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Abstract erations are demonstrated using a state of the art software

tool kit, WebWeavr, developed by the first author. To serve
Multiply sectioned Bayesian networks provide a proba- its purpose, the paper will be kept as informal as possible,
bilistic framework for reasoning about uncertain domains with pointers to references containing formal details.
in cooperative multiagent systems. Several advances have
been made in recent years on modeling, compilationand2  Sensor Net for Digital System Monitoring
inference under the framework. This paper links these ad-
vances together through a case study and presents them We consider monitoring a combinational digital sys-
from the perspective of practitioners in intelligent sen- tem. It consists of remotely located components
sor networks. We demonstrate how the framework cant, ..., U, supplied by five independent venders.
be applied to multisensor fusion and how intelligent sen- Each component has some external inputs, such as sig-
sor agents developed by independent vendors can be intenal vs4 in Uy. It may accept signals from other compo-
grated into a coherent sensor fusion system. nents, e.g.[/; accepting signal, from U,, and may out-
put signals to others, e.d/; outputting signak, to Us.
Signals exchanged between components are labeled
1 Introduction identically, e.g.co, ..., co between/; andUs,. All signals
are binary. Each digital device has a 0.01 probability to
Built upon the success of Bayesian Networks (BN) [1], be faulty at any given time. A faulty NOT gate produces
multiply sectioned Bayesian networks (MSBN) [2] pro- incorrect output 50% of time. The corresponding prob-
vide a probabilistic framework for reasoning about uncer- abilities for AND and OR gates are 0.8 and 0.3, respec-
tain domains in cooperative multiagent systems (MAS). tively. The digital system is used here as an example of
Several advances have been made in recent years on modany complex system made of multiple components, each
eling, compilation and inference under the framework, of which can be further decomposed into simpler units,
making the framework more suited to field application. thattogetherimplement some functions, that may be elec-
Before a general technological framework can be turned trical, mechanical, chemical, and so on.
into deployed applications, practitioners must well under- ~ To monitor such a system is to know whether, at any
stand how theoretical intricacies map to practical reality. given time, it functions as intended and what units are
The contribution of this paper is to facilitate this process faulty if it does not. A sensor network can be used to
by linking together key technological steps involved in ap- collect necessary information. We assume that each exter-
plying the MSBN framework through a case study in a nal input and the output of each gate (with some excep-
laboratory setting. tion to be detailed later) can be observed through a sensor.
Under the MSBN framework, a complex problem do- Whether a gate is faulty cannot be observed and can only
main can be populated by a set of agents, each of whichbe inferred. These assumptions allow the case study to
holds its partial perspective (a subnet over a subdomain).demonstrate the general nature of partial observability of
They reason autonomously as well as through limited practical sensor networks.
communication and their beliefs aexactgoverned by
Bayesian probability theory. The purpose of such rea- 3 Integration of MSBN-based MAS
soning is to determine what is the state of the domain so
that agents can act accordingly. The domain of our case The digital system is monitored with an MAS. Each
study is a moderately sized sensor network for monitoring agent is responsible for one component and related sen-
a combinational digital system. We demonstrate how suchsors. The multiagent paradigm is well suited to the task:
a domain can be modeled as an MSBN-based MAS, how Sensor outputs related to one components are processed
the MAS can be compiled into an efficient run-time rep- locally, reducing communication bandwidth and simplify-
resentation, and how agents can cooperate to monitor théng processing. Each agent is developed by the vendor of
digital system and isolate faults (for repairing). The op- the component, protecting its know-how and removing the



