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Abstract 

It is a great challenge to obtain an efficient algorithm 
for global optimisation of nonlinear, nonconvex and high 
dimensional objective functions. This paper shows how 
the combination of DIRECT and Nelder-Mead 
algorithms can improve the efficiency in the parameter 
tuning of a sheet-metal press line. A combined 
optimisation algorithm is proposed that determines and 
utilises all local optimal points from DIRECT algorithm 
as Nelder-Mead starting points. To reduce the total 
optimisation time, all Nelder-Mead optimisations can be 
executed in parallel. Additionally, a Collision Inspection 
Method is implemented in the simulation model to 
reduce the evaluation time. Altogether, this results in an 
industrially useful parameter tuning method. 
Improvements of an increased production rate of 7% and 
40% smoother robot motions have been achieved. 

1. Introduction 

A sheet-metal press line is a complex industrial 
automated manufacturing system that is manoeuvred by 
tuning of control parameters, e.g. times, positions, 
velocities and paths. It is a very complicated and time 
consuming task to find the control parameter set which 
gives the best production performance, i.e. the global 
optimum. Furthermore, due to changed circumstances, 
e.g. increased demands, increased cost, and less labours, 
the desirable production performance is from time to 
time modified, in form of different and/or combined 
targets, e.g. high production rate, soft motions, low wear, 
and low energy consumption. 

The complexity in parameter tuning is due to the 
highly non-linear objective functions with multiple local 
optima and the considerable number of tuning 
parameters. In the test case presented in this work the 
number of control parameters is reduced to ten in each of 
totally five press stations. Hence, due to the multiple 
local optima, there exist several parameter sets that will 
result in increased production performance of the press 
line, without reaching the global optima. The challenge 

is then; to determine a suitable optimisation algorithm 
that finds a control parameter set which, within a time 
limit constraint, improves the production performance as 
much as possible. 

In complex applications, such as sheet-metal press 
lines, it is hard to find one single algorithm that, within 
reasonable time, handles both the global search and the 
local convergence. In order to tune a sheet-metal press 
line, Svensson et al. [1] have implemented and evaluated 
the two different optimisation algorithms, DIRECT [2] 
and Nelder-Mead [3]. Both algorithms presented 
acceptable results, but each with its disadvantage. The 
DIRECT algorithm has a very slow convergence, i.e. it 
requires many evaluations for acceptable results. The 
Nelder-Mead algorithm is highly dependent on the 
choice of starting point, i.e. in reality a “good guess” 
based on knowledge of where to start searching.  One 
approach to face the challenge to determine a suitable 
algorithm is to combine two algorithms with different 
properties [4]. In this work a new combination of 
DIRECT and Nelder-Mead is suggested and evaluated 
for a sheet metal press line. 

Due to the fact that an optimisation algorithm requires 
a considerable number of evaluations, the time of each 
evaluation is essential. To reduce the evaluation time, a 
new Collision Inspection Method, CIM [5], is introduced 
to reach a reasonable total optimisation time. CIM is 
designed to in advance identify possible collision points 
that could occur in the simulation. Then, in each 
evaluation, a simplified and fast collision detection 
algorithm is executed.  

2. Sheet-metal press line 

In this work the sheet-metal press line 53 at Volvo 
Cars in Gothenburg, Sweden, has been used as a case 
study, see Figure 1. This actual press line has five press 
stations and in-between these there are four combined 
feeders/extractors (two axis robots) and four 
intermediate stations for moving and rotating 
components both vertically and horizontally (three axis 
manipulators). An additional feeder/extractor (two axis 



robot) and a conveyor are located before the first press 
station, and after the final press station. Furthermore, 
there are numerous digital and analogue sensors, 
actuators, push-buttons, indicators, etc. in the press line. 
Five identical PLCs work together and control the entire 
press line, handling discrete events, continuous 
feedbacks, motions, supervisory and safety control. 
There is in total more than 2000 in- and outputs, 90 
control parameters, 25 servo axis, and 10 robot paths in 
this automated sheet-metal press line. And, in addition, 
more than 100 000 lines of control code in the PLCs.  

 

Figure 1. Sheet-metal press line. 

