing incorrect outputs. The incorrect outputs propagate
through other gates and produce more incorrect signals
throughout the system. To experiment in a laboratory set-
ting, Scenario Simulator tool in WebWeavr is used to sim-
ulate the physical digital system and its associated phys-
ical sensor network and interact with the agents during
monitoring. It simulates a set of external inputs to the the
digital system, the faulty gates, and all other signals. Upon
an agent’s request, it sends the corresponding sensor value
the agent as an observation.

To monitor the domain, each agent is assumed to have
the bandwidth to observe as many sensors as about 5% of
variables in its subdomain at one time. We assume that
all signals are observable except the outputs ofwa130 and
y049. In the first round of observation, each agent ob-

3

serves the values of between 4 and 10 variables.
These local observations are not sufficient to detect

any abnormality and none of the agent does after lo-
cal inference. However, after one round of communica-
tion among agents, during which one message is passed
from each agent to each adjacent agent, the pooling of
information allows agents to detect abnormality.A0 has
P (va44 = bad|obs) = 0.025. A1 has a number of gates
suspected,

wn132, wo124, wo163, wa126, wa122, wa139, wa141, wa130,

for instance,P (wa130 = bad|obs) = 0.131 Similarly, A2

hasP (xa32 = bad|obs) = 0.132, A3 suspected

yn39, yo43, yo49, yo15, yo102, yo121, yo95, ya105, ya46,

andA4 suspectedzn20, zn6, zo18, zo61, za59, za13, za56.
Alarmed, each agent makes more observations, subject

to the bandwidth restriction.A0 observes signals asso-
ciated with the suspected gateva44. Its outputvd45 has
been observed. Hence, its inputsv42 andv43 are observed
andA0 no longer suspectsva44.

A1 observes the output of each suspected gate, except
that ofwa130. After local inference,A1 reduces its uncer-
tainty and suspects only three gates:

wn128, wn132, wa130.

A2 observes two signals and no longer suspectsxa32.
A3 observes 8 signals and decides thatP (yo49 =
bad|obs) = 0.504 and P (yo95 = bad|obs) = 0.504.
Given that the signal between the two,yr50, is not ob-
servable, this is the best thatA3 can achieve. Perhaps, it
will replace them in sequence and do a test in between.
A4 observes 6 signals and decides that its subdomain is
normal.

As A1 suspects three gates, it makes one more obser-
vation possible related to them:wt129. After inference,
it reduces the suspected gates to onlywn132 andwa130,
which is the best thatA1 can achieve given the unobserv-
ability of the signal in between.

8 Conclusion

There are few multiagent frameworks for sensor net
monitoring (space limit precludes a comprehensive refer-
ence). For example, Roos et al [9] proposed one based
on logical consistency. They showed that establishing
a global diagnosis under the framework is NP-Hard and
therefore their protocol does not guarantee one. On the
other hand, MSBN-based sensor net monitoring is effi-
cient and guarantees globally consistent diagnosis, as long
as the sensor net dependence structure (such as the one
in the case study) is reasonably sparse. This contribu-
tion presents the framework intuitively (versus mathemat-
ically) through a sensor net monitoring case study and fa-
cilitates its application and deployment by practitioners.

Acknowledgements

The financial support from National Sciences and En-
gineering Research Council (NSERC) of Canada through
Discovery Grant to the first author as well as that from
National Science Foundation (NSF) of USA through a re-
search contract with University of Massachusetts/Amherst
are acknowledged.

References

[1] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference(Morgan Kauf-
mann, 1988).

[2] Y. Xiang and V. Lesser. On the role of multiply
sectioned Bayesian networks to cooperative multi-
agent systems. IEEE Trans. Systems, Man, and
Cybernetics-Part A, 33(4), 2003, 489-501.

[3] Y. Xiang. Verification of dag structures in cooperative
belief network based multi-agent systems.Networks,
31, 1998, 183-191.

[4] Y. Xiang and X. Chen. Interface verification for
multiagent probabilistic inference. In J.A. Gamez,
S. Moral, and A. Salmeron, editors,Advances in
Bayesian Networks, (Berlin, Springer, 2004) 19-38.

[5] Y. Xiang and K. Zhang. Agent interface enhancement:
Making multiagent graphical models accessible. In
(accepted to appear in) Proc. 5th Inter. Joint Conf.
on Autonomous Agents and Multiagent Systems (AA-
MAS’06), 2006.

[6] Y. Xiang. A probabilistic framework for cooperative
multi-agent distributed interpretation and optimiza-
tion of communication.Artificial Intelligence, 87(1-
2), 1996, 295-342.

[7] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen.
Bayesian updating in causal probabilistic networks by
local computations.Computational Statistics Quar-
terly, (4), 1990, 269-282.

[8] Y. Xiang. Probabilistic Reasoning in Multi-Agent
Systems: A Graphical Models Approach(Cambridge
University Press, 2002).

[9] N. Roos, A.T. Teije, and C. Witteveen. A pro-
tocol for multi-agent diagnosis with spatially dis-
tributed knowledge. InProc. 2nd Inter. Joint Conf.
on Autonomous Agents and Multiagent Systems, Mel-
bourne, 2003, 655-661.

4

