Efficient Communication in Control-Oriented
Embedded Networks

Andreas Scholz, Irina Gaponova, Stephan
Sommer, Alfons Kemper, Alois Knoll
Technische Universitdt Miinchen
{scholza,gaponova,sommerst,kemper,knoll} @in.tum.de

Abstract—In the recent years, wireless sensor networks (WSNs)
have drawn a lot of attention and a lot of work has been done
to provide an efficient communication infrastructure for these
systems. This paper focuses on another -not so well studied- class
of embedded networks: embedded networks used for control and
automation purposes. In contrast to WSNs, these networks have a
comparably stable infrastructure, with a low probability of node
or link failure. The main challenge for the communication in
control oriented networks is the heterogeneity of the underlying
infrastructure and the resource constraints already known from
WSNs. We propose an adaptable communication layer that
leverages existing network protocols and at the same time
provides a seamless communication over heterogeneous networks
and an efficient and scalable network stack for individual nodes.
We show the feasibility of this approach with a demonstrator
for the smart energy management in a future home automation
scenario.

I. INTRODUCTION

Embedded networks (often also called sensor or sensor-
actor networks) containing a multitude of networked nodes
with varying sensing, acting, and processing capabilities are
emerging in many application areas such as the automotive,
building management, or factory automation sector. Due to
differences in the underlying hardware (wired/wireless links,
limited/unlimited energy resources, mobile/stationary nodes)
different network architectures have been developed. Espe-
cially the area of wireless sensor networks (WSNs) has drawn
a lot of attention in the recent years. We want to focus on
another area of embedded networks: embedded networks for
control and automation purposes.

The resource limitations known from WSNs also apply for
control oriented networks, requiring mechanisms for a re-
source efficient execution of applications. Compared to WSNss,
control oriented networks typically possess a well planned
structure and nodes with a comparably high reliability. These
networks therefore are rather stable. Node or link failures, ei-
ther because of hardware failure or energy depletion, may still
occur and have to be compensated, but their likelihood is rather
low. A new challenge encountered in control oriented networks
is heterogeneity. The increasing convergence of embedded
networks and the heterogeneity of the used hardware and
communication media, such as wireless links, Ethernet con-
nections or bus systems, has led to the situation that different
communication protocols are used in a single network. Often
these protocols use different addressing schemes and have

978-1-4244-2728-4/09/$25.00 ©2009 IEEE

Christian Buckl
fortiss GmbH
buckl @in.tum.de

Jorg Heuer, Anton Schmitt
Siemens AG, Corporate Technology,
Multimedia and Network Communication
{joerg.heuer,anton.schmitt} @siemens.com

different characteristics. Given the resource constraints and the
stable but heterogeneous network infrastructure, a developer
is faced with a new challenge: the requirement to build an
application that is capable of running on a heterogeneous
infrastructure and at the same time is capable of adapting
its execution to the characteristics of the hardware in order
to provide an as efficient execution as possible. Because the
development of individual solutions for every application field
is too costly and time consuming, middleware solutions, which
ease these optimizations, have to be developed.

In this paper we will focus on a fundamental part of
these middleware solutions: the communication layer used to
facilitate message exchange between different nodes in the
network. We propose a communication architecture that allows
leveraging existing communication protocols and provides a
unified addressing scheme, a seamless communication over
heterogeneous networks, and a plug-and-play like support for
communication protocols that allows to choose the protocol
best suited for the intended application. The proposed archi-
tecture is based on a modular design that allows tailoring the
communication stack to an application’s needs, leading to an
efficient and scalable solution that is suitable for a broad range
of devices. Additionally, the modularization allows exploiting
features provided by the underlying network protocols or
communication media, resulting in an implementation that is
resource efficient and avoids redundant work.

The contributions of this paper are:

o an analysis of the communication requirements in het-
erogeneous embedded networks used for control and
automation purposes;

o the development of adaptable and modular communica-
tion layer fulfilling these requirements.

In the following two sections, we take a closer look at
the communication in control oriented networks and the re-
sulting requirements for the communication infrastructure. In
Sections 4 and 5, we propose a communication architecture,
which is able to meet these requirements. In Section 6 we
outline the key features of an efficient implementation of
this architecture and describe a demonstrator that comprises
a heterogeneous embedded network. In Section 7 we give an
overview of related work and conclude the paper in Section 8.

