Safety Oriented Software Engineering Process for Autonomous
Robots

Vladislav Gribov, Holger Voos
Faculty of Science, Technology and Communication,University of Luxembourg
6, rue R. Coudenhove-Kalergi, [-1359 Luxembourg, Luxembourg
{vladislav.gribov,holger.voos}@uni.lu

Abstract

In this paper, a safety oriented model based
software engineering process for autonomous robots
is proposed. Herein, the main focus is on the
modeling of the safety case based on the standard
ISO/DIS 13482. Combined with a safe multilayer
robot software architecture it allows to trace the safety
requirements and to model safety relevant properties
on the early design stages in order to build a reli-
able chain of evidence. The introduced engineering
processes consist of the Domain Engineering, which
is dealing with the development of a set of inter-
linked formalized safety cases and software compo-
nents. Finally, the proposed engineering process is
demonstrated on the example of the assembly assis-
tant robot and ROS (Robot Operating System,).

1 Introduction

Safe service and personal care robots have become
a new exciting research topic over the last years.
However, the close interaction of humans and robots
also leads to completely new safety problems. Physi-
cal segregation of robots and humans works fine in an
industrial environment with stationary robot manipu-
lators [21], accompanied by the corresponding safety
trainings for personnel. For obvious reasons, such
measures are not possible if pHRI (physical human-
robot interaction) is required by the robot application
and if no intrinsically safe robot design is possible.
Autonomous robots and (untrained) humans sharing
the operation space and cooperating with each other
create new kinds of risks and requirements with re-
gard to robot safety. Safe human-robot interaction
during the autonomous operation becomes essential
and necessary [10], but also requires new safety stan-
dards.

The request for a new safety standard is followed
by the request for a corresponding practical engineer-
ing process, especially for the robot software (SW).
The existing service robots, both commercial and

academic solutions, are mostly designed in a more
intuitive way without providing a clear and safety-
oriented engineering process for robot design. The
future plans for a wide deployment of service and per-
sonal care robots also suggests limited costs for the
robot development phase. However, this is only pos-
sible if an engineering process is applied which deals
with safety requirements in a formal way and reuses
safety solutions.

2 State of the Art

If approaching safety issues in general, according
to [11] the best way to deal with safety is the defi-
nition of a safety case, which “should communicate a
clear, comprehensive and defensible argument that a
system is acceptably safe to operate in a particular
context”. A safety case is constructed from objec-
tives, arguments and evidence. The formalization of
the safety case could be done with Goal Structuring
Notation (GSN), which is used to support safety case
management on different stages: preliminary safety
argument, safety cased development, change manage-
ment, maintenance.

A product family is an approach to reuse safety
experience from one product for another new prod-
uct from the same family[13]. It comprises ontolog-
ical methods - defining domain and vocabulary - as
well as the establishment of domain assumptions -
mainly finding common and variable features of sys-
tems in the domain. The variations are formalized
and parameterized to build a requirements model.
The product family safety requirements are derived
after preliminary hazard analysis using reviews and
fault tree analysis. The safely reuse of the engineering
artifacts for Safety-Critical Product Lines was also in-
troduced in [9]. The model based approach leads to a
safety meta-model which captures the dependencies
between the safety case, the safety assessment and
the development of the artifacts in a product line.

Another approach to integrate safety engineering
in a SysML based model-driven development pro-
cess in the form of the V-model is proposed in

978-1-4799-0864-6/13/$31.00 ©2013 IEEE

[22]. The SysML, addressing the needs for model-
ing mechatronic systems better than UML, provides
the requirements diagram which can be fused with
IEC 61131 and IEC 61499 languages parametrized,
extended with FTA (fault tree analysis) and HAZOP
(hazard and operability study) and combined with
IEC 61508. The proposed V-model has several layers
and especially deals with mechatronic system require-
ments and architecture.

Modeling of the safety standard IEC 61508 and of
the chain of evidence is also discussed in [18]. Here the
main focus is on providing a chain of evidence already
on the design stage and not post-factum, as it is still
made in practice. Other topics are the demonstration
of the traceability for a seamless chain of evidence
and to make a step from the generic safety model to
a specific context.