Today the press line is mainly optimised by tuning of 
one robot path and ten control parameters in each of the 
five press stations. The remaining paths and parameters 
are also of importance but have minor influence in the 
final tuning. However, the parameter tuning is a 
complicated task, due to five individual control systems 
with interlocking signals in between. Even if these 
control systems are individual, they are strongly 
dependent on each other. Furthermore, the complexity 
increases significantly when considering that the 
extractor in one press station is physically the same robot 
as the feeder in the next press station. 

To be able to optimise such a complex automated 
manufacturing system a model was created in a previous 
work [6]. The model is based on a synchronised 
hardware-in-the-loop, SHIL, method. A successful 
implementation and validation of the sheet-metal press 
line 53 SHIL model is also presented in [6]. In this work 
the SHIL model is used without any further development 
as the response function. 

3. Press line parameter tuning method 

The off-line parameter tuning method described in 
Svensson [7] has been used in this work, see Figure 2. 
To summarise, all sheet-metal press line control 
parameters pj that are to be tuned, e.g. times, positions, 
velocities, paths, etc. are gathered in a parameter vector  

 [ ]nppp …21=p  (1) 

and subject to the constraint p ∈ Qp ⊆ Rn consisting of 
tuning process parameter limitations of the form  

 max,min, jjj ppp ≤≤  (2) 

where pj,max and pj,min are upper and lower parameter limits 
for each separate parameter pj to be tuned. The number 
of press line control parameters used in this work is 
n=10. 

The process optimiser initialises and starts one 
evaluation of the sheet-metal press line model in the 
SHIL simulation, with a defined initial parameter vector 
p(1). The evaluation in the SHIL simulation yields the 
response h(p). From received h(p) the process optimiser 
calculates individual production performance values  
gi = gi(h(p)). Based on the given objective function f the 
optimisation algorithm then calculates the next 
parameter vector p(2) to be evaluated in the press line 
model. This iterative procedure is then repeated over 
again until a given number of evaluations m is reached 
and the resulting optimally tuned process parameters in 
p* are established. 

The objective function f has to be varied in order to 
reach different and/or combined industrial targets. The 
press line objective function constitutes an input to the 
process optimiser and is defined as 

 ))(())(())(()( 332211 pppp hgchgchgcf ++=  (3) 

where ci • 0 are weight values to be chosen to represent a 
suitable combination of the production performances  
gi • 0. The same production performances are used in this 
work as in previous case study of comparison reasons, 
i.e.  
g1 = production rate, number of sheet-metals per time; 
g2 = robot smooth motion, sheet-metal in gripper; and 
g3 = robot smooth motion, empty gripper. 

4. Optimisation algorithms 

Two different kinds of well-known and well-used 
global direct search optimisation algorithms are 
suggested, implemented and evaluated by Svensson et al. 
[1] in the press line parameter tuning method. The 
DIRECT algorithm as presented by Jones et al. [2] and 
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Figure 2. Off-line parameter tuning method. 



the simplex direct search algorithm, proposed by Nelder 
and Mead [3]. 

4.1. DIRECT algorithm 
The DIRECT algorithm is designed in order to solve 

complex global optimisation problems using only 
objective function values [2]. The algorithm is a kind of 
Lipschitz optimisation, where the maximal derivative of 
the objective function is limited by a constant, discussed 
by Horst et al. [8]. In the DIRECT algorithm the need to 
specify this Lipschitz constant is however eliminated, 
Jones et al. introduce a different way of looking at the 
Lipschitz constant. One of the DIRECT algorithm’s 
benefits is its needless of start values and its search in 
the entire parameters space, only limited by the 
parameters max and min. 

The name DIRECT comes from the shortening of the 
phrase "DIviding RECTangles" and this is pretty 
indicative of how the algorithm works. Initially the 
DIRECT algorithm normalizes the entire search space 
into a unit hypercube, and determines the objective 
function at the centre point. In the first iteration the 
hypercube is divided into hyper-rectangles, i.e. trisected 
in every parameter direction, and all new centre points 
are evaluated. In subsequent iterations, the DIRECT 
algorithm balances the global and local searches by 
identifying potential optimal hyper-rectangles, based 
upon not only the value of the objective function at the 
centre but also the size of the hyper-rectangle. All 
potentially optimal hyper-rectangles are then divided 
into smaller hyper-rectangles and their centre points are 
evaluated. The DIRECT algorithm is guaranteed to 
converge to the global optimal function value, if the 
objective function is continuous or at least continuous in 
the neighbourhood of the global optimum.  