II. COMMUNICATION IN CONTROL-ORIENTED EMBEDDED
NETWORKS

Analogous to other distributed systems, the development of
individual solutions for every single embedded network is too
costly and time consuming. This has led to the development
of several generic approaches targeting different application
scenarios. A common denominator of these approaches is
the optimized execution of applications w.r.t. the underlying
network structure: data is not routed to a central component
which does all the processing, but instead the application
logic is distributed in the network, avoiding the creation of
bottlenecks and single points of failure. This distributed data
processing is based on a data stream oriented processing
paradigm, i.e., data is generated by sources (typically sensor
devices), processed and transformed by intermediate compo-
nents (logic components) and ultimately consumed by data
sinks (actors, end-user devices, databases, etc).

One class of systems are database-like query interfaces for
embedded networks, such as TinyDB[1] or Cougar[2]. In these
systems a declarative query (often formulated in an extended
SQL dialect) is decomposed into operators which are spread
throughout the network to perform the acquisition, processing
and dissemination of data. Because embedded networks are
mainly deployed for monitoring or control purposes, ad-hoc
requests are rare. Instead continuous monitoring and operation
based on the measured data is important. As a consequence,
the operators generated by the declarative queries often operate
on window based parts of the data streams produced by the
measurement devices in the network. These systems can there-
fore be seen as data stream processing systems, containing
operators which perform in-network data processing.

Another class of systems are service oriented middleware
architectures for embedded networks, such as the eSOA[3]
project, the DPWS[4] based SIRENA[5] and SOCRADESI6]
projects, or the OASiS[7], MORE[S8], or RUNES[9] projects.
A driving factor for the development of these systems is
the complexity of the application development for embedded
networks. Often a multitude of heterogeneous devices has
to be integrated into a platform that allows an efficient and
distributed execution of applications under the presence of
resource limitations, real-time requirements or limited energy
resources. To cope with this complexity and to provide re-
usable and interoperable solutions, a decomposition of appli-
cations into small encapsulated building blocks (services) is
employed by these systems. In order to provide an efficient
data processing and to allow energy saving options, these ser-
vices typically operate on an event based processing paradigm,
1.e., the execution of the service logic is triggered by incoming
data which may produce new data that is submitted to the next
service in the chain. Just like the query system, these systems
can be seen as data stream processing systems, too.

The non-functional requirements for individual data streams
can be very different. For some data streams, such as periodic
measurements, reliable data transfer is not required or even
not useful, because re-transmitted packets are outdated when

— ZigBee = RS-232 - TCP/IP

(a) Scenario

1 1I I v A%

(b) Subnets

(c) Data Flows

Fig. 1. Heterogeneous Embedded Network

they arrive at the receiver. Other data, such as an alarm event
generated by fire sensor, have to be transmitted reliably and
perhaps w.r.t. some maximum transmission delays.

The communication layer provided by an embedded net-
work middleware should therefore be able to efficiently sup-
port the transmission of this streaming data and at the same
time be scalable to the non-functional requirements of indi-
vidual data streams.

III. REQUIREMENTS FOR EFFICIENT DATA EXCHANGE IN
EMBEDDED NETWORKS

Given the characteristics described in the previous section,
the communication layer in an embedded network has to fulfil
several requirements. First the network protocol used for com-
munication in the embedded network has to be exchangeable.
If the intended application scenario changes or a better suited
protocol becomes available, the communication layer has to be
re-configurable in order to adapt to these new circumstances.

The second requirement is the support of heterogeneous
networks comprising several different protocols. A typical ex-
ample for this scenario is depicted in Figure 1(a). It comprises
a backbone of nodes connected via Ethernet and multiple
sensor nodes connected via ZigBee to the backbone. In this
scenario, three network types with different protocols are
used, as shown in Figure 1(b): ZigBee for the communication
between the sensor nodes (Subnets I and V), a RS-232
interface for the communication between the sensor nodes and
the backbone nodes (Subnets II and IV), and TCP/IP for the
communication between the backbone nodes (Subnet IIT). We
will use the term “subnet” to refer to such clusters of nodes
that communicate with the same network protocol. Assume the
developer wants to run a simple monitoring application that
calculates average values over the measurements of all sensor
nodes. A possible solution is illustrated in Figure 1(c): Node 1
is used to calculate the average for the left ZigBee subnet,

Node 2 for the right ZigBee subnet. Node 3 finally is used to
calculate the average of the intermediate results produced by
Node 1 and Node 2. The corresponding data flows are shown
as thick lines in Figure 1(c). During application development
the developer should not have to worry about the message
conversions required to facilitate a communication between
the individual nodes, but should be able to work on an abstract
view of the network that hides the underlying protocols
and communication media. Nevertheless a majority of the
communication will occur between nodes in the same subnet
and should not be hindered by a too complex abstraction layer
with high overhead. Finally, the special characteristics of the
underlying networks, such as bandwidth restrictions, have to
be passed on to upper layers to allow an optimization of the
placement of services and to avoid overload situations.