The systematic hazard analysis applied to the
UML component and deployment models as proposed
in [8] is an approach to integrate safety and compo-
nent failure issues to UML design.

In the application of mobile service robots, the hu-
man robot interaction becomes important and even
unavoidable during the autonomous operation [10].
Therefore, the existing standards for industrial robots
(ISO 10218 [7]) have to be extended and updated for
service robots. The ISO/DIS 13482 [3] is an approach
to do that, making accent on pHRI and safety issues
due to the robot mobility. Here non-industrial robots
are addressed, explicitly avoiding an industrial en-
vironment with its more conservative safety require-
ments.

Safe reuse of the commercial off-the-shelf software
is another topic which is especially important for the
practical purposes according to [14].

A number of robotics SW approaches and frame-
works has been developed so far in academics, to
name the most successful: Orocos[6], CLARAty [16],
Orca [5], ROS[15]. Taking the number of success-
ful implementations in different robotic applications
into account, ROS seems to be the most promising of
all robotic software frameworks and comes with the
widest community support.

However, the engineering process for robot soft-
ware is a less discussed issue. It has been fragmentar-
ily addressed as component-based SW engineering in
Orca and CLARAty. A component-based engineering
approach for mobile robot applications, SmartSoft, is
also proposed in [20]. The authors claim that the
complexity and variety of domains in robotics and
the huge problem and solution space demand new
engineering approaches in order to create synergies
between domains and reduce time and costs of the de-
velopment process. The key to handle the complexity
are robustness by design and robustness by adapta-
tion. The model-driven paradigm seems to be suit-
able and is a base for SmartSoft, supporting model-

ing from platform independent model (PIM) through
platform specific model (PSM) to platform specific
implementation (PSI). The provided Eclipse-based
toolchain is compatible to several middleware solu-
tions and is able to deal with features like real time,
dynamic wiring and online reconfiguration. However,
an explicit consideration of safety aspects is not in-
cluded.

Another model-driven approach for robot software
engineering is proposed in [4], introducing a tool chain
and component-based architectural models and cor-
respondent domain specific language.

Finally, the BRICS project [12] presents a very de-
tailed Robot Application Development Process, but
still without an accent on safety of the robot software.

3 Proposed approach

The previous overview already suggests a direc-
tion for the research on a safe engineering process
for robotics. Herein, we assume that it is possible
to cover a wide range of robotic applications by us-
ing the same HW and only by changing the robot
software. Therefore we will focus on the engineering
of the robotics SW for that matter, keeping in mind
however that SW is still only a part of the robot as a
system. The questions to be answered are:

e how to represent the relevant safety issues in a
formalized way

e how the safe robot SW architecture shall look
like

e which engineering process is able to provide suf-
ficient evidence of safety and a safe reuse of SW

3.1 Safety Model

Representing a safety case and a chain of evi-
dence in a formal way has already been proposed
as an effective way in safety engineering ([9], [22],
[18]). We will continue on that while approaching
the ISO/DIS 13482 [3] on a model-driven base. This
safety standard addresses the class of non-industrial
(mobile) service robots, providing safety requirements
according to the risk assessment process described in
the ISO 12100.

The conceptual model of the ISO/DIS 13482 is
shown in Fig. 1. Strictly speaking, the risk assess-
ment and the risk mitigation processes are described
in the ISO 12100, while the ISO/DIS 13482 rather
presents the result of applying those processes to the
domain of service robots.

Risk assessment comprises the identification of
the hazard from the different sub-domains of service
robots and the evaluation of the risks assigned to
those hazards. After the risk evaluation the decision
for risk mitigation shall be made. Options for the
protective measures are:

Risk assessment Risk mitigation
reevaluation ——— —
I = Verification & Validation
= Hazard identification = Risk evaluation + Verification: Verification and Validation Ty,
H Protective measures
mitigatiol verified
«Enumeration»
= Verification and Validation Type
evaluated T
identifies
assigned
— = Inherently safe design H Safeguard E Organization
E Hazard Y g g g ——
+ Domain: HazardDomair L
derived derived derived
[1.4]
[1.4 [1.4
«Enumeration» «Enumeration» = Design requirements E Requirement = Documentation
= HazardDomain = Requirement type + Type: Requirement typ:

Figure 1. Core concepts of the ISO/DIS 13482

e Update the design to be inherently safe, which
most probably leads us from the SW engineering
to the higher level robot design, but still can be
considered as a part of robot engineering process,
described in section 3.3.

e Provide a safeguard addressing the correspond-
ing hazard; could be a safety function or func-
tional safety requirements for the affected soft-
ware components.

e Organizational measures dealing with the resid-
ual risks, which are not covered by previous mea-
sures.

Protective measures shall be validated, the
ISO/DIS 13482 suggest several methods for that.
Applicable for the software engineering process are:
test and measurements, review and documentation
of the software function blocks.

The stereotypes from the UML profile of the stan-
dard are applied to the robot model [19], checking the
model on the compliance to the constraints attached
to the stereotypes and written in object constraint
language. This allows to refine robot model by both
updating and extending it to be related to safety stan-
dard evidence model.

Modeling the mentioned artifacts of risk assess-
ment and mitigation with SysML allows to create a
formal description of the chain of evidence for a spe-
cific safety case. The catalog of the safeguards to-
gether with addressed risks results in safety require-

ments. The fulfillment of the safety requirements is
proven by a verification and validation process. The
modeling is done by building a class hierarchy of the
hazards. The hazards are attributed with risks. The
safety requirements are assigned to that hazards, rep-
resenting the safeguards which are intended to mit-
igate the risks of the hazards. The interconnection
of the artifacts provides the traceability of the safety
case. The next step here is to relate the software
components to the safety requirements. This will in-
clude the implementation in the chain of evidence and
creates a stronger argument.

The ISO/DIS 13482 covers a set of basic safety
cases. However, specific robots may be affected by
the risks which are not mentioned in the standard.
This can happen due to limitation of the standard
or due to development of robot application in new
domains. Also the list of protective measures and
verification methods may be extended. This shall be
done in the context of the engineering process.

An example of applying this approach to model a
safety case is shown in section 4.

In general, the described model-based approach to
create a safety case can be used in the process of
software engineering for a vast categories of robots.
However, the software engineering process for service
robots can especially profit from it due to the com-
plexity of such a software.

3.2 Safe Robot Software Architecture

The complexity of the robot software depends on
the tasks it performs. Autonomous behavior of the
robot and the required mobility adds additional com-
plexity to the SW. To deal with that complexity, most
software architectures for autonomous robots propose
a multi-level approach ([6], [5], [20]). Therefore, we
also assume a multi-level software architecture in our
approach which will be extended to include safety as-
pects.

The different tasks performed by the robot SW
can be generally classified as “reflexive” (e.g. sensory-
motor), “reactive” (e.g. local planning) and “proac-
tive” (e.g. global planning). Those tasks are indepen-
dent and in that sense decoupled, and form architec-
tural layers of control SW, based on different safety
and real-time requirements. The tasks with higher
architectural layer functions may implement complex
algorithms and depend on unreliable communication
links, being in general difficult to validate or even not
safe on their own. The software on lower architec-
tural layers shall provide constrains and level of ro-
bustness to compensate intrinsically unsafe software
from higher levels and to guarantee acceptable safety
level of the system. Cohesive functionality of each
layer can be naturally represented as components.

From the safety point of view software components
can implement safety relevant functions (e.g. obsta-
cle detection). The taxonomy of the components can
be done based on the domain and concrete function
in that domain. This is reflected in the corresponding
properties of the component. The first try to provide
the standard interfaces for the human-robot interac-
tion and thus an ontology and a component decom-
position for that domain is done by the Object Man-
agement Group under the Robotic Interaction Service
[17].

The components implementing safety functions are
also characterized by the provided functional safety,
which is defined by the performance level. The appro-
priate robot architecture has to offer a sufficient set
of safety features providing corresponding functional
safety integrity levels (SIL) or performance level (PL)
for each of them.