need for a centralized know-it-all expert. The core knowl- communicate directly, how to reach thm, and what infor-
edge of an agentis a BN, callecabnet The subnet con-  mation should be exchanged during communication.
sists of a set of discrete variables, called sudbdomain
of the agent, a directed acyclic graph (DAG), where each 4 Model Verification
node corresponds to a variable and each arc corresponds
to a causal dependence relation, and a probability distribu- | addition to the hypertree agent organization, two
tion over the subdomain, specified by a set of conditional pther conditions are critical to exact reasoning. First,
probability distributions (CPTs) one associated with each \yhen agent subnets are viewed as a whole (by merging
nodez in the form of P (x| (x)) wheren (z) is the parent  tneijr public variables), it must be a DAG. This require-
nodes ofz. ment maintains the causal interpretation of the depen-
The subdomairV;, of Sy consists of two type of vari-  dence relations of the domain. Although each subnet is
ables:gate variableandsensor variable A gate variable g DAG (as mentioned above), when multiple DAGs are
represents the state of a digital gate: whether it is normal merged together, it may be cyclic and violate causal inter-
or faulty (denoted agood andbad). For instancepn, pretation. As each subnetsivate (built by an indepen-
represents a NOT gate. A sensor variable represents thejent vendor), the global DAG condition cannot be verified
logical value of a signal perceived by a sensor (denoted aspy physically merging individual subnets.
0 and 1). For instanceys represents the sensed outputof  Furthermore, given the hypertree organization, public
gatevns. We assume that sensors are reliable, althoughvariables in an agent interface play the role of passiihg
unreliable sensors can also be modeled with slightly in- relevant information from one side of the hypertree to an-
creased complexity. other. This is possible only if each public variahles
Suppose that a sixth independent vendor, callesem-  a d-sepnode That is, if we denote parent nodesoby
bler, assembles the five components into the final digital r(z), taking into account all subnets that containthen
system. It also assembles the five corresponding agentshere exists one subnet that contaitis). Again, because
into an MAS. each subnet iprivate, the d-sepnode condition cannot be
In the figure, the agent organization is drawn, that is a verified by physically merging individual subnets.
tree structure [2] (called hypertre, where each node is The verification tool DVerify in WebWeavr tool kit
labeled by the logic name of an agent. The organization implements algorithms [3, 4] that verify both conditions
defines to whom an agent can communidditectly. without merging individual subnets. The verifications are
As part of the organization specification, each agent is performed by message passing among agents along the
associated with a set gfublic variables. For instance, hypertree, initiated by any agent (referred to asthet).
Ay has public variables,, ..., bio: signals exchanged be- A message reveals only whether a given agent has any
tweenl, andU,. Each public variable in an agent must parent or child of a public node, but reveals neither the
be associated with at least another adjacent agent (otherAumber of parents or children nor what they are. During
wise, the variable is not really public). For each pair of ad- Vverification, each agent executes a copy of DVerify
jacent agents, the two sets of public variables must have
a non-empty intersection (otherwise, probabilistic infor- 5 Agent Interface Enhancement
mation cannot be exchanged between them). If two non-
adjacentagents; andA; have acommon public variable, An MSBN-based MAS that has passed the above ver-
then it must be a public variable in each agent along the ification can support autonomous and exact multiagent
hypertree pathway betweet; and A; (otherwise, infor-  probabilistic reasoning. It does not, however, ensure that
mation fromA; on the variable cannot be communicated the inference computation is efficient. An agent commu-
to 4;). nicates with an adjacent agent by sending its subjective
Integrator tool gives feedbacks to Assembler during or- probability distribution over their interface. If the inter-
ganization specification until the above conditions are sat- face consists ofn variables and each haspossible val-
isfied. Note that as Assembler, the vendor is in a unique ues, the message contaiti& values. For instance, the
position (responsible to interface components together) tointerface betweent; and A3 has 12 binary variables and
negotiate with other vendors in deciding the public vari- a message between them then has a size of 4096.
ables. The MAS is novogically specified and ready to To reduce the message size while supporting exact in-
bephysicallyset up. ference, it may be possible to factorize the distribution
To do so, Assembler uses WebWeavr Binder tool. over the interface. For instance, if variablgs..., e, are
Binder has the access of MAS organization specification conditionally independent ofs, ..., e11 given es, eg, e7,
and waits for each agent to register by sending its physicalthen the message betwedn and A3 can be encoded into
address. After all agents have registered, Binder notifiestwo distributions oveey, ..., e; andes, ..., e11 with a total
each of them with the physical address of each adjacentsize of 256+128 = 384.
agent on the hypertree as well as the set of common public  What if there are no conditional independence relations
variables, calleégent interface The MSBN-based MAS  within the interface or those that exist cannot reduce the
is now integrated as each agent knows to whom it can message size sufficiently? A solution is to enhance the



