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Abstract

Digital repetitive control is a technique which al-
lows to track periodic references and/or reject peri-
odic disturbances. Repetitive controllers are usually de-
signed assuming a fixed frequency for the signals to be
tracked/rejected, its main drawback being a dramatic per-
Jormance decay when this frequency varies. A usual ap-
proach to overcome the problem consists of an adap-
tive change of the sampling time according to the refer-
ence/disturbance period variation. However, this sam-
pling period adaptation implies parametric changes af-
fecting the closed-loop system behavior, that may compro-
mise the system stability. This article presents a design
strategy which allows to compensate for the parametric
changes caused by sampling period adjustment. Stabil-
ity of the digital repetitive controller working under time-
varying sampling period is analyzed. Theoretical devel-
opments are illustrated with experimental results.

1. Introduction

Repetitive control [24], [13] is an Internal Model
Principle-based control technique [9] that allows both
the tracking and rejection of periodic signals. Its use
has reported successful results in different control areas,
such as CD and disk arm actuators [3], robotics [23],
electro-hydraulics [15], electronic rectifiers [27], pulse-
width modulated inverters [26, 25] and shunt active power
filters [5].

Repetitive controllers are usually designed assuming a
fixed frequency for the signals to be tracked/rejected. This
entails a selection of a fixed sampling period and a fur-
ther structural embedding of these data in the control al-
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gorithm. However, it is also a well known fact that even
slight changes in the frequency of the tracked/rejected sig-
nals result in a dramatic decay of the controller perfor-
mance. An example of such situation may be found in the
frequency variations experimented by shunt active filters
connected to the electric distribution network [6].

Several approaches have been introduced in order to
overcome this problem. The proposals may be grouped
in two main frameworks, namely, the one that deals with
the preservation of the sampling time and the one that
changes it adaptively. For the first approach there are
also two branches: improving robustness by using large
memory elements [21] or introducing a fictitious sam-
pler operating at a variable sampling rate and later us-
ing a fixed frequency internal model [2]. Both ideas work
well for small frequency variations at the cost of increas-
ing the computational burden. An alternative technique
is to adapt the controller sampling rate according to the
reference/disturbance period [16, 17, 11]. This allows to
preserve the steady-state performance while maintaining
a low computational cost but, on the other hand, it im-
plies structural changes in the system behavior which may
destabilize the closed-loop system. Regarding this issue,
an LMI gridding-based stability analysis for digital repeti-
tive control systems with time-varying sampling is carried
out in [18].

This paper presents a design strategy for a digital
repetitive controller working under time-varying sampling
period which allows to compensate for the parametric
changes originated by the adaptation of the sampling rate.
This is achieved with the introduction of a compensator
that annihilates the effect of the time-varying sampling on
the closed-loop system and forces its behavior to coincide
with that of the closed-loop system under an a priori se-
lected nominal sampling period. The theoretical results



are experimentally validated in a mechatronic laboratory
plant [7].

The structure of the paper is as follows. Section 2 con-
tains a brief description of a digital repetitive controller
and a study of stability issues in case of constant sampling
period. Section 3 introduces the compensation scheme
and analyzes the stability of the overall closed-loop sys-
tem under aperiodical sampling. Experimental results are
collected in Section 4, while conclusions and further re-
search lines are presented in Section 5.

2. Digital repetitive control under constant
frequency

Repetitive controllers are composed by two main ele-
ments: the internal model, G..(z), and the stabilizing con-
troller, G (z). The internal model is the one in charge of
guaranteeing null or small error in steady state, while the
stabilizing controller assures closed-loop stability. Sev-
eral types of internal models are used depending on the
concrete periodical signal to deal with [7, 14, 10, 8]. In
this work the generic internal model will be used, i.e.

where N = % € N, T), being the period of the signal
to be tracked/réjected and T being the sampling period.
H(z) plays the role of a low-pass filter in charge of in-
troducing robustness in the high frequency range [4]. Al-
though the internal model and the stabilizing controller
can be arranged in different manners, most repetitive con-
trollers are usually implemented in a “plug-in” fashion, as
depicted in Figure 1: the repetitive compensator is used to
augment an existing nominal controller, G (z). This nom-
inal compensator is designed to stabilize the plant, G, (s),
and provides disturbance attenuation across a broad fre-
quency spectrum.

Assume that either 7}, and T, are constant, which
makes NV also constant, and let P(z) stand for the discrete-
time plant model. Sufficient stability criteria are given in
the next Proposition:

Proposition 1 [7, 14] The closed-loop system of Figure 1
is stable if the following conditions are fulfilled:
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Figure 1. Discrete-time block-diagram of the
proposed repetitive transfer function.

1. The closed-loop system without the repetitive con-
troller G,(z) is stable, where

__Ge(2)P(z)
Gol2) = TG P()

2. || H(2) |lso< L.