The main weakness of the algorithm is the need of a 
very high number of evaluations. The DIRECT 
algorithm finds interesting areas rather quickly but has a 
very slow convergence close to the optimum points. This 
is a common behaviour of Lipschitz optimisation 
algorithms, as was pointed out by Hansen, et al. [9]. This 
weakness was also confirmed in previous 
implementation and evaluation of the DIRECT algorithm 
in the press line parameter tuning [1]. Another serious 
shortcoming of the DIRECT algorithm is the lack of an 
obvious stopping criterion, which also was evident in 
previous case study. Gablonsky [10] summarises the 
most frequently used DIRECT algorithm stopping 
criteria in the following order: 
a) number of iterations or function evaluations,  
b) function value close to the global minimum (only 
applicable if the global minimum is known), and 
c) size of the (smallest) hyper rectangle (several 
definitions exist). 

However, the DIRECT algorithm is well-used as 
method for global optimisation problems, assuming short 
evaluation times. For instance, in the optimisation 
platform Tomlab [11], the global optimisation routines 

glbDirect, glbFast and glbSolve are 
implementations of the DIRECT algorithm. 

4.2. Nelder-Mead algorithm 
The Nelder-Mead simplex algorithm is a classical 

widely accepted optimisation algorithm handling non-
linear objective functions and making no use of the 
objective function derivates [3]. Wright [12] stresses that 
one of the benefits of the Nelder-Mead algorithm is its 
low number of required evaluations, which is of 
importance when each evaluation is time consuming. In 
previous case study with the press line parameter tuning 
method, the Nelder-Mead algorithm proved its 
effectiveness on convergence, i.e. need of few 
evaluations. Another important benefit is its ease to 
implement and expand into many parameters.  

A simplex is a geometrical figure consisting, in n 
dimensions, of (n+1) points. If any point of a simplex is 
taken as the origin, the n other points define vector 
directions which span the n-dimension vector space. A 
simplex in two dimensions is a triangle; a simplex in 
three dimensions is a tetrahedron. Through a sequence of 
elementary geometric transformations (expansion, 
reflection, contraction, and multi-contraction), the initial 
simplex moves, expands or contracts. Expansion is 
enlarging the particular search area. By reflection, a new 
point located on the other side of the worst point against 
the centroid of the remaining points is generated. 
Contraction is to select the point halfway between the 
worst point and the centroid. Multi-contraction is the 
opposite of expansion, and is used when the optimum is 
surrounded by the simplex.  For determining the 
appropriate transformation, the method uses only the 
values of the objective function at the considered points. 
After each transformation, the current worst point is 
replaced by a better one. This is repeated until the 
difference in the objective function values of the worst 
and best points is less than a specified tolerance; or the 
simplex has decreased to a single point. By this the 
simplex adapts itself to the objective function landscape 
and finally finds the optimum. At each step it is checked 
that the new generated point is not outside the allowed 
solution space.  

The weakness of the Nelder-Mead algorithm is its 
need of a good starting point. There is a risk, dependent 
on the starting point, of the simplex ‘crawling up’ on a 
local optimum without continuing to the global one. 
Hence, it is not a real true global optimisation algorithm 
when the objective function is highly non-linear and has 
multiple local optima. The previous implementation and 
evaluation of the Nelder-Mead algorithm in the press 
line parameter tuning confirm this characteristic. 

However, the Nelder-Mead simplex algorithm is a 
very well-known and well-used method, even if it lacks 
rigorous convergence results. For instance, the 
optimisation toolbox in Matlab uses Nelder-Mead as a 
global optimiser within the function fminsearch. 



4.3. Need of combined algorithm 
It is a great challenge to obtain one algorithm for 

global optimisation of nonlinear, nonconvex and high 
dimensional objective functions. To search for a global 
optimum, it is necessary to investigate the whole search 
domain. When a promising area is found, the optimum 
within that area must be found as quickly as possible. 
Both tasks are hardly performed through only one 
algorithm. To overcome that issue, several combinations 
of one global searching and one local converging 
optimisation algorithm have been proposed in the 
literature. 

Through its excellent global behaviour the DIRECT 
algorithm offers itself as a good starting point generator 
for other, local optimisers, with fast convergence. 
Several different approaches, presented in the literature, 
have incorporated a local optimiser into DIRECT, either 
at the end of the optimisation or periodically during the 
DIRECT optimisation process, e.g. Cox et al. [13], 
Gablonsky [10], Jones [14], and Nelson and 
Papalombros [15].  

