
This is a preprint of a paper intended for publication in a journal or 
proceedings. Since changes may be made before publication, this 
preprint should not be cited or reproduced without permission of the 
author. This document was prepared as an account of work 
sponsored by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, or any of 
their employees, makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for any third party’s use, 
or the results of such use, of any information, apparatus, product or 
process disclosed in this report, or represents that its use by such 
third party would not infringe privately owned rights. The views 
expressed in this paper are not necessarily those of the United 
States Government or the sponsoring agency. 

INL/CON-09-15944
PREPRINT

Neural Network 
Approach to Locating 
Cryptography in Object 
Code

Emerging Technologies and Factory 
Automation

Jason L. Wright 
Milos Manic 

September 2009 



Neural Network Approach to Locating
Cryptography in Object Code

Jason L. Wright
Idaho National Laboratory

2525 Freemont Avenue
Idaho Falls, ID 83415, USA

jlwright@ieee.org
jason.wright@inl.gov

Milos Manic
Department of Computer Science
University of Idaho at Idaho Falls
1776 Science Center Dr., Ste. 306

Idaho Falls, ID 83402, USA
misko@ieee.org

Abstract—Finding and identifying cryptography is a growing
concern in the malware analysis community. In this paper,
artificial neural networks are used to classify functional blocks
from a disassembled program as being either cryptography
related or not. The resulting system, referred to as NNLC (Neural
Net for Locating Cryptography) is presented and results of
applying this system to various libraries are described.

Index Terms—cryptography, neural networks.

I. INTRODUCTION

Finding and identifying cryptography is a growing concern
in the malware analysis community. The current state of the art
is to locate the cryptographic routines manually and identify
them based on the constants used by specific algorithms[1].
The Neural Net for Locating Cryptography (NNLC) system
described in this paper examines the instructions or opcodes
that make up each function in a given binary and and deter-
mines the likelihood that the function contains cryptography.
NNLC uses the classification power of artificial neural net-
works to accomplish this goal.

A. Background

This work was inspired by two pieces of previous work:
findcrypt[2]/findcrypt2[1] and the compromise of the Mifare
smartcards[3]. findcrypt and findcrypt2 locate various con-
stants used in the initialization of cryptographic algorithms and
further provide identification of the specific algorithm. This
work differs because it examines the instructions that make
up the algorithm and not the data it uses (for initialization or
otherwise).

The crack of the Mifare smartcards[3] involved reverse
engineering the hardware by examining the distribution of
logic gates. The authors looked for the properties of cryp-
tographic algorithms that make them stand out from normal
functionality. Specifically, the authors looked for a high density
of XOR gates in a given area of the chip. They also looked

This manuscript has been authored by Battelle Energy Alliance, LLC under
Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a
nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for United
States Government purposes.

for blocks of gates that were strongly interconnected, but
where the functional block itself was loosely connected to
the rest of the chip. In other words, the authors were looking
for the pipelining components (strong interconnection) of the
cryptographic algorithm, and its inputs and outputs (loose
coupling to the rest of the chip).

Other works have attempted to classify files. In [4], n-grams
of bytes are used to determine the type of a file (document,
spreadsheet, etc.). In [5] and [6], opcodes of executable
files were analyzed to determine whether the executable was
malware. Both of these works used various analysis techniques
(Bayes, frequency analysis, etc.) in an attempt to determine if
the distribution of opcodes differs substantially in malware
from that of a normal executable file. NNLC differs primarily
in the fact that it uses opcode frequency analysis in an effort
to determine whether an individual function within a binary is
cryptographic, not whether the program as a whole is malware.

In [7], simplistic frequency analysis was used to make a
similar judgment. In this case, the classification of individual
functions was examined to determine whether the function
was cryptographic in nature. The simplistic nature of the
classification algorithm was limited in flexibility and was
expert driven instead of relying on computational intelligence.

B. Paper Organization

The rest of this paper is organized as follows. Section II
describes the primary application of this solution and the
motivation for the research. Section III describes the general
method used for the solution, and Section IV provides the
detailed solution to the problem. Results of tests are given in
Section V, and Section VI provides the conclusion.

