
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Reference Architecture for Service-oriented Control Procedures and its
Implementation with SysML and Grafchart

Ollinger, Lisa; Zuhlke, Detlef; Theorin, Alfred; Johnsson, Charlotta

Published in:
IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013

DOI:
10.1109/ETFA.2013.6648044

2013

Link to publication

Citation for published version (APA):
Ollinger, L., Zuhlke, D., Theorin, A., & Johnsson, C. (2013). A Reference Architecture for Service-oriented
Control Procedures and its Implementation with SysML and Grafchart. In IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA), 2013 (pp. 1-8). IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/ETFA.2013.6648044

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ETFA.2013.6648044
https://portal.research.lu.se/en/publications/075d44c2-451a-4960-a7a2-2c9d901be414
https://doi.org/10.1109/ETFA.2013.6648044

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

A Reference Architecture for Service-oriented Control Procedures

and its Implementation with SysML and Grafchart

Lisa Ollinger, Detlef Zühlke

German Research Center for

Artificial Intelligence

Kaiserslautern, Germany

{Lisa.Ollinger, Detlef.Zuehlke}@dfki.de

Alfred Theorin, Charlotta Johnsson

Department of Automatic Control

Lund University, Sweden

{Alfred.Theorin, Charlotta.Johnsson}

@control.lth.se

Abstract

Innovative engineering methods are needed to

enhance the adaptability and agility of industrial control

procedures and concurrently manage their rising

complexity. Service-oriented Architecture (SOA)

constitutes a promising paradigm to meet these

challenges. To apply the rather abstract SOA principles

to industrial automation, a model-driven engineering

method is presented in this paper. Therefore, a reference

architecture is introduced providing a framework to

structure and define services for control tasks in a

convenient way. The application of the engineering

method is supported by an implementation concept. It

uses SysML during the design phase and the process

modeling and control language Grafchart for the

execution of service-oriented control procedures.

1. Introduction

The complexity of industrial control procedures is

steadily increasing. This is mainly due to rising demands

on highly flexible and high quality production processes

as well as to technologically upgraded production

equipment and products. Additionally, production

processes are constantly optimized and reconfigured,

which implies that the control procedures need to be

adaptable and reusable.

Programmable logic controllers (PLCs) are the

established control devices in industry used for

executing the control procedures. Although, PLCs were

technologically improved over the time, their low-level

programming style has not changed. This implies that

PLC programs are often hardware-dependent,

complicated, and monolithic and thus error-prone and

difficult to adapt or reuse [1]. Besides old-fashioned

programming techniques, there is no well-documented

design procedure that is fluently connected to previous

engineering domains, in particular the process planning.

Thus today, the control system development requires a

high effort during the initial engineering as well as

during reconfiguration of production plants.

To improve the current situation new methods for

efficient development of control software are needed. A

promising approach is to apply the paradigm of Service-

oriented Architecture (SOA) to design control

procedures as cooperating building blocks that are easy

to reuse or rearrange. The SOA approached applied

within Automation is referred to as SOA-AT [11]. The

foundation of SOA is the encapsulation of functionality

to services which in turn help to design control

procedures in a more abstract way. Thus, SOA can be

combined with Model-Driven Development (MDD) and

Model-Driven Engineering (MDE) techniques in order to

develop control software in the various concretization

steps.

The presented work is based on the concept MDE for

SOA-AT which describes an MDE procedure for the

design of service-oriented control architectures (section

2). Then, the concept is detailed regarding a reference

architecture for the definition of services for service-

oriented control procedures (section 3) and their model-

driven design using SysML (section 4). After that, the

application of Grafchart as executable service

orchestration language and a transformation concept

from the SysML design model to Grafchart is presented

(section 5). Finally, the application of the overall concept

is illustrated by the design and implementation of a

service-oriented control architecture at a practical

demonstration system (section 6).

2. State of the art

To improve the generation and verification of control

procedures, various approaches have emerged that make

use of modeling. Most of them focus on the automatic

generation of PLC code by means of MDD using

different formal and non-formal modeling languages,

e.g. UML [2], SysML [3,4], Petri Nets [5], and State

Charts [6]. Another approach is the direct execution of

the models without additional transformations. Despite

lower reliability and real-time guarantees, executing on

ordinary computers means a much larger freedom in

choosing programming language and execution platform.

One particular language designed for both control and

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

modeling is Grafchart [7]. It is based on the IEC 61131-3

[8] language Sequential Function Charts (SFC).

Grafchart has been extended with support for reusability

and exception handling and it also has support for formal

verification.

Existing applications of SOA in the automation

domain focus on the realization of distributed

automation system as networked services that are mostly

implemented with Web service technologies. In this

context the EU projects SIRENA, SOCRADES, and the

currently running IMC-AESOP play an important role

[9–11].