The Nelder-Mead algorithm is a well-tuned local 
optimisation algorithm with fast convergence. Hence, it 
is often used as a local optimiser in combination with 
other algorithms. Either periodically during the global 
optimisation, or utilising generated starting point from 
completed global search. Several examples are presented 
in the literature, e.g. Chelouah and Siarry [16], [17], 
Durand and Alliot [18], and Yang and Douglas [19]. 
However, to the author’s knowledge, no DIRECT and 
Nelder-Mead algorithm combination is described in the 
literature. 

5. Combined optimisation algorithm 

Based on the literature and previous case study 
results, discussed in Section 4, a combination of the 
DIRECT and the Nelder-Mead algorithms is proposed to 
obtain an efficient press line parameter tuning algorithm. 
Due to DIRECTs excellent global search qualities it 
forms an ideal starting point generator. At the end of the 
global optimisation the Nelder-Mead algorithm, proven 
to be simple and efficient, is utilised as a competent local 
optimiser. As switch-over condition the number of 
evaluations is selected. This selection is based on the fact 
of being the most common way to stop DIRECT, if not 
the global optimum value is known [10], and the 
industrial requirement of a limited, known total 
optimisation time. Moreover, not only the best found 
point from DIRECT initiates a local optimisation, as it is 
in many combined algorithms, e.g. [10] and [16]. The 
proposed optimisation algorithm, as shown in Figure 3, 
determines instead all local optima in the set of DIRECT 
evaluated points. Each of these local optima constitutes 
starting points in separate Nelder-Mead algorithms, 
possible to evaluate in parallel in order to reduce the 
total optimisation time. The proposed algorithm consists 

of four steps, namely; global search for starting points, 
selection of starting points, parallel local optimisation 
and finally determination of optimally tuned process 
parameters. 

5.1. Global search for starting points 
The combined optimisation algorithm starts searching 

globally with the DIRECT algorithm as a starting point 
generator. The DIRECT algorithm iterates until the 
predefined number of evaluations, m, are reached. The 
outcome set  

 { })()2()1( ,,, mP ppp …=  (4) 

is the set of all evaluated points (parameter vectors) p in 
the DIRECT algorithm, with corresponding objective 
function values f(p). 

5.2. Selection of starting points 

A. Divide P in lower and upper sets for each parameter 
Gather all points in P whose parameter value is less 

than the value of the same parameter in point p(i) in the 
lower set 

 { })()(
,

i
jj

i
j ppPP <∈=− p  (5) 

where pj

(i) denotes parameter j in p(i). Correspondingly the 
upper set 

 { })()(
,

i
jj

i
j ppPP >∈=+ p  (6) 

is defined. Note that if pj

(i) is equal or close to its lower or 
upper parameter limits, pj,min or pj,max, the associated set 
might be empty. 

Nelder-
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local max f(p(i)) 

max f(q(j)*) 
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q(1)* q(2)* q(k)* 

p* 

p(i)   with i = 1 to m 

Figure 3. Proposed combined optimisation 
algorithm. 



B. Determine neighbours for each parameter 
The lower neighbour to point p(i) regarding parameter 

j is the point in the lower set with shortest Euclidean 
distance to p(i), i.e. 
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Correspondingly the upper neighbour to point p(i) 
regarding parameter j is defined 
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Observe that a lower, or upper, neighbour does not exist 
if the associated set is empty. Together all lower and 
upper neighbours for all parameters form the set 
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which constitutes the set of neighbours of point p(i) to be 
used next to figure out if p(i) appears to be a local 
optimum or not. 

C. Determine local optima 
A local optimum is defined as a point that has an 

objective function value, defined as in (3), greater or 
equal to its neighbours, defined in (9). All local optima 
in the set P, of evaluated points from the DIRECT 
algorithm, form the subset  

 { })()()( ),()( iii PffPQ ∈∀≥∈= pppp . (10) 

The set Q will at least include one point, the one with 
best found objective function value. The number of local 
optima is unpredictable and depends on the characteristic 
of the sheet-metal press line objective function. 

5.3. Parallel local optimisation 
Each local optimal point q in the set 

 { })()2()1( ,,, kQ qqq …=  (11) 

constitutes a starting point for the Nelder-Mead 
algorithm. Each point in Q can of course be evaluated in 
parallel. The outcome from each local optimisation 
becomes a locally tuned point q*. 