A third challenge is the heterogeneity of the involved net-
works. Some of the used networks may already offer services
such as reliable transmissions, either through a reliable com-
munication medium or a reliable transport protocol, whereas
others do not. We will refer to these capabilities as “features”.
A possible solution is to use an overlay network that offers
all required features. The major drawback of this approach
is the inefficient resource usage. If some features are already
implemented by an underlying protocol the overhead of a re-
implementation should be avoided. Additionally, not all nodes
may require the same features. Consider a network comprising
sensors which are used for long-term monitoring and do not
require a reliable data transport. At the same time the network
contains a fire detector which has to reliably send a message
to an alarm if a fire is detected. Given this scenario the
network stack on the temperature sensing nodes does not have
to provide reliable transport, but the stack on the alarm and
the fire detector has to. To provide an efficient communication
in this scenario, the network stack used on individual nodes
has to be adaptable. It should provide the features required by
the services running on the node, but no additional features
if the provisioning of these incurs an overhead. Additionally,
features already available in the underlying network should
be exploited and not re-implemented by the network stack.
An interesting area for future research is an energy-aware
(re-)configuration of the network stack. If a node has low en-
ergy resources, it might be beneficial to disable some features,
e.g., reliable transport, in order to increase the lifetime of the
node.

The data transmitted by the communication layer can be
grouped into two classes: d-priori known data transfer and
ad-hoc communication. The latter category of transmissions
is communication for which there is no further information
available, often caused by administrative messages which
cannot be predicted. The former is created by the data streams
flowing between services on different nodes. An important
property of data streams is that the source and sink of these
streams is known d-priori. Often the data rates are known,
too. Because data streams constitute a large amount of the
overall transmitted data, the fourth requirement is to exploit
this information to optimize the routing of data streams in

Fig. 2.

Layered Routing

the network. This optimization should also take into account
the topology of the underlying network and the characteristics
of nodes and links. With this information, many overload
situations can be avoided through a topology aware placement
of services and routing of data streams.

Another difficulty that has to be handled by the communica-
tion layer of an embedded network is fault tolerance. The link
quality between nodes can vary over time and link or node
failures can occur, especially if wireless communication and
battery powered devices are used. The communication layer
should support a graceful degradation in these scenarios, i.e.,
alternative routes between nodes should be used to ensure
the application continues to work. This recovery has to be
done fully automatically and in a very timely fashion. The
alternatives chosen during this process may result in a reduced
overall performance, e.g., because the backup routes are much
longer than the original ones. If the error persists over a longer
time, the communication layer should generate a notification
that allows reorganizing the placement of services w.r.t. the
new network topology.

Summing up, the communication layer for embedded net-
works should provide the following features:

o easy addition and removal of network protocols;

« support for communication over heterogeneous subnets;

o efficient communication within a subnet;

« an adaptable network stack that can be tailored to appli-
cation needs and exploits features provided by underlying
protocols;

o efficient transport of data streams;

o fault tolerance;

« notification of topology changes.

IV. LAYERED ROUTING

The routing in the embedded network has to be designed in a
way that allows combining two contradicting goals mentioned
in the previous section: a topology aware routing of data
streams, and failure tolerance. A trade-off has to be found
that allows controlling the data flows in the network and
at the same offers enough flexibility to change the routing
of packets to avoid congested or broken links. These goals
and the requirements listed in the previous section can be
achieved with a layered routing approach. The basic idea
of this approach is depicted in Figure 2. The Data Routing
Layer handles the high level distribution of data streams and
messages in the network. It specifies the sink nodes of data
streams and provides functionality to split data streams at

.

= Data Routing

Application Requireme

Stream Routing H Packet Routing ‘

|
t

+ Abstract Network

Optional Modules ‘

‘ Bridging ‘

Address Translation ‘

juauodwoy 19ke] ss01D

14

= Transport/Routing Protocol

Fig. 3.

Architecture of an Adaptive Network Stack

nodes. Note that the source and sink of data streams do
not have to be neighbouring nodes, but can be any node in
the embedded network, even nodes from different subnets. A
data stream only specifies on a high level that data has to
be transmitted from one node to another. The transmission
of individual packets of the data stream and the selection
of a suitable route in the underlying network is handled by
the Transport/Routing Protocol Layer. This layer relies on
one of the various network protocols available for embedded
networks to perform the transport of data between two nodes.