In previous work the SOA-AT concept is presented,

which describes the idea of networked automation

systems that work in a service-oriented way [12]. This

approach was then combined with the process modeling

language Grafchart in order to implement and execute

control logics as service orchestrations [13]. For MDE of

service-oriented control architectures the method MDE

for SOA-AT was developed including several

concretization steps [14]. The designed control

architecture can then be implemented in various ways,

for example in a highly distributed way on embedded

devices in form of a cyber-physical system [15].

3. Services for process control

The following section investigates how the SOA

paradigm can help to achieve an efficient engineering of

control procedures. Furthermore, a reference architecture

for defining services to generate industrial control

procedures is presented.

3.1. Service-oriented process control

Service-oriented architecture (SOA) describes a

concept for distributed computing that originally stems

from the business process domain with the objective to

realize agile and flexible enterprise IT systems [16]. The

basic idea of SOA is the encapsulation of functions to

reusable services that serve as building blocks for the

generation of new functionality [17]. SOA is a wide-

spread concept to enable the realization of adaptable

business processes by using standardized software

components provided by services.

These principles can be transferred to the control

system development where control procedures for

production processes have to be generated. In the context

of industrial automation, a service-oriented control

procedure comprises automation functions that are

exposed as reusable services [12]. To execute the desired

production process the services are coordinated in a

certain order according to the desired process flow.

The major benefit of SOA is provided by the

encapsulation principle. It permits to reduce the

complexity of control procedures by splitting up the

control software in reusable functional units and hiding

implementation details. Thus, control procedures can be

developed first in an abstract way so that the overall

software structure can be defined independently of

implementation and technological details. Furthermore,

the development of control software can take place on a

higher abstraction level so that the gap between the

control system development and the previous process

planning phase can be closed. Altogether, SOA is a

promising concept to achieve high adaptability and

reusability, comprehensible and clear software structure,

and seamless connection to other engineering domains.

3.2. Service levels and types

For introducing SOA in a special application domain

the definition of a reference structure is recommended

that specifies conventions for the determination of

services. The complexity of the overall application can

be reduced by classifying services according to the

application domain. By defining vertical layers the

overall application can be split up in composition levels

[17]. Furthermore, service types can be defined for

grouping services with similar characteristics [16].

Today control procedures, typically implemented as

PLC programs, are usually programmed directly in a

bottom-up way without first designing the software

structure. The programs comprise several aspects:

Logics are needed to implement the field device

functions and to establish the connection to the

respective input/outputs and communication protocols of

the controlled devices. Furthermore, control logic

defining the process flow and additional control routines

for initialization, safety, monitoring, scheduling, etc. of

the process are needed [18]. How these aspects are

structured in Function Blocks (FBs) and how these are

named varies a lot depending on for example the

programmer, the company, and the application domain.

Derived from this, two service layers can be identified to

structure service-oriented control procedures: the

application-independent equipment layer and the

superior process layer (Figure 1).

Figure 1. Service layers of service-oriented
control procedures.

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

The services of the equipment layer represent the

functions of the production equipment that execute the

technological process (Equipment layer in Figure 1). To

achieve the desired behavior, the equipment services

have to be executed in a certain order defined by the

process logic (Process layer in Figure 1). This procedure

of arranging services in a certain way to achieve new

functionality is called service orchestration. Within the

equipment layer the services are classified as basic

services and composed services. The basic services

constitute the elementary mechatronic functions of

devices and machines that are encapsulated to services.

Thus, basic services are the interface between the

electromechanical hardware and the IT-based

automation system. These basic services can be

aggregated to create equipment services with coarser

granularity for production modules, units, etc., to

composed services.

In the process layer the executable control procedure

depending on the required production process and the

available equipment services is generated. In order to

achieve the desired process flow control services define

the process logic and the required functions to execute

the desired technological process. In order make the

control service executable the binding of the required

functions to available equipment services has to be

established. Since these control services have to consider

the physical structure of the production system

(production components, material flow, etc.) as well as

the current production tasks (product types and variants)

they are highly specialized for the respective application.

In order to provide reuse and clarity, parts of the overall

control can be outsourced in separate services.

If various product types are produced with the same

production plant, the definition of product services is

useful. They specify the sequence of production steps to

produce the respective product type. Thereby, the

required equipment services can already be bind

concretely or be still abstract so that the binding has to

be done in the control service (Figure 2). Furthermore,

other parts of the control program according to [18] can

be implemented in separate services, here summarized as

supporting services. Altogether, on process level the

control service works as a central orchestrator that uses

the product and supporting services as building blocks

and establishes the missing bindings to the available

equipment services.

Figure 2 illustrates the defined service types and how

they interact. For example, the composed service “c2”

uses the basic service “b1”. Within the control service

“cr1” a supporting service “s1” and the product service

“p1” are called. To define high-level functionality

independently of the current equipment layer, the service

allocation can be done first in an abstract way so that the

respective services are bound in the control service.

Figure 2. Interaction between the service
types.