3. || 1 = Go(2)Gsx(2) |loo< 1, where G (2) is a design
filter to be chosen.

Remark 1 These conditions hold for a proper design of
G.(2), H(z) and G(z). Namely [7, 14]:

e [t is advisable to design the controller G.(z) with a
high enough robustness margin.

e H(z) is designed to have gain close to 1 in the de-
sired bandwidth and attenuate the gain out of it.

o A trivial structure which is often used for G, (z) in
case that Go(z) is minimum-phase is [22]:

Go(2) = ky [Go(2)] .

Otherwise, alternative techniques should be applied
in order to avoid closed-RHS plane zero-pole cancel-
lations [22]. Moreover, there is no problem with the
improperness of G (z) because the internal model
provides the repetitive controller with a high positive
relative degree. Finally, as argued in [12], k, must
be designed looking for a trade-off between robust-
ness and transient response.

3. Adaptive compensation of the time-varying
frequency effect

The repetitive controller introduced in the previous sec-
tion contains the ratio N = %, which is embedded in the
controller implementation. This setting renders a well-
known good performance if the reference/disturbance pe-
riodic signal has a known constant period. However, as it
has been previously mentioned in Section 1, the controller
performance decays dramatically when a variation of 7T},
appears. This article propounds to deal with this problem
by means of an adaptive compensation scheme based on
three issues:

1. The repetitive controller is designed and imple-
mented to provide closed-loop stability for an a-
priori selected nominal sampling time 75 = TSN to
the nominal, Linear Time Invariant (LTI) plant

Num(z, TN)

TN) & — s
Gp(2, 157 Den(z,TN)’

€))

in accordance with Proposition 1 and Remark 1.
Hence, G, G, and G, are kept invariant.
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Figure 2. Accommodation of the sampling
period T to possible variations of 7).

2. Aiming the maintenance of a constant value N for
the ratio T,(t)/Ts(t), which preserves the refer-
ence/disturbance signal reconstruction quality, the
controller sampling time 7T is accommodated to the
time variation of the reference/disturbance period
T,(t),ie. Ts(t) = T,(t)/N. Therefore, the discrete-
time representation of the plant Gp(s) is that of a
Linear Time Varying (LTV) system!

Num(z,Ty)

Ts) = .
Gpl(z,T5) Den(z,Ts)

@)

See Figure 2 for details.

3. The structural changes caused by the sampling time
variation of T are annihilated through an additional
compensator

C(Zst) - GP(ZaT;V)G;zjl(ZvTS) 3

that premultiplies the LTV plant G, (z, Ts). Thence,
under the assumption of internal stability for the
compensator-plant system, its behavior is that of
the nominal LTI system G, (z, 7). Figure 3 de-
picts the overall system, while Figure 4 details the
compensator-plant subsystem.

Remark 2 The compensation strategy yields
P(z) £ C(z,T5)Gp(2, Ts) = Gp(z7TSN), “4)

i.e. a time-invariant block representing the nominal plant
for which the repetitive controller provides of closed-loop
stability. Furthermore, when T's remains constant at the
nominal sampling time T, the closed-loop system does
not experiment further changes and behaves as the nomi-
nal system (i.e. C(z, TN) = 1).

I'The use of the z-transform notation in a LTV framework is not for-
mally correct. In this paper this notation is preserved in order to achieve
a compact and simple notation (z~! should be read as a one sample time
delay, but the sampling interval may change from sample to sample).

Figure 3. Discrete-time block-diagram of
the closed-loop system with the proposed
repetitive controller structure.

It is also worth mentioning that the compensator has
not causality problems. Indeed, using (1) and (2) in (3)
allows to write

Num(z,TN) Den(z,Ts)
Den(z,TN) Num(z,Ts)

C(z,Ts) = 5)

Therefore, the possible improperness of the second factor
is removed by the properness of the first factor.

One last consequence is that the system, P(z) response
at the sample instants {to,¢1, ..., %, ...} for a fixed sam-
pling period are the same in spite of the sampling rate
value. This corresponds to a time scaling effect as a result
of forcing the system to stay invariant in the discrete-time
space.

The above exposed discussion allows to prove the fol-
lowing result:

Proposition 2 Let G),(s) be a continuous LTI plant, and
let Gp(z,Ts) be its discrete-time transfer function corre-
sponding to the sampling time Ts. Let also Ty = TN be a
nominal sampling time, and let G,(z, TXN) defined in (1)
be its associated discrete-time transfer function. Assume
that the compensator C(z,Ts) of Figure 3 is defined as
in (3), and that the subsystem P(z) = C(z,T5)Gp(z,T5)
detailed in Figure 4 is internally stable for all T, € T C
R*. Finally, assume that the repetitive controller elements
Gr(2), G4(2), G.(2) are designed according to Proposi-
tion 1 and Remark 1 in order to provide closed loop sta-
bility to the LTI system, P(z). Therefore, the closed-loop
system depicted in Figure 3 is stable for all Ty € T.