The layered approach has several benefits: first the Data
Routing Layer does not have to deal with the clustering
of nodes or different network protocols in the subnets but
provides the developer with a high level overview of the data
transmissions in the network. It shows the data flows in a way
that is understandable for an application domain expert and
safely hides details regarding the underlying network proto-
cols. Second the high-level routing of data can be controlled
through the routing of the data streams, whereas the low-
level routing of packets and the failure recovery is handled
transparently by the underlying network protocols. A cross-
layer-component can be used to allow optimizations in both
layers. The data routing can be optimized by changing the
placement of services w.r.t. the network structure in order
to minimize transmission costs and delays. The routing of
packets can be improved based on the characteristics of the
data streams generating the packets.

V. ADAPTIVE NETWORK STACK

The network stack presented in this section is based on
two principles: modularity and re-use. A major design goal
was to create a communication layer that introduces as little
overhead as possible compared to existing network protocols.
At the same time, the functionality of this stack should be
scalable, i.e., small nodes with little processing capabilities
should not be burdened with functionality not needed by the
services running on this node. This can be achieved by a
modular network stack that allows tailoring its functionality
by adding or removing features depending on the needs
of the services running on a node. To provide a resource
efficient implementation of this stack, as many features of
the underlying network protocol should be re-used and not
re-implemented in upper layers of the network stack.

The modular network stack shown in Figure 3 is a refine-
ment of the layered architecture developed in the previous sec-
tion. It is based on an Abstract Network layer which is suited
on top of the protocols used in the subnets. This layer provides
a unified addressing scheme across all networks and provides
modules for features not present in the underlying protocols.
Based on the Abstract Network, two routing components are
implemented: the Stream Routing, which is optimized for
the transmission of continuous data streams and the Packet
Routing, which is optimized for the transmission of single
packets. Additionally a Cross-Layer Component provides ac-
cess to information gathered by the different layers, allowing
the Optimizer to adapt the configuration of the network stack
to the needs of a given application. The individual layers are
described in detail in the following sections.

A. Transport/Routing Protocol Layer

The bottom layer of the stack provides access to the
transport or network protocols used in the different networks,
such as the UDP and TCP protocols used in IP based networks,
the Active Messages used in TinyOS, the RS-232 interface
for serial data transmission, etc. The minimum requirement
for protocols that should be incorporated in the network stack
is support for a unicast end-to-end communication between
nodes. Besides this basic functionality, many protocols offer
additional features, such as multicast support, reliable trans-
port, encryption, QoS guarantees, etc. These features are stored
for every protocol. During the installation of an application,
an Optimizer determines which of the features required by an
application can be provided by the underlying protocols, and
which features have to be provided through the installation
of an additional module. The Cross-Layer Component allows
the transport/routing protocols to publish topology informa-
tion and link characteristics and to access application level
information such as the data rates of streams, etc. The former
information can be used to optimize the placement of services
in the network. The latter can be used by the transport/routing
protocol to optimize the routing of packets in the network.

B. Abstract Network Layer

The bridging functionality of the Abstract Network Layer
resembles the functionality of network stacks known from
overlay networks, such as Peer-to-Peer networks. However
there is an important difference: The Bridging component
only handles the message routing across network boundaries.
A message sent within a subnet will be transmitted directly
via the underlying transport protocol. Therefore the Abstract
Network is not a full-fledged overlay network but can be seen
as a thin wrapper that allows communication across heteroge-
neous subnets. The rationale for this decision are performance
considerations. If communication occurs within a subnet, the
Abstract Network introduces no additional overhead because
all messages are sent directly via the underlying network
protocol. If a packet is addressed at a node in another subnet,
the packet is sent to a bridge node which converts the packet
and injects the new packet in the other network.

The Address Translation provides a unified addressing
scheme across all subnets. It uses n-bit network addresses,
which comprise a network identifier (the first m bits) and a
node identifier (the remaining n — m bits). The number of
bits used for addresses, n, and the distribution of these bits
between the network and node part can be chosen during the
development of the sensor network. This allows to reduce
the network header size for small installations and support
scenarios with multiple different subnets.

The Abstract Network currently supports two address as-
signment schemes: static addresses and dynamic configuration.
Static addresses are assigned during development. This allows
creating very compact and small images for devices, which are
not added to networks dynamically, e.g., switches, static sen-
sors or similar devices. The second address assignment scheme
is based on a DHCP-like dynamic configuration mechanism.
New nodes request an address by sending a broadcast message
after installation. A coordinator node handles these requests
and creates unique addresses for new nodes.