5.4. Determination of tuned process parameters 
All locally tuned points q* from the k Nelder-Mead 

local optimisation processes are gathered in the set 

 { }***Q k )()2()1( ,,,* qqq …=  (12) 

forming a final set of possible candidates to p*. The 
objective function values of all locally tuned points are 

compared, and the best point determines the optimally 
tuned parameter vector as 
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Note that the predefined number of evaluations, m, 
constitutes the stopping criterion for the DIRECT part of 
the combined optimisation algorithm. However, the 
Nelder-Mead stopping criterion is based on convergence, 
implying that the obtained number of Nelder-Mead 
evaluations may vary from trial to trial. Hence, the total 
number of evaluations is in forecast only an estimated 
value.  

6. Collision inspection method 

Even with the proposed new combined optimisation 
algorithm a considerable number of evaluations are 
necessary. Consequently the time for each single 
evaluation in the SHIL simulation is of importance. With 
the sheet-metal press line model implemented as in 
previous case study [1] one single evaluation requires on 
average 8 minutes. Hence, decreasing the evaluation 
time is obviously desired. The Collision Inspection 
Method, CIM, proposed by Nia et al. [5] constitutes an 
effective candidate to decrease the evaluation time. CIM 
is a collision detection method designed to identify 
possible collision points that could occur in a simulation 
in advance. CIM eliminates the need of an extensive and 
time consuming collision detection tool, e.g. RobCad in 
previous case study, and applies a simplified collision 
detection algorithm. CIM is divided in two parts; one 
pre-processing part, which is only calculated once for 
each type of component in the sheet-metal press line; 
and one executing part, which is executed in every 
evaluation. CIM is dependent on a general 
path/direction, and all solid geometry of interest must be 
sampled. Dies, press, handling equipment and sheet-
metal parts are all complex 3D objects and the transport 
of a sheet is done along a known path. These attributes 
of press lines makes them appropriate for simplification 
with CIM. 

The pre-processing part of CIM handles detecting 
collision between objects of interest. Collision points are 
stored in a chosen Tool Centre Point, TCP, and are 
compressed to a collision curve. As an example the 
movable object in Figure 4 has its TCP on the top. By 
moving the object in sampling steps of dY and dZ, 
collision points are detected on the surface of the fixed 
object. At the same time as a collision point is detected, 
the position of TCP in space is stored. The stored TCP 
points result in a collision curve. Thus with the 
consideration of small variations in the third dimension: 
Given CAD models for the movable object, the fixed 
object and minimum sampling distances dXYZ, a 
collision detection algorithm returns a vector collision 
curve including the position (xyz coordinates) of a 



chosen TCP when collision occurs between the movable 
and fixed objects. In cases where the simulation 
demands a change in the geometry of the tested CIM 
objects, new collision curves must be calculated with 
CIM. 

 

Figure 4. Illustration of the pre-processing 
part of the Collision Inspection Method. 

The calculation algorithm for CIM can be 
implemented in any program which handles CAD data. 
In this work the algorithm was implemented in Catia V5. 
The time for calculating the collision curves in the sheet-
metal press line 53 was around 1.5 hours. This time is 
dependent on the performance of the computer, and the 
collision algorithm used in the program; hence there are 
still improvement potentials in the creation of the 
collision curve. 

The benefit of using CIM is in the executing part of 
the method. It detects collisions between the movable 
object and the fixed object by an algorithm which, for 
every evaluation, checks if the TCP is above the 
collision curve in the collision free area. This part of 
CIM uses minimal computational resources since 
complex 3D objects have been reduced to a TCP and a 
collision curve. Consequently, a huge reduction in 
evaluation time will be seen.  

7. Results 

All off-line parameter tuning results in this work are 
expressed as percentage change in corresponding value 
from the on-line tuned sheet-metal press line. It is vital 
to notice that the manual on-line parameter tuning has 
been accomplished by a skilled operator. A negative sign 
on a result implies that the off-line parameter tuning has 
not succeeded to reach a better value than the on-line 
tuning. 

A parameter tuning only focused on production rate, 
i.e. with weight values c1=1.0, c2=0, and c3=0 in the 
sheet-metal press line objective function, has been 
performed. The production rate was increased 7 
percentages but with side-effect of a more jerky motion 
(i.e. non-smooth), see Table 1. These non-smooth 
motions may lead to increased wear of the equipment, 
increased energy consumption and even critical fall out 
of the sheet-metal component, which are unacceptable in 
real production. Due to that, the rest of the experiments 

were performed with a weighted combination of 
production rate and smooth motions in the objective 
function. 