The representation of the component core model a
the safety oriented robotic software is shown in Fig. 2.

Requirements concerning software components
also have an impact on the hardware it runs on. De-
ployment of safety-critical software with high perfor-
mance level shall be done on a hardware system that
can provide the required performance level. This is
also valid for any communication system involved.

For the implementation of the concepts of the
component-based robotics software the corresponding
component oriented robotics framework is required.
The ROS software has proven over the last few years
that it provides a solid base for the robot software de-

E Runtime envi Ec
1]+ Domain: Domains

+
LA | *PLPLTyRes

11 5
= Communication link EPon Ep

[+ DataTypa: DataTypes
+PL: PLTypes e —
[L.4] | +Type:PortType

= Topic
«Enumeration» «Ent Er i
= ComponentTypes = Domains = DataTypes
«Enumeration» «EnL i Er i
= C icationTypes =l PortType = PLTypes

Figure 2. Component core model for the
safety oriented robotic software architec-
ture

velopment, especially for autonomous service robots.
ROS is a multilingual, distributed, network transpar-
ent software, supported and extended by a large and
active community. It is build upon concepts, which
are shown in Fig. 3.

The main software element is the ROS node. This
is independent running SW component which can
communicate to the other nodes by sending and re-
ceiving messages. This messages are called the top-
ics. If sending specific data, a node is a publisher of
the corresponding topic. If consuming the topic, the
node is a subscriber. Nodes can also provide services,
which perfectly supports confirmed synchronous peer-
to-peer communication.

ROS fits very well for building robot SW accord-
ing to a safe multilayer robot software architecture.
Even if some extensions might be required for full
covering the requirements of multilayer architecture,
the concepts of ROS allows them. The ROS node
corresponds to the software component, providing en-
capsulation of the functionality and autonomy. The
ports are implemented by data and control flow using
publishing/subscribing topics and services. Network
transparency allows deployment of software compo-
nents on different HW types, providing required per-
formance level depending on the layer component is
assigned to.

Current implementation of ROS is unfortunately
not supporting real-time or safety features, but the
request for that characteristics is already clear to
the community. A ROS multi-master is aiming to
achieve more reliable solutions based on ROS [2]. The

= Packet
)]
o " Dependenc
kd
= Node — d]. -
£ Configuration
" M
S Service = Topic
= Publisher = Subscriber

Figure 3. ROS core concepts

projects like uROSnode are focused on running ROS
on the embedded hardware [1]. Deploying ROS nodes
on an embedded platform allows to improve real-time
characteristics of the corresponding component. The
same is valid for the safety properties and the perfor-
mance level of the component. All this measures are
not conflicting with the proposed component based
modeling approach. The embedded nodes or even
whole subsystems still can be modeled as components
and be interfaced to the rest of the robot SW, which
is ROS based. The principle of representing robot
software as a component model however is not af-
fected by the current development stage of ROS. The
complex safe robot architecture will not result in a
homogeneous solution, both in terms of software and
hardware.

3.3 Safety Oriented Engineering Process
The safety oriented engineering process shall give
an answer on the question: “which (safety) require-
ments are relevant and which components shall be
put together to satisfy those requirements?” We have
already specified a model based approach to represent
a safety case and proposed a software architecture of
a safe robot. In addition, we propose an engineer-
ing process where repositories of modeled safety re-
quirements and corresponding software components
are used to build the robot SW, as shown in Fig. 4.
The proposed software engineering process for
component-based robot software is similar to the soft-
ware product line approach. The overall engineering
process is divided into two separate but still intercon-
nected sub-processes - development of software com-
ponents and building applications out of them. The
development of the software components is called Do-

olution N\
repository N
N\
New:component/capability

New/requirement

¥

Id = id
Text =
[Text

Requirement
repository

Robot SW

Figure 4. Engineering process

main Engineering. The results of the Domain Engi-
neering are used as building blocks for the develop-
ment of the safe robot software. This sub-process of
application engineering is called Robot Engineering.

The Domain Engineering can be characterized by
the following steps:

1. Perform hazard estimation and mitigation, make
sure that the model of corresponding safety cases
and requirements are formalized as described
in the section 3.1. Here the modeled standard
ISO/DIS 13482 is used as a base. Also appli-
cable domain relevant repositories extending the
safety case coverage are included.