3.3. Service definition and naming scheme

As Figure 2 depicts, the allocation of services is very

important to build new functionality in a flexible way.

Therefore, a mapping between the required functionality

and suitable services has to be made. How fluently and

uncomplicated this mapping procedure is depends on the

level of detail of the control services and the granularity

of the equipment services. The granularity influences the

abstraction level where the mapping between process

and equipment services takes place (Figure 3).

As a rule, the coarser the granularity of the equipment

services, the less detailed the specification of the control

service can be. Since the deep technological details of

the production process are hidden then, the service

orchestration of the control service is rather simple.

However, coarse-grained services lead to a lower

adaptability because they hide most of the details which

can only be influenced via service parameters from the

outside. Furthermore, their reusability is rather low

because their implementation relies strongly on the

current production system. Consequently, a higher

flexibility and reusability of the whole SOA system can

only be achieved with more fine-grained equipment

services.

To avoid this trade-off the basic services are defined

on a low technological level as the functions of the

individual field devices. They offer the possibility to

specify and influence the technological process in detail.

By defining composed services, built upon the basic

services, coarse-grained services can be created that help

to increase the abstraction level of the mapping

procedure.

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

Figure 3. Mapping between process and
equipment services.

Thus, a crucial issue during the SOA design is to

determine the equipment services by considering their

granularity and scope in the best way. Since the

functionality of the service is encapsulated the service

interface exposes the service to the outside. Therefore,

the name of the service and its related operations have to

be defined. First of all, the names of the equipment

services have to express the mechatronic function of the

production equipment independently of its respective

use. For example, a pneumatic cylinder receives the

service “translate” because it executes a translational

motion and an inductive sensor provides the service

“detect”.

However, this definition might be too general because

the plant engineer needs to know how the functionality is

executed technologically. The addition of the type of

energy for actors and the operating principle of sensors

can help to reduce the risk of technological

incompatibilities. By naming the service of a pneumatic

cylinder “translatePneumatic” the engineer knows that

additional devices are needed to supply compressed air.

The inductive sensor has the service “detectInductive”

which clarifies that the service is suitable for a metallic

work piece but not for a wooden one.

This naming scheme can be applied independently of

the respective realization by concrete devices. This helps

to support the mapping procedure by specifying the

required functions in the process services as abstract

services that can be bound later to concrete services of

various field devices. Ideally the interfaces of the

abstract and concrete services are exactly the same.

However, the exact functional scope and how the

functions are controlled can vary for different devices,

especially for more complex ones. In this case, another

concretization level is needed where the name of the

vendor or a type identifier is added to indicate that the

service is tailored to a special device, for example

“translatePneumaticSF101” (Figure 4).

How the functionality of the service can be accessed

is defined by the operations of the service. During the

concretization steps the operations and/or their

parameters have to be adjusted or added respectively

(Figure 4). How abstract or specific the service

interfaces should be depends on the characteristics of the

devices and the application. As a rule, the service

definition should be as general as possible and as

concrete as necessary.

Figure 4. Concretization steps during the
definition of equipment services.

Besides the degree of concretization the

standardization of service and operations names are

essential to enable an automatic detection and binding of

suitable services and the exchangeability between

devices of different vendors. However, experiences from

business process SOAs have shown that the organization

of company-wide services constitutes a highly complex

task. A first approach for a standardized naming of

equipment services makes use of existing automation

standards. Promising candidates are field device profiles

like the PLCopen Motion Control Specification that

comprises the standardized definition of motion control

functions [19]. Additionally, the international eCl@ss

product classification system which, among other things,

comprises a comprehensive library of all types of

production equipment [20]. eCl@ss comprises four

hierarchical levels where the third and fourth level can

help to derive a service name for a field device. For

example, a flowmeter is assigned to the group “27-20-04

Meas. istr. flow, volume” where the general function

“flowmeasure” can be deduced. The fourth level

comprises several types of flowmeters, e.g. “27-20-04-

01 Flowmeter (magn.-induct.)” so that the operating

principle can be selected. The name of the service is then

determined to be “flowmeasureInductive”.

4. Model-driven design with SysML

So far, MDE for SOA-AT has been defined in a

general way [14, 15]. It describes how a fluent

information flow can be achieved from process planning

to executable control procedures by using service-

orientation and modeling. Therefore, the planning model

comprises several parts: the Hardware Structure, the

Service Structure, and the Service Orchestration

(Figure 5). To apply the method the general modeling

instructions have to be transferred to an existing

modeling language. Therefore, SysML is chosen because

it is a wide-spread modeling language for systems

engineering [21].

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

Figure 5. Overview of the MDE for SOA-AT
method [14].

In the Service Structure the services are defined

according to their interface specification so that it gives

an overview of all available services in the current

system. In SysML a service is represented as block and

the service operations are added as operations of the

block for which input and output parameters can be

assigned. Within a Block Definition Diagram the

individual services can be designed and relations

between services can be added to express their

dependencies. The