(11 Uk ﬁ@ Gp(s) AD »»—y&

Figure 4. Detail of the compensator-plant
system.

P(z)




Figure 5. Picture of the main part of the
plant: DC motor, optical encoder, magnetic
system (load), and supporting structure.

Remark 3 (i) The internal stability of the compensator-
plant subsystem P(z) can be checked using an LMI grid-
ding approach [1, 20].

(ii) In most practical applications the plant G, (z) admits
a relative degree 1, first order model description, which
ensures internal stability for P(z) whenever G, (z) is sta-
ble.

4. Experimental setup and results

4.1. Plant description

Systems with rotary elements are usually affected by
periodic disturbances due the movement of these parts
(e.g. electrical machines, CD players...). This kind of sys-
tem is supposed to be moving, in some cases, at a fixed
angular speed. Under these working conditions any fric-
tion, unbalance or asymmetry appearing on the system
generates a periodic disturbance that affects its dynamical
behavior. Figure 5 shows the picture of device designed
to reproduce this working conditions [7]. This device is
composed of a bar holding a permanent magnet in each
end, with each magnet magnetically oriented in the oppo-
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Figure 6. Mechanical load: fixed and mov-
ing permanent magnets sketch (w and I,
stand for the angular speed and the distur-
bance torque, respectively).

Measured and simulated model output
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Figure 7. Open-loop time response of the
plant without the fixed magnets.

site way, and attached to a DC motor and two fixed per-
manent magnets (see a sketch in Figure 6). The rotation of
the DC motor causes a pulsating load torque (I',) that de-
pends on the mechanical angle 6 of the motor axis. When
the motor axis angular speed w is constant 0 =w=0),
the pulsating torque is a periodic signal with a fundamen-
tal period directly related to the axis speed: T}, = w1,
with w expressed in rev/s. The control goal for this plant
is maintaining the motor axis angular speed constant at a
desired value.

Figure 7 shows the open-loop time response of the
plant without the fixed magnets. From the observation
of this time response and after a parametric identification
procedure, the following plant model can be derived:

8.762 rev/s
(%) = 51065 11V

(6)

This is a first order parametrization with characteristic
time response 7 = (.106 s and stationary state gain
K =8.762rev/(V - s)

Figure 8 shows the open-loop time response of the
plant containing the fixed magnets. It is important to note
that the speed describes an almost periodical signal. This
type of disturbances may not be rejected by a regular con-
troller, so a repetitive controller is designed in next sub-
section.

Output (rev/s

Figure 8. Open-loop time response of the
plant with the fixed magnets.



4.2. Control design

The controller is constructed from model (6), for a
speed of w = 8 rev/s and obtaining 25 samples per pe-
riod, i.e. N = 25. These conditions imply a nominal
sampling period of TV = T,N~! = (wWN)™! = 5 ms.
Under these assumptions the nominal discrete time plant
. 0.4012
z—0.9542

According to Remark 1, the following design issues have
been taken into account:

GP(ZstN) =

e G.(z) = 0.25 provides a very robust inner loop.

e The first order linear-phase FIR filter
H(z) =0.02z 4 0.96 + 0.02z "

provides good performance in the present case.

e The fact that Gp(z) is minimum-phase allows
Gy(z) = k:,.Go_l(z), with k, = 0.3.

According to Section 3, the compensator C(z,T5) is
designed as follows. On the one hand, the discrete-time
model of the plant at the nominal sampling period is taken
as the time-invariant component of C'(z, Ts) (see (1)):

Num(z, TN) 0.4012
Gp(2,TN) = s = .
p(5 1) Den(z,TN) 2z —0.9542 ™
On the other hand, the plant (see (2))
Num(z,Ty) K(1—e T/7)
G Ts) = = 8
p(Z, ) Den(z, Ts) ”— e—TS/T ( )

is first order, stable and minimum phase; hence, its inver-
sion is possible and one can define:

Den(z,T,) = z—e /7 ©)
Num(z,Ts) K(1—e T:/7)
Therefore, (7), (9) and (5) yield
0.4012 (z — e~ To/7
C(2,Ts) = (-c ) (10)

K(1— e T-/7) (2 — 0.9542)°

which is a time-varying model that depends on the sam-
pling period T and this, in turn, depends on the distur-
bance period variation 7T},.

It is important to emphasize that, in this case, the func-

tion P(z) introduced in (4) is composed of the series con-
nection of:
1) The system C(z,T;) described in (10),
which admits a LTV state-space representation
(Ac(k), Bo(k),C.(k), D.(k)) with A.(k) = 0.9542,
B(k) =1,

~0.4012e~7k/™ 4+ 0.3828

Celk) K(—eT/m)

Output (rev/s)

Control (V)

Time (s)

Figure 9. Closed-loop system behavior us-
ing a repetitive controller and with sampling
period fixed at the nominal value (7" =
5ms).