2. Provide the component model according to the
safe multilayer robot architecture as described in
the section 3.2. The model representation of the
component includes the component domain and
specific component type (functionality) in that
domain. The direct and indirect safety relevant,
properties shall be considered:

(a) types of platforms supported for the com-
ponent to be deployed on;

(b) communication links, published and sub-
scribed topics, services, data flow,

(c) software performance level;
(d) real-time properties;

(e) dependencies on other software compo-
nents.

3. Use requirements and modeled artifacts from the
previous steps to develop the component. The
component is implemented as a ROS node. The
internal component design, choice of software
paradigm and language is also justified by the
requirements from previous steps.

4. Provide complete traceability from the built
component to the safety case, as specified in sec-
tion 3.2.

5. Provide test and verification for the built com-
ponent. The basic tests are suggested by the
standard ISO/DIS 13482. ROS allows to perform
some tests in a fully-simulated environment.
The performance/throughput/consumption
tests have to be deployed on the real HW. The
infrastructure for that tests can be provided
by ROS in a “component-in-the-loop” scenario,
where dependencies of the component are
satisfied by the additional test environment.
In general, component testing is similar to the
advanced unit test which is common in software
engineering. The formal verification can be
limited by the complexity of the component.
However, due to the software architecture higher
reliability is expected from lower layer, and thus
most likely simpler, components.

The Domain Engineering relates the software compo-
nent to the corresponding safety case. The function
delivered by the component determines the domain
the component belongs to. Developed artifacts are
stored in the corresponding repositories for reuse. In
a safety case those are: new hazards, new risks, new
safeguards and new verification methods. In case of
the software repositories the artifacts are SW compo-
nents.

The developed software artifacts are reusable com-
ponents. Additionally to the modeled interfaces, re-
flecting the component functionality, the component
parameters and the safety critical characteristics of
the components are also reflected in the component
representation, making it safe to be reused in the soft-
ware model.

The Robot Engineering sub-process contains the
following steps:

1. Create a component model of the robot software.

2. Check whether all safety requirements are cov-
ered with corresponding software components.

3. If required, go back to the system design to make
the robot inherently safe.

4. Model the robot SW:

(a) deployment-relevant issues; that includes
the type of platforms the components are
deployed on and the type of communication
links between them;

(b) resource utilization; that includes memory,
processing unit, communication links;

(c) real-time characteristics;

(d) function safety coverage (based on the com-
ponent dependencies);

(e) avoid dependency of lower layer functions
from higher layer function.

5. Build robot SW from components. The
ROS launch files (XML) and configuration and
parametrization files for the ROS packages can
be generated from the software component
model.

6. Perform tests from both robot and application
domains. If required, repeat Domain Engineer-
ing sub-process for the effected components.

The engineering process supports designer in creat-
ing the domain (robot) model and checking it against
the safety standard. This allows to see how the com-
ponents of the system are affected in terms of safety
relevant requirements. The overall safety characteris-
tics of robot can be estimated already at the modeling
stage. The resulting software is supported by safety
evidence according to the relevant safety norm or an
additional safety guideline.

After the development and disposal, the robot has
to be maintained. Maintenance in general comprises
the iterative repetition of an engineering process. In
case of a safety failure maintenance can be seen as a
repetition of the testing phase. If a failure is detected,
the situation leading to it will be transferred to the
testing phase and the iteration of the test step from
the Robot Engineering sub-process is repeated. If
a new hazard is identified, the Domain Engineering
sub-process shall be repeated accordingly.

Basic safety requirements, relevant for au-
tonomous service robots, are already addressed in the
ISO/DIS 13482. This standard contains the list of
typical hazards and provides some basic safeguards
and verification approaches. The list can also be ex-
tended to a bigger requirement repository with well
known methods like failure mode and effects analysis
or hazard and risk analysis.

ROS provides advanced tool for the simulation and
data flow logging. This allows to perform sophisti-
cated tests in simulation and makes the reproduction
of real tests scenarios easier.