II. PROBLEM STATEMENT

It is not uncommon for a piece of malware to em-
ploy encryption techniques in its communications. In par-
ticular botnets employ encryption to help conceal their
communications[8], [9]. When analyzing malware, a re-
searcher must determine which function is performing the
encryption and then determine which particular algorithm is
in use.



The goal of this work is primarily in classifying whether
a function is cryptographic in nature or not, and providing
a method of quick location of the most cryptographic-like
functions found when examining a given binary. To do so, a
neural network is used because of its suitability to supervised
learning when a training set can be defined in advance.

III. METHOD

For NNLC, a neural network is trained with Error Back
Propagation (EBP)[10], [11]. A hyperbolic tangent activation
function is used for each of its neurons, and this results in
two variables to be adjusted when training the network: the
learning constant (α) and the gain of the hyperbolic tangent
(k). The learning constant affects the speed at which the
network learns. The gain of the hyperbolic tangent affects the
decision boundary, allowing for a smoother transition from
positive to negative decisions.

The architecture of the neural network also has great influ-
ence over the correctness of the solution. The inputs (feature
extraction), number of layers, number of neurons in each layer,
and outputs are all a part of the architecture of the network.

Also for a neural network solution, an appropriate set of
training data must be available. This data is used to generate
the various weights used by the network. For this work, the
C library from the OpenBSD operating system was used.
This version of the C library includes several cryptographic
functions: SHA1, MD5, RMD160, DES, SKIPJACK, RJIN-
DAEL (AES), and BLOWFISH. These functions were used to
positively train the network, and the rest of the C library was
used to negatively train the network. Additionally, a selection
of algorithms from [12] were used (TEA, IDEA, GOST, RC5,
and LUCIFER) in training the network.

To test the algorithm, various optimization levels of the C
compiler were used to recompile the C library. Optimization
level should have little effect on the results if the neural
network is trained appropriately. Also, the network was applied
to the OpenSSL library to see how it classifies the algorithms
found therein. The results of these tests are given in Section V.

IV. ANN APPROACH TO LOCATING CRYPTOGRAPHY

For NNLC, the inputs to the artificial neural network
(ANN) are the total number of instructions with the following
opcodes: XOR (exclusive or), SHL (logical shift right), SHL
(logical shift left), ROR (rotate right), and ROL (rotate left).
Additionally, the densities of these instructions are applied to
five more inputs. Density is defined here as the number of the
specific opcodes divided by the total number of opcodes in
the function.

Various architectures were tried for the neural network. The
architecture that yielded the lowest total error consisted of
10 input neurons, 5 neurons in a single hidden layer, and a
single output neuron. The inputs are shown in Table I; there are
two inputs for each type of instruction: total (σ) and density
(ρ). Additional layers increased the total error. The number of
hidden-layer neurons was kept purposefully low to avoid over-
specializing the network. The goal is not to identify particular

Input Description
σXOR Exclusive Or
ρXOR
σROR Rotate right
ρROR
σROL Rotate left
ρROL
σSHR Shift logical right
ρSHR
σSHL Shift logical left
ρSHL

TABLE I
NNLC NEURAL NETWORK ARCHITECTURE

implementations of the specific algorithms, but to keep the
network general enough to spot unknown implementations of
known algorithms or even unknown algorithms.

Bipolar neurons are used with a hyperbolic tangent activa-
tion function. The output neuron reports a value o ∈ (−1, 1).
Values close to 1 are considered to be cryptography related
and values close to -1 are not.

The network was generated with random weights on each
neuron, and error back propagation was used to train the
network. Each function in the default C library was assigned
a target output value (o, above) where 1 is a cryptography
function and -1 is not. One hundred iterations of the training
set was used with a hyperbolic tangent gain of k = 0.2 and a
learning constant, α = 0.5.

The particular instructions chosen are often used in modern
cryptography. The shift and rotate instructions are commonly
used to perform the diffusion part of the confusion and
diffusion used in modern cryptography. XOR is typically part
of the confusion.

V. TEST RESULTS

Several tests of the NNLC system were performed. Sec-
tion V-A gives the result of training the network on the C
library. Section V-B examines the effect of compiler opti-
mization on the accuracy of the NNLC system, and finally
Section V-C gives the results of running NNLC against a
completely independent library.