0.4012

De(k) = KA —eTo/m)’

the sampling period being T}, = Ts(k) = tgx41—tx. Itsin-
ternal stability is guaranteed by the fact that the state equa-
tion is time-invariant, A, being a 1 x 1 real matrix with
modulus less than 1, which yields uniform exponential
stability [19]. Moreover, as B.(k) is constant and C..(k),
D, (k) are bounded for all T}, belonging to any compact
interval 7 C R, uniform BIBO stability is also ensured
[19].

2) The system Gp(z, T) described in (8), which is inter-
nally and uniformly BIBO stable because it corresponds
to the sampled version of the LTI, continuous-time stable
plant, G,(s).

As the series connection of internally and BIBO stable
systems is also internally and BIBO stable, in the case
under study P(z) fulfills the hypothesis of Proposition 2,
so the overall closed-loop system will be stable.

In order to derive the control action applied to the plant,
i.e. the signal U(z) (see Figure 2), it has to be taken
into account that the compensator makes the system time-
invariant. Therefore, @, is the invariant control law ob-
tained from the nominal repetitive control, that is:

0.25¢y, + 0.015€x—23 + 0.70e;_24 +
—0.84ep_25 — 0.018e_26 + 0.02%Ug_24 +
+0.961;_95 + 0.02u 96,

U =

with e, = r, — Yk, Tk, Yr being, respectively, the system
output and the reference velocities.
The derivation of uy, according to Figure 4 yields:

0.4012 1— K(Ty)

———u — 0.4012 Up—1 +0.9542u
K(Ts)uk K(T.) Uk—1+ Uk—1

up,

with K(T,) = 1 — e~T+/7. It can be easily seen by
straightforward calculation than when the sampling inter-
val remains constant at nominal the sampling time, i.e.
T, = Tév, then u, = ug.
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Figure 10. Frequency spectra in open and
closed-loop working at the nominal speed
(8 rev/s).

4.3. Experimental results

Figure 9 contains the experimental results of the repet-
itive controller designed in Section 4.2. During the time
interval [0, 10] s, the reference is maintained constant at
speed value of w = 8 rev/s: it is important to realize
that, in comparison to the uncompensated speed profile of
Figure 8, now disturbances are almost rejected. Figure 10
contains both the uncompensated and compensated speed
spectrum when working at the nominal speed; note that
most relevant harmonics are eliminated or highly attenu-
ated due to the repetitive control action. Att = 10s a
ramp reference change, from w = 8 rev/s to w = 6.25
rev/s, is introduced in the system, then the speed is kept
constant for 5s and finally at ¢ = 20 s the speed is grad-
ually augmented at constant acceleration until it reaches
the value w = 12.5 rev/s at ¢ = 35s: Figure 9 reveals
that after time 10s the system can no longer reject the dis-
turbances. In addition, the action generated by the control
law is also portrayed in Figure 9: it can be seen that the
controller generates the necessary action to compensate
disturbances when working at the nominal speed, i.e. up
tot = 10 s, while when it works at the new speeds, i.e. for
t > 10 s, the control action is reduced or is not suitable so
disturbances cannot be properly compensated.

Figure 11 shows the experimental results using an
adaptive compensation of the sampling rate, which is ac-
commodated to the desired reference. One may observe
that, the controller is capable of preserving the system per-
formance and references are tracked with small error. At
the bottom of Figure 11 the control action generated by
the control law is shown. Now the control signal is the
appropriate one in all cases, so the controller is capable of
rejecting the disturbances.

5. Conclusions

In this work, the sampling period of the digital repeti-
tive controller is adapted in order to maintain the rejection
performance of the controller when reference/disturbance
periodic signals with varying period are present. The de-
sign strategy presented here allows to compensate for the

Output (rev/s)
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2 2
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Figure 11. Closed-loop system behavior us-
ing a repetitive controller with adaptive
sampling rate.

parametric changes caused by this sampling period adjust-
ment. This is accomplished by the inclusion of an addi-
tional compensator which makes the system invariant in
discrete time domain.

With this approach the repetitive controller design de-
fined under constant sampling time remains valid also
in case of variable sampling time; therefore, the track-
ing/rejecting performance can be preserved by adapting
the sampling rate of the system in concordance with the
period variation of the signal to be tracked/rejected.

Stability of the digital repetitive controller working un-
der time-varying sampling period is analyzed. Since nom-
inal design is made invariant it remains valid and since it
is thought to fulfill the stability conditions these always
hold despite of sampling time changes. Theoretical devel-
opments are illustrated with experimental results.
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