4 Experimental proof of concept

To illustrate the approach described above we will
consider a simple but comprehensive example. A mo-
bile assembly assistant robot may be used to support
human worker during assembly work inside of the car
(see Fig. 5). The robot is semi-mobile, it enters the
working area (either on its own or supported by some
other robot) and performs its tasks. The safety issues
are critical for that use case, especially considering
the physical human-robot interaction in the working
space which is common for both robot and human
worker.

Our test case is an assembly assistant robot with
the lightweight manipulator, like one shown in Fig. 6.

Figure 5. Mobile assembly assistant robot

The control of the robot is done by ROS running on
the industrial PC.

Figure 6. Schunk LWA

The robot engineering process starts with the iden-
tification of domains, relevant for the robot. We will
skip the application domain, which depends on the
task of robot and the tools it is carrying (gripper,
drill etc). We will focus on the robot relevant do-
main. This is robot motion. According to our use
case, robot is brought to the working space and per-
forms its task by moving the manipulator. So we will
focus here on the domain of robot manipulator move-
ment.

According to the standard ISO/DIS 13482, rele-
vant hazard is a hazardous physical contact during
the human-robot interaction. The risk of a collision
is high. The requirements for the protective measures
on that hazards are shown in Fig. 7.

We pick the requirement for the tactile sensors. To
fulfill that requirements, a software component model
is designed. As a collision detector we could take
artificial sensitive skin, which is covering the arm and
is able to sense a touching during the collision.

The component “collision detector” is directly
traceable to the requirement for the tactile sensor.
The same is valid for the “emcy _stop” component due
to dependence on the component “collision _detector”.
No specific functional safety requirements or runtime

Hazardous physical contact during HRI

«requirements

manual mode keep minimum distance controlled stop in restricted space

T T """""""""" |

keep distance tactile sensors SW task prioritisation

Figure 7. Requirement for mitigation of the
risk on the “Hazardous physical contact
during HRI”

requirement “tactile
sensare”
collision

//7 collision_detector
4// emcy_stop \)7
arm_controller

Jjoint_velocity Jjoint_velocity

command_gui

\X

trajectory_controller

Figure 8. Software model

requirements are put on the components during the
first step.

The component model is used to create ROS con-
figuration and launch files, which describes the de-
ployment of the ROS nodes.

Suitable experimental tests then finally proof the
engulfment of the safety requirements. Standard
ISO/DIS 13482 suggests code review and practical
tests.

After reevaluating of the risks we may found out
that further protective measures are required. If the
collision detection have to be more robust and safe,
the correspondent SW components shall run on the
more reliable hardware and the software shall fulfill
some performance level. These clearly are the new re-
quirements on the SW component. If the component
that fulfills that requirements is not available, corre-
sponding Domain Engineering process for the devel-
opment, of the new component shall be started.

The further development of the system may take
into account new safeguards, like extending safe pHRI
from obstacle recognition to the obstacle avoidance.
That will require new sensing capabilities (visual) and
corresponding algorithms to perform online path re-
planning for the avoiding of sensed obstacles.

5 Conclusion

In the paper we have discussed how to deal with
the safety case and chain of evidence in the domain of
service robots, which architecture is suitable for the
safe robot SW, which issues are relevant for engineer-
ing of the safe autonomous robots.

We have proposed a model based approach to the
safety case on the example of the ISO/DIS 13482, the
component-based multi-level safe robot software ar-
chitecture, the interconnected repositories for store
and reuse of the safety case models and software
components, the two-stage safety-oriented engineer-
ing process for the safe autonomous robots.

Next steps to do are to complete model of the stan-
dard ISO/DIS 13482, to build taxonomy and mod-
els of the relevant existing ROS components (reverse
modeling) and to extend the use case.

References

[1] sig/Embedded - ROS wiki.

[2] sig/Multimaster - ROS wiki.

[3] ISO/DIS 13482 robots and robotic devices — safety
requirements for non-industrial robots — non-medical
personal care robot, 2011.