Optional modules can be plugged into the Abstract Net-
work layer to provide features not present in the underlying
protocols. Consider an application requiring a reliable mes-
sage transmission between two services. If this application
is running on top of an TCP/IP network, the TCP protocol
already provides this feature out of the box. If the underlying
protocol supports only unreliable transmissions, e.g., UDP/IP,
an additional reliability module is installed in the network
stack at the sender and at the receiver. The optional modules
can be used in two ways: to provide new features for the
communication inside a subnet and to provide new features for
an end-to-end communication across heterogeneous subnets.

The modules are organized as a stack, i.e., on the sender
side the message is passed to all modules in a top-down, on the
receiver side a in bottom-up manner. This allows modules that
are located higher up in the stack, to treat modules lower down
in the stack as black boxes. Assume an application requires a
connection between two services, which offers reliable trans-
port and data encryption. In this case the reliability module is
installed below the encryption module in the network stack.
At the sender, the encryption module is called first, which
can encrypt the message payload. Subsequently the reliability
module is called, which can extend the message header with
data needed to perform the reliable transport, e.g., a sequence
number. The modules on the receiver side will be invoked
in reverse order, i.e., first the reliability module and second
the encryption module. If a transmission problem occurs, e.g.
through a lost packet or a duplicate packet, this situation will
be handled transparently by the reliability module and will not
be visible to the encryption module.

C. Data Routing Layer

The previous sections covered the lower part of the network
stack and how a transmission of single messages can be
performed efficiently. Based on this functionality, the network
stack offers two routing components, a Stream Routing com-
ponent and a Packet Routing component. As mentioned during

(a) No Stream Sharing (b) Stream Sharing

Fig. 4. Data Stream Rounting

the requirements analysis, most of the data transmitted in an
embedded network is stream based, i.e., the source and sink of
the streams are known a-priori. A crucial observation is that
often data from one source is consumed by multiple sinks.
Consider a temperature sensor which provides data that is
recorded for long term monitoring and simultaneously used
by a heater and an air condition. Such an example scenario
is depicted in Figure 4(a). The data produced by node 1 is
used by two other nodes, 6 and 7. The thick lines indicate
the two resulting data streams routed through the network. A
possible optimization which reduces the network utilization
is shown in Figure 4(b). Instead of sending two distinct data
streams, a single stream is sent to node 5, where it is split into
two streams targeted at nodes 6 and 7. The detection of such
synergies and the calculation of such splitting points is the
task of the Optimizer which is not in the focus of this paper.

The routing of data streams is performed by the Stream
Routing component of the network stack. A Data Stream
Router, which runs on top of the Abstract Network Layer,
is installed on every node in the network. It contains a routing
table which indicates the target nodes for messages stemming
from a specific sender. Data streams are identified by triples:
the node address, instance id and port number of the service
that produces the data stream. The dashed boxes in Figure 4(a)
and 4(b) show the routing tables for the example. Every row
contains one routing entry, the part on the left side of the “-”
is the stream identifier, i.e., the source address, the part on the
right side is the target address. Like the source address, the
target address consists of a node address, an instance id and a
port number. Because the instance id and port number are only
needed at the target node, the Stream Router stores only the
node address for remote services. The routing table of node 1
in Figure 4(a) can be read as: transmit the data produced by
service instance 5 port number O to nodes 6 and 7. At node 6
the routing table specifies that the data should be processed by
service instance 6 port number 0. The shared use of the data
stream produced by node 1 can be achieved with the routing
tables shown in Figure 4(b). Instead of two different streams,
node 1 only creates a single stream that is targeted at node 5.
Because the stream identifier is contained twice in the routing
table, the stream is splitted at node 5 and sent to both nodes, 6
and 7. The routing tables at nodes 6 and 7 remain unchanged.

The routing of the remaining messages is done by the Packet
Routing component. It offers a simple interface that allows
sending data to a designated target identified by an address
triple containing the node address, instance id and port number.

D. Message Routing Schemes

Individual messages can be routed using one of two
paradigms: source based routing or target based routing. Using
the former paradigm, messages are routed depending on the
data source that created them. Each intermediate node has
to be configured prior to the transmission of messages. This
is done by adding a route that tells the node where to
send data stemming from a specific originator to the Stream
Routers on all intermediate nodes before the data transmission
starts. Using the latter paradigm, the target of a message is
contained in the message itself, so no additional configuration
is required at intermediate nodes. For data stream routing with
a-priori known routes (which we assume for control oriented
networks), these two paradigms have similar efficiency for
a unicast communication pattern. If a message has to be
delivered to multiple recipients, the two routing schemes
behave differently.