A. Default C Library

The OpenBSD C library in version 4.4 consists of 2076
functions, everything from printf() to gethostbyaddr(). Of
those, 22 are cryptography functions, implementations of
SHA1, SHA2 (SHA256 and SHA512), RMD160, MD4, MD5,
SKIPJACK, BLOWFISH, CAST, and DES. In addition to
the OpenBSD C library, implementations of the TEA, IDEA,
GOST, RC5, and LUCIFER algorithms were used to train the
network. The compiler used was GCC version 3.

Total error is the sum of the desired output and the computed
output of the network as in Equation 1. In the equation, i runs
through the output of each of the n test cases.

TE =
n∑

i=1

(dn − on)2 (1)



When computed this way, the minimum total error achieved
for the artificial neural network is TE = 60.92. Put another
way, 18 functions are misclassified. Eight functions are clas-
sified as cryptography but are not (false positive) and nine are
not classified as cryptography but are (false negative).

The false positive functions are:
• abs-0x38()
• div-0x3a()
• htonl-0x3a()
• htons-0x3a()
• labs-0x3a()
• ldiv-0x3a()
• ntohl-0x3a()
• ntohs-0x3a()

These functions are short a contain a large number of XOR
opcodes. Therefore the density of XOR opcodes in these
functions is very high. All of these functions are optimized
versions of their respective functionality and perform bitwise
operations.

The following functions are correctly identified as cryptog-
raphy:

• Blowfish_decipher()
• Blowfish_encipher()
• cast_decrypt()
• cast_encrypt()
• cast_setkey()
• MD4Transform()
• MD5Transform()
• RMD160Transform()
• SHA1Transform()
• SHA256_Transform()
• SHA512_Transform()
• skipjack_backwards()
• skipjack_forwards()

A common factor in each of these algorithms is that they are
all Feistel networks (a cipher that is iterated over an internal
round function). A Feistel network is a subset of product
ciphers where each round consists of simple transformations
such as substitution, permutation, and modular arithmetic[13].
XOR is a modular arithmetic operator, shift and rotate instruc-
tions are commonly used in permutation operations.

In Figure 1, the classification success of NNLC is depicted.
The samples are ordered along the horizontal axis by their
output values and plotted on the vertical axis by their absolute
output value. Only the false positive, false negative, and
correctly identified cryptography points are displayed. What
this shows is that there is one outlier cryptographic algorithm
and the false positive algorithms generally classify between
this outlier and the cluster of correctly identified algorithms.
The false negative classifications cluster very close to non-
cryptography.

Table II summarizes the results in a different way. The total
percentages for false possible and negative are given. It shows
that out of the 2076 functions in the C library, 99.13 are
classified correctly as either being cryptography or not.

Fig. 1. Classification visualization

Total Functions 2076
Correct classification 2058 99.13%
False negative 8 0.39%
False positive 10 0.48%

TABLE II
OPTIMIZATION EFFECT ON TOTAL ERROR

B. Effect of Optimization

As a comparison, the trained network was used on a
recompiled C library with various optimization levels. Table III
shows the total error versus the optimization level of the
compiler used. O0 is a way of specifying that the compiler
attempt no optimization, and O3 specifies all optimizations be
considered. Generally speaking, the transition from O0 to O3
additively enables further optimization.

Of particular note from the table is that the total error for
optimization level 3 is much lower than that of the other levels.
Only 10 functions are misclassified (2 false negative, 8 false
positive). This is probably related to loop-unrolling and other
optimizations allowed at this level.

Also, the percentage of correctly classified functions does
not change drastically. It remains above 99% for all opti-
mization levels. This lends some weight to the validity of the
approach used in NNLC.

Opt. Level TE False Pos. False Neg. Correct
-O0 60.68 8 / 0.39% 11 / 0.53% 2057 / 99.03%
-O1 60.90 8 / 0.39% 10 / 0.48% 2058 / 99.13%
-O2 60.92 8 / 0.39% 10 / 0.48% 2058 / 99.13%
-O3 30.17 8 / 0.39% 2 / 0.10% 2066 / 99.51%

TABLE III
OPTIMIZATION EFFECT ON TOTAL ERROR



C. OpenSSL library

The trained network was also run on the OpenSSL library
from the OpenBSD 4.4 reference machine. This library has
many cryptographic functions and most of the implementa-
tions are independent of the versions in the C library. The
network correctly classifies: MD5, AES, SHA1, DES, ACSS,
RMD160, MD4, CAST, and BLOWFISH.