interface with additional variables that bring some condi- grouped intoclusterswith intersections of adjacent clus-
tional independence within the subdomain into the inter- ters referred to aseparators The cluster tree is so con-
face. Identifying these variables among a large number structed such that the intersection of any two clusters is
of alternatives is non-trivial and must take into account of contained in every cluster on the path between them. Each
both dependence relations within and across subnets. In¢luster is associated with a probability distribution over its
stead of burdening the agent developers with the task, itmember variables. These cluster distributions are more ef-
may be better performed by a multiagent search.
To protect the privacy of subnets during enhancement, probability distribution over its subdomain

each agent vendor can specify variables in its subnet into

ficient in space, yet uniquely define the agent’s subjective

To compute the message to an adjacent agent, an agent

three sets: private, public, and preferably private. The compiles its cluster tree into a reduced cluster tree, called
private set should be kept so absolutely. Tigblic set
is included in the initial agent interface. Tipeeferably
private set is initially private, but the agent is allowed to tree is called dinkage Each linkage has a corresponding
make some elements public if it believes that the disclo- cluster in the cluster tree, called ti®st that contains the

sure improves inference efficience. The agent is required,linkage. Each linkage is associated with a probability dis-
however, to keep the disclosed subset as small as possibldribution that is derived from the distribution associated

A suite of algorithms for multiagent interface en-

a linkage tree[6]. It contains only variables in the inter-
face between the pair of agents. Each cluster in the linkage

with its host. From these linkage distributions, the agent

hancement has been developed [5]. Through multiagentsubjective probability distribution over the agent interface
search, each of the four agent interfaces are enhancedcan be constructed. Although the distribution over the in-
For example, the interface betweeh and As; (con-

sisting of ey, ..., e11) IS enhanced with additional vari-
ables ydsz, ydio1, ydio6, W14, WTris, WT1s.

These vari-

terface has a size of 32768, the inter-agent message made
of linkage distributions has a total size of 136.
The above compilation effectively converts the MSBN-

ables bring several independence relations into the inter-based knowledge representation into a set of linked cluster
face. For instancey, e, eo are independent afs, ey, e5
givenwrig, ydigs. As the result of enhancement, the mes- local inference and communication using linked cluster
sage size between each pair of adjacent agents is reducetilees are efficient.

significantly, as shown in Table 1, with the new message

size to be as low as about 4% of the original (betwegn

and Ay).

Table 1. The message size between each
pair of adjacent agents before and after in-
terface enhancement.

trees. It has been shown [8] that, if the MSBN is sparse,

7 Sensor Net Monitoring and Fault Isola-
tion

To monitor the digital system domain, each agent will
collect sensor outputs and reason about the state of its
subdomain autonomously. Less frequently, agents may
choose to communicate in order to benefit from infor-
mation in other agents. Through interleaving local infer-
ence and communication, agents can determine whether

Interface AQ — Al Al — A2 Al — Ag Ag — A4 . X X .
Before 5048 1024 2096 2096 the digital system functions normally and isolate faults if
After 136 136 336 60| Mot

WebWeavr DMasMsbn tool supports agent sensing, in-
ference and communication. We demonstrate digital sys-
tem monitoring through the following scenario: AND gate
wazyso in U; and OR gate049 in Us are faulty and pro-
ducing incorrect outputs. The incorrect outputs propagate
through other gates and produce more incorrect signals

Inference computation in an MSBN-based MAS con- throughout the system. To experiment in a laboratory set-
sists local inference at individual agents and communica- ting, Scenario Simulator tool in WebWeavr is used to sim-
tion among agents. Local inference involves updating the ulate the physical digital system and its associated phys-
agent’s belief (subjective probability distribution) over its ical sensor network and interact with the agents during
subdomain based on local observations. Communicationmonitoring. It simulates a set of external inputs to the the
from one an agent involves passing its subjective probabil- digital system, the faulty gates, and all other signals. Upon
ity distribution (the message) over an agent interface. Thean agent’s request, it sends the corresponding sensor value
two computations are intertwined: A message for com- the agent as an observation.
munication must be derived from the sending agent belief,  To monitor the domain, each agent is assumed to have
and a message received must be absorbed into the receivthe bandwidth to observe as many sensors as about 5% of
ing agent belief. variables in its subdomain at one time. We assume that

To allow both computations to be efficient, each agent all signals are observable except the outputsefs, and
compiles its subnet into a cluster tree, where variables arey0,9. In the first round of observation, each agent ob-

6 Compilation into Linked Cluster Trees
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