If the underlying protocol supports multicast, the Stream
Router at the originating node can be configured to send data
via multicast to all sink nodes. Intermediate nodes for the
splitting of streams are not needed in this case. In order to
achieve this communication, the nodes have to join corre-
sponding multicast groups what requires a configuration prior
to the transmission of messages. In this case both, target and
source based addressing, require a pre-configuration of nodes
and therefore a comparable management overhead.

If the underlying network offers no multicast support, inter-
mediate nodes, which split the data stream, have to be used. In
this case source based addressing has a big advantage: mes-
sages remain unchanged throughout the whole transmission
in the network. At a splitting node, the message is simply
duplicated and routed to all destinations. For target based
addressing there are two possible solutions, which both incur
an overhead. One possibility is to pre-configure splitting nodes
to send messages to multiple destinations. But in contrast to
source based addressing, the messages have to be modified at
these nodes to add the new targets. The other solution is to
add all targets to the message. In this case the message can
remain unchanged throughout the transmission. The drawback
is that the message size grows and the parsing becomes more
complex. Summing up, source based routing is beneficial if
a message should be transmitted to multiple destinations and
the underlying network supports no multicast transport.

We assume that for control oriented applications the one-
to-many communication pattern will occur often for data
streams. Since our approach has to be efficient in different
networks, supporting multicast or not, we chose source based
routing for the implementation of the Stream Routing inter-
face. Our reasoning is that the source based routing incurs
less processing costs for individual messages but requires
more management overhead before the start of a transmission,
whereas the opposite is true for target based routing. Because
data streams comprise a huge amount of messages (potentially
infinite) and are changed seldom, the additional management
overhead is negligible compared to the performance gains for

send/processMessage ()

if (check bitfield)
[module code]

if (check bitfield)
[module code]

if (check_bitfield)
[module code]

Bitfield

Variable 1

J— Module Header

Variable

Variable

Payload [send/dispatch]

(a) Message Format (b) Message Handling Code

Fig. 5. Modular Message Handling

the processing of messages. Another benefit of source based
addressing is the possibility to seamlessly switch to multicast
transport if it is supported by the underlying network. On
the other hand, management and configuration messages sent
through the network do not show a predictable behaviour like
data streams and do not require support for stream splitting.
The Packet Routing interface therefore uses a target based
addressing scheme.

E. Message Handling

In the eSOA project, we promote a model based de-
velopment approach for embedded networks[10]. It allows
generating executable code and reconfiguration scripts for the
individual nodes in an embedded network based on a model
of the available hardware and the applications that should run
on this hardware. The communication layer proposed in this
paper fits seamlessly into such a development environment,
as the communication requirements imposed by individual
applications can be automatically derived from the models and
be used to create and configure an adapted network stack for
individual nodes. Nevertheless, the benefits of the proposed
communication stack can also be exploited in non model-based
environments, e.g. by using configuration files to specify the
communication requirements of individual nodes.

To support the optional modules in the Abstract Network
Layer, some additional information has to be added to the
message header. Figure 5(a) shows the corresponding message
format. The first two byte of the message header contain
a bitfield that denotes which modules should process the
message. After these bytes, the optional modules can add
module specific information to the message header, e.g., a
sequence number for reliable message transfers.

The corresponding message handling code is shown in
Figure 5(b). During code generation, a conditional code block,
denoted with gray boxes in the figure, is added to the message
handling routines. At the beginning of every code block it is
checked whether the corresponding module should be executed
or not. For incoming messages on the receiver side this is
determined by the bitfield from the message header. If the
module is executed, it has to extract its module specific part
of the message header and increment a position marker that
stores the current offset in the message header. This marker
allows subsequent modules to correctly determine their header
parts. During execution, the module has the possibility to stop
the processing of the message, e.g., if an unexpected or invalid

message is detected. The code on the sender side is similar, but
the order of the modules is reversed. For every data connection
in the system, the user can specify which modules should be
used. This information is passed as bitfield to the message
handling code on the sender side to trigger the conditional
execution of the modules. If a module changed the message,
typically by adding information to the message header, it also
sets its module bit in the bitfield of the message header in order
to trigger the execution of the module on the receiver side. If
no action is taken by the module it may leave the message
unchanged (e.g. a fragmentation module can take no action if
the message size is small enough to fit in a transport package).
Note that the activation of the modules on the sender side can
be configured in a fine-grained per-connection basis, i.e., not
every data sent by a node has to use all modules present at the
node. This allows supporting different kinds of connections,
e.g., reliable and non-reliable connections, on a single node.