Table 1. Percentage change in individual 
components of the sheet-metal press line 
objective function. 

 Production 
rate 

Smooth motion, 
plate in gripper 

Smooth motion, 
empty gripper 

Only prod rate 7.0 -71.6  -79.0  
Experiment 1 6.5 39.5  1.5  
Experiment 2 4.7 37.7  41.8  
Experiment 3 4.3 38.7  41.0  

Table 2. Combinations of weight values in 
sheet-metal press line objective function in 
respectively experiment. 

 c1 c2 c3

Experiment 1 1.0 0.1 0.1 
Experiment 2 1.0 0.3 0.2 
Experiment 3 1.0 0.4 0.2 

 
How to select the production performance weight 

values to reach different and/or combined targets, e.g. 
high production rate, soft motions, low wear, and low 
energy consumption, is an industry related economic 
task. This needs further investigation and is not 
evaluated in this work. However, to illustrate some 
industrial optimisation demands, three different 
combinations of the weight values c1, c2, and c3 in the 
sheet-metal press line objective function have been set 
up as Experiment 1, 2 and 3, see Table 2. Experiment 1 
fulfils a requirement of soft robot motions when 
handling sheet-metal components, combined with a high 
production rate. Experiment 2 corresponds to a focus on 
decreased wear of the production equipment, but still 
with an acceptable production rate. Experiment 3 is 
aimed at soft robot motions with emphasis on motions 
with sheet-metal components in the gripper. Achieved 
results in individual components of the sheet-metal press 
line objective function are summarised in Table 1.  

The DIRECT algorithm finds interesting areas rather 
quickly but has a very slow convergence close to the 
optimal points. Hence, the number of evaluations, m, 
used as stopping criterion for the DIRECT algorithm is 
vital. In the three experiments, with the combined 
optimisation algorithm, three different values of m has 
been selected, 800, 1200 and 1400 evaluations. Results 
from these nine trials, in form of percentage change in 
press line objective function, are shown in Table 3. In 
the table is also shown, as comparison, the 
corresponding results from DIRECT as a solitary 
algorithm with the stopping criterion 10 000 evaluations. 

The results, in Table 3, illustrate that the combined 
algorithm has a distinct advantage in achieving an 
improved objective function value. Even with m=800 
evaluations the objective function value is close to the 
best found. If the number of evaluations in the combined 
algorithm is extended, a better objective function value 



is reached than DIRECT algorithm solitary does not find 
even in 10 000 evaluations. In two experiments the best 
found value is reached already after m=1200 evaluations, 
in the third a slightly further increase appear for m=1400. 
If this further increase of 0.33 percentages is worth the 
time of 200 additional evaluations is an industry related 
economic question, not evaluated in this work. 

Table 3. Percentage change in objective 
function, combined optimisation algorithm 
compared with DIRECT solitary. 

 Combined 
algorithm  
m = 800 

Combined 
algorithm  
m = 1200 

Combined 
algorithm  
m = 1400 

DIRECT 
10 000 

evaluations 
Experiment 1 9.0  9.5  9.5  9.4  
Experiment 2 17.3  17.7  18.0  17.4  
Experiment 3 21.5  21.8  21.8  21.3  

 
However, the total number of evaluations in the 

combined algorithm is not only m, the local Nelder-
Mead optimisation also require evaluations. The Nelder-
Mead algorithm stopping criterion is simplex decreased 
to a single point, and accordingly number of evaluations 
is not predictable. The number of required Nelder-Mead 
evaluations in all performed trials is presented in Table 
4. Based on performed trials, the average number of 
evaluations for the local Nelder-Mead optimisation is 
154, with a variation between 113 and 224. Still, the 
total number of evaluations will not exceed m+one 
Nelder-Mead evaluations, since all local Nelder-Mead 
optimisations can be executed in parallel. 