[4] D. Alonso, C. Chicote-Vicente, O. Francisco, J. Pas-
tor, and B. Alvarez. V3CMM: a 3-view component
meta-model for model-driven robotic software devel-
opment. 1, 2010.

[5] A. Brooks, T. Kaupp, A. Makarenko, S. Williams,
and A. Orebidck. Orca: A component model and
repository. In D. Brugali, editor, Software Engineer-
ing for Experimental Robotics, volume 30, pages 231-
251. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[6] H. Bruyninckx, P. Soetens, and B. Koninckx. The
real-time motion control core of the orocos project.
In Robotics and Automation, 2003. Proceedings.
ICRA °03. IEEE International Conference on, vol-
ume 2, pages 2766 — 2771 vol.2, Sept. 2003.

[7] DIN EN ISO 10218-1. Robots for industrial environ-
ments — safety requirements — part 1: Robot. Tech-
nical report, DIN German Institute for Standardiza-
tion, Berlin, July 2009.

[8] H. Giese, M. Tichy, and D. Schilling. Composi-
tional hazard analysis of UML component and de-
ployment models. In M. Heisel, P. Liggesmeyer, and
S. Wittmann, editors, Computer Safety, Reliability,
and Security, volume 3219 of Lecture Notes in Com-
puter Science, pages 166-179. Springer Berlin / Hei-
delberg, 2004.

[9] 1. Habli. Model-Based Assurance of Safety-Critical
Product Lines. PhD thesis, Department of Computer
Science ,University of York, 2009.

[10] C. Harper and G. Virk. Towards the development
of international safety standards for a human robot
interaction. International Journal of Social Robotics,
2(3):229-234, June 2010.

[11] T. P. Kelly. Arguing Safety - A Systematic Approach
to Managing Safety Cases. PhD thesis, 1998.

[12] G. K. Kraetzchmar, A. Shakhimardiv, J. Paulus,
N. Hochgeschwender, and M. Reckhaus. Best Prac-
tice in Robotics. Deliverable D-2.2: Specifications of
Architectures, Modules, Modularity, and Interfaces
for the BROCTE Software Platform and Robot Con-
trol Architecture Workbench, 2010.

[13] R. Lutz. Extending the product family approach to
support safe rense. JOURNAL OF SYSTEMS AND
SOFTWARE, 53:207-217, 2000.

[14] R. Lutz. Software engineering for safety: a roadmap.
Proceedings of the Conference on The Future of Soft-
ware Engineering, pages 213-226, 2000. ACM ID:
336556.

[15] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh
Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y. Ng. ROS: an open-source robot operating
system. 2009.

[16] I. A. D. Nesnas. The CLAR Aty project: Coping with
hardware and software heterogeneity. In D. Bru-
gali, editor, Software Engineering for Ezxperimental
Robotics, volume 30, pages 31-70. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[17] OMG. Robotic interaction service (RoIS). Technical
Report Version 1.0, OMG, Feb. 2013.

[18] R. Panesar-Walawege, M. Sabetzadeh, and
L. Briand. Using Model-Driven engineering for
managing safety evidence: Challenges, vision and
experience. In Software Certification (WoSoCER),
2011 First International Workshop on, pages 7 12,
Dec. 2011.

[19] R. K. Panesar-Walawege, M. Sabetzadeh, and
L. Briand. Supporting the verification of compliance
to safety standards via model-driven engineering:
Approach, tool-support and empirical validation. In-
formation and Software Technology, 55(5):836-864,
May 2013.

[20] C. Schlegel, A. Steck, D. Brugali, and A. Knoll. De-
sign abstraction and processes in robotics: From
Code-Driven to Model-Driven engineering. In
N. Ando, S. Balakirsky, T. Hemker, M. Reggiani,
and O. Stryk, editors, Simulation, Modeling, and
Programming for Autonomous Robots, volume 6472,
pages 324-335. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[21] B. Siciliano and O. Khatib. Springer Handbook of
Robotics. Springer, 1 edition, June 2008.

[22] K. Thramboulidis and S. Scholz. Integrating the
341 SysML view model with safety engineering. In
2010 IEEE Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1-8. IEEE,
Sept. 2010.