VI. IMPLEMENTATION

We have implemented the network stack for ZigBee based
motes and PCs. We implemented some basic modules to
demonstrate the feasibility of the modularization. Some of the
modules are very simple and should be seen as a technological
demonstration, modules used in a productive environment will
most likely be more complex. The supported modules are:

Reliability Module: the Reliability Module supports a
simple per-packet reliable transport mechanism. Outgoing
packets are assigned with a unique sequence number and
stored at the sender. The receiver submits an acknowledgement
for every received packet. The next packet of the stream is sent
after the acknowledgement of the previous packet is received.
If the acknowledgement is not received in a configurable
period of time, the packet is treated as lost and resubmitted
by the sender.

Fragmentation Module: the Fragmentation Module is
required if the underlying network protocol is packet based
and a payload that exceeds the packet’s capacity should
be transmitted. The Fragmentation Module will break the
message into pieces that fit into the network packets and
reassemble the original payload at the receiver.

Encryption Module: providing secure communication
and authentication mechanism for embedded networks is an
open research area. The resource constraints on the devices
often prohibit the use of public key infrastructures and asym-
metric encryption algorithms known from other distributed
systems. Often it is impossible to store long cryptographic
keys on the nodes or perform complex calculation required
by algorithms such as RSA. The Encryption Module should
be seen as a demonstration of how encryption support can be
added to the network stack, once a suitable mechanisms has
been developed. It supports a simple stream cipher and is based
on the assumption that a symmetric key pair is installed on
each node and a trusted coordinator in the network. The coor-
dinator authenticates new nodes through a challenge response
mechanism and generates session keys for the communication
between nodes in the network.

| Power upply

eh

Refrigerator

Smart Home Demonstrator

Fig. 6.

Based on the eSOA platform and the communication layer
described in the previous sections, we developed a demon-
strator, which covers a future home automation scenario. The
assembling of our demonstrator is shown in Figure 6. We
assume that in the near future energy providers use dynami-
cally changing energy prices in order to influence the overall
energy consumption in a way that smoothes load peaks. We
further assume that some kind of power storage system, such
as the battery of an electric car, is present in future homes. We
implemented the following scenario: a household comprising
a battery and loads (a refrigerator and 2 lights) with different
power consumption and energy saving options. One task of the
automation logic is to minimize the energy costs throughout
the day. If prices are cheap, the battery is charged and the
refrigerator cools down to a lower threshold. If prices are high,
the house is disconnected from the power grid and draws its
energy from the battery. Additionally, the refrigerator is put
to energy saving mode, i.e., it stops cooling until an upper
temperature threshold is reached.

The demonstrator comprises three different networks: an
IP network comprising the laptop (attached via W-LAN), the
Phone (attached via Ethernet) and a modified FritzBox that
acts as a bridge to the embedded network. The second network
is the RS-232 connection between the FritzBox and a mote,
and the third network is the ZigBee based communication
between the different motes. Due to the bridging support
provided by our communication layer, services running on the
PC and the FritzBox (which are running a Java based version
of the middleware) are able to seamlessly communicate with
services running on the motes (using a nesC version of the
middleware). An example of such a communication is the
monitoring application running on the Laptop that shows the
temperature of the fridge and the state of the lights. Another
example is the re-configuration of service parameters, like the
temperature thresholds of the fridge, which can be performed
at the Phone shown in the bottom left part of the figure.

VII. RELATED WORK

The goal of creating a converged communication architec-
ture supporting different protocols is also persued by other
projects. The Sensor Network Protocol (SP) [11][12] is in-
tended to provide a “narrow waist”, i.e., an anchor point
around which the rest of the architecture evolves, just like the

IP protocol does for the Internet. In the case of SP, this anchor
is a best-effort single-hop broadcast communication primitive.

Based on SP, the authors of [13] propose a modular net-
work layer. Based on a decomposition of monolithic protocol
implementations into small interoperating modules, this layer
provides a higher re-usability of code and eases the implemen-
tation of new protocols.

The Rime[14] network stack extends the best-effort single-
hop broadcast communication primitive known from SP with
additional more complex primitives. The stack supports dif-
ferent link-layer protocols through a header transformation
module and allows cross-layer information exchange through
message attributes which are passed on to the different layers
of the Rime stack.

The above mentioned projects and the communication layer
presented in this paper, aim at overcoming the difficulties
introduced by the multitude of different communication proto-
cols encountered in embedded networks. However, this is done
at different levels. The projects mentioned in this section target
wireless sensor networks and are intended to unify and ease
the development of communication protocols optimized for
individual application fields. This approach is promising for a
well defined hardware environment, such as the WSNs used
in these projects. In contrast to this, the communication layer
presented in this paper is targeted at heterogeneous networks
comprising fundamentally different subnets, such as Ethernet
links, bus-systems, wireless networks, etc. It is very unlikely
that a single unified communication protocol can be found
that can be implemented efficiently for every single subnet.
As a consequence an abstraction layer, like the one proposed
in this paper, is required that allows a seamless and efficient
communication across these networks.