The combined algorithms advantage of performing 
local optimising of all local optima, not only the best 
found point, is obvious in the results shown in Table 4. 
In two trials it is a local optimum, not equal to the best 
found point from DIRECT evaluations, which start the 
Nelder-Mead that reaches the optimal tuned point p*. 
Furthermore, in two other trials there is two best found 
points and only one of them lead to p* in each case. 
Only in five of nine trials there is a single best found 
point that reaches the optimal tuned point p* in the 
ending local search. This illustrates the importance of 
running multiple Nelder-Mead optimisation processes in 
the proposed combined algorithm. 

The introduced combined optimisation algorithm 
reduces the number of required evaluations. In addition 
also a reduction of the time for each evaluation is 
performed. The collision detection tool, RobCad, in the 
sheet-metal press line SHIL model from previous work 
[1], has been replaced with CIM. With this exchange a 
reduction from 8 minutes to, in average, 30 seconds per 
evaluation has been reached. Thus, an efficient and 
useful parameter tuning method for sheet-metal press 
lines is achieved. The case study tuning experiments, 
with all Nelder-Mead local optimisations in parallel and 
m=800 have an average optimisation time of 8 hours; 
m=1200 a time of 11 hours; and m=1400 a time of 13 
hours. These optimisation times depends mainly on the 

evaluation times in the SHIL simulation. The time 
contribution of the selection and booth optimisation 
algorithms described in Section 5 is close to zero. 

Table 4. Percentage change in objective 
function, before and after local Nelder-
Mead optimisation of local optima. 

 Before  
Nelder-Mead  

After  
Nelder-Mead 

Nelder-Mead 
evaluations  

Experiment 1  
m = 800 

5.82  8.96 p* 166  
5.37  7.47  136  

-9.51  7.04  208  
Experiment 1  

m = 1200 
6.57  7.79  122  
6.57  9.54 p* 173  
6.41  8.43  161  

-7.80  8.32  224  
Experiment 1  

m = 1400 
6.81  7.92  129  
6.81  8.22  150  
6.57  7.79  122  
6.57  9.54 p* 173  
6.41  9.17  171  

-7.80  8.32  224  
Experiment 2  

m = 800 
16.17  17.33 p* 157  
16.15  16.48  133  

-15.04  2.62  186  
Experiment 2  

m = 1200 
16.17  17.33  157  
16.17  17.67 p* 143  
16.15  16.48  133  
15.91  17.11  118  

-15.04  2.62  186  
Experiment 2  

m = 1400 
17.03  18.00 p* 130  
16.65  17.51  129  
16.57  17.37  141  
16.17  17.33  157  
16.17  17.67  143  
16.15  16.48  133  

-15.04  2.62  186  
Experiment 3

m = 800 
20.00  21.51 p* 158  

-15.49  15.93  184  
Experiment 3 

m = 1200 
20.31  21.75 p* 138  
20.21  21.31  116  
20.00  21.20  136  
20.00  21.51  158  
19.97  20.40  113  

-15.49  15.93  184  
Experiment 3 

m = 1400 
20.75  21.24  141  
20.31  21.75 p* 138  
20.00  21.20  136  
20.00  21.51  158  
19.97  20.40  113  

-15.49  15.93  184  
 

8. Conclusions 

The proposed combination of DIRECT and Nelder-
Mead optimisation algorithms has, in the performed case 
study, shown to improve the efficiency in parameter 
tuning of a sheet-metal press line. There is a great 
challenge to obtain an optimisation algorithm that 
handles highly non-linear objective functions with 
multiple local optima and considerable number of tuning 
parameters, as it is in sheet-metal press lines. Within a 



time limit constraint the proposed optimisation algorithm 
has shown to determine a control parameter set which 
improve sheet-metal press line performances, both in 
terms of 7 percentages increased production rate and 40 
percentages smoother robot motions.  

Compared to earlier presented combinations, found in 
literature, the proposed new algorithm has a distinct 
advantage. Not only best found point from the DIRECT 
algorithm, but also all local optima, are used as starting 
points for the Nelder-Mead local optimisation. Only in 
five of nine trials, in the case study, the single best found 
point initiate the local optimiser that reaches the optimal 
tuned process parameters in p*. 

The total optimisation time is reduced by parallel 
execution of local Nelder-Mead optimisations. To 
further decrease the optimisation time, the Collision 
Inspection Method, CIM, was implemented in the model. 
A pre-processing part of CIM executed only once, 
handles all complex calculations of the collision 
detection. This work confirms that an efficient and 
useful sheet-metal press line parameter tuning method is 
achieved when the proposed combined optimisation 
algorithm and CIM is implemented.  
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