The library also contains Ecliptic Curve Cryptography al-
gorithms and public key algorithms (RSA, DSA, etc.). These
algorithms are not identified and the reason for this is that they
are simple operations (like modular exponentiation) performed
on large (512 bits or greater) numbers. It may be possible
to identify the micro operations (big number, modular arith-
metic), but classifying the macro operation (RSA) would be
difficult from the information considered by NNLC.

VI. CONCLUSION

An artificial neural network for classifying algorithms as
being cryptographic in nature or not is presented. The network
takes advantage of error back propagation to train a network
to differentiate cryptography algorithms from other functions.
The primary use for such a tool is in malware analysis where
a researcher must locate the cryptography used by a particular
sample in order to begin the process of identification.

The primary direction for future work is to decrease the total
error (increase the correctness of classification). It is believed
that more vectors can be used in this capacity. In particular,
the use of jump instructions is not common in the functions
that are currently misclassified. Also, floating point operations
should be considered as a negative indicator. Cryptography
requires bit-for-bit symmetry on encryption and decryption and
this is not guaranteed with floating point operations across
processor architectures.

The current implementation of NNLC is targeted at the Intel
IA32 instruction set. Initial testing on the SPARC version 9
architecture have proved promising. This leads the authors to
believe that NNLC could be applied to other architectures with
minimal modification. Also, the tests so far have been done

with GNU Compiler Collection (GCC), but results from other
compilers need to be included.

Finally, the EBP training method used was chosen primarily
for its ease of implementation in this initial research. Training
the network was rather slow (order of 10 minutes per archi-
tecture tried). Other training methods like hypersonic training,
Levenberg-Marquardt, etc. and the resulting networks will be
compared in the future.

REFERENCES

[1] I. Guilfanov, “FindCrypt2,” February 2006, http://hexblog.com/2006/02/
findcrypt2.html.

[2] ——, “FindCrypt,” January 2006, http://hexblog.com/2006/01/findcrypt.
html.

[3] K. Nohl, D. Evans, Starbug, and H. Plötz, “Reverse-engineering a
cryptographic RFID tag,” in USENIX Security Symposium, July 2008,
pp. 185–194.

[4] W.-J. Li, K. Wang, S. J. Stolfo, and B. Herzog, “Fileprints: Identifying
file types by n-gram analysis,” in IEEE Workshop on Information
Assurance, USMA, West Point, NY, June 2005.

[5] D. Bilar, “Opcodes as predictor for malware,” International Journal of
Electronic Security and Digital Forensics, vol. 1, no. 2, pp. 156–168,
2007.

[6] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev,
and Y. Elovici, “Unknown malcode detection using opcode representa-
tion,” in Proceedings of the 1st European Conference on Intelligence
and Security Informatics EuroISI. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 204–215.

[7] J. L. Wright, “Finding cryptography in object code,” in Security Edu-
cation Conference Toronto (SecTOR), October 2008.

[8] J. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon, “Peer-
to-peer botnets: overview and case study,” in HotBots’07: Proceedings of
the first conference on First Workshop on Hot Topics in Understanding
Botnets. Berkeley, CA, USA: USENIX Association, 2007, pp. 1–1.

[9] K. Chiang and L. Lloyd, “A case study of the rustock rootkit and
spam bot,” in HotBots’07: Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets. Berkeley, CA,
USA: USENIX Association, 2007, pp. 10–10.

[10] D. E. Rumelhart and J. L. McClelland, Parallel distributed processing:
explorations in the microstructure of cognition. Cambridge, MA: MIT
Press, 1986, vol. 1.

[11] P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. Wiley-Interscience,
January 1994.

[12] B. Schneier, Applied Cryptography. John Wiley and Sons, 1996.
[13] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography, 5th ed. CRC Press, August 2001.