Despite these differences, there are a lot of synergies
between the WSN oriented approaches and the higher-level
abstraction layer proposed in this paper. First, our abstraction
layer can benefit from the cross-layer information provided
by the Rime network stack. Second, we can benefit from
the diversity of network protocols provided for WSNs, al-
lowing a developer to choose the most suitable protocol. A
promising vision for future embedded network communication
architecture is a combination of all approaches in order to
create a communication layer that autonomously adapts to
the applications running in the network. At the beginning,
this network uses a simple communication paradigm like
the one provided by SP to facilitate communication between
nodes. If new applications and new constraints, e.g., reliability
requirements, have to be supported by the system, these are
at a first step provided by additional modules installed on
the corresponding nodes. Depending on these constraints, an
optimization component can decide whether it is beneficial
to change the communication paradigm and as a consequence
de-install some of the modules which provide functionality re-
dundantly available by the new paradigm. These optimizations
do not have to be restricted to single protocols, but could also
span the simultaneous use of multiple protocols optimized for
different application classes. As an ultimate vision, one could

imagine the automatic creation of tailored communication
protocols based on the application requirements. The abstract
network layer would then act as a bridging component between
the protocols in the individual subnets and provide support for
end-to-end guarantees over heterogeneous subnets, e.g., end-
to-end reliable transport from a subnet with reliable transport
to a subnet without reliable transport mechanisms.

VIII. SUMMARY AND ONGOING WORK

In this paper, we proposed a communication architecture
based on a modular design. It allows leveraging existing
communication protocols and provides a unified addressing
scheme and a seamless communication over heterogeneous
networks. The proposed architecture can be adapted to the
requirements imposed by different applications and the capa-
bilities of the underlying hardware leading to an efficient and
scalable solution that is suitable for a broad range of devices.
We showed the feasibility of the approach for a demonstrator
in a home automation scenario comprising several different
networks.

We are currently investigating how a model-based develop-
ment paradigm and a specification of application requirements
can be used to create self-tuning embedded networks that adapt
their communication layer to the requirements, especially
timing constraints, of the running applications.

REFERENCES

[1] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB: An
Acquisitional Query Processing System for Sensor Networks,” TODS,
vol. 30, no. 1, 2005.

[2] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query
Processing in Sensor Networks,” SIGMOD Rec., vol. 31, no. 3, 2002.

[3] A. Scholz, C. Buckl, S. Sommer, A. Kemper, A. Knoll, J. Heuer,
and A. Schmitt, “eSOA - service oriented architectures adapted for
embedded networks,” in INDIN’09, 2009.

[4] Devices Profile for Web Services,
ws/2006/02/devprof/devicesprofile.pdf.”

[5] F. Jammes and H. Smit, “Service-oriented Paradigms in Industrial
Automation,” in [EEE Transactions on Industrial Informatics, vol. 1,
2005, pp. 62-70.

[6] L. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and
D. Savio, “SOCRADES: A Web Service Based Shop Floor Integration
Infrastructure,” 107°08, 2008.

[71 M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Szti-
panovits, “OASiS: A Programming Framework for Service-Oriented
Sensor Networks,” in COMSWARE’06, 2007.

[8] MORE - Network-centric Middleware for Group communication

and Resource Sharing across Heterogeneous Embedded Systems,

“http://www.ist-more.org/.”

P. Costa, G. Coulson, C. Mascolo, G. P. Piccoand, and S. Zachari-

adis, “The RUNES Middleware: A Reconfigurable Component-based

Approach to Networked Embedded Systems,” in PIMRC’05, 2005.

C. Buckl, S. Sommer, A. Scholz, A. Knoll, and A. Kemper, “Generating

a Tailored Middleware for Wireless Sensor Network Applications,”

SUTC, 2008.

[11] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica,

“A unifying link abstraction for wireless sensor networks,” in SenSys

’05:, 2005.

D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre,

S. Shenker, 1. Stoica, G. Tolle, and J. Zhao, “Towards a sensor network

architecture: lowering the waistline,” in HOTOS 05.

C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler,

S. Shenker, and I. Stoica, “A modular network layer for sensornets,”

USENIX OSDI, 2006.

A. Dunkels, F. Osterlind, and Z. He, “An adaptive communication

architecture for wireless sensor networks,” in SenSys '07, 2007.

“http://specs.xmlsoap.org/

[9

—

(10]

[12]

[13]

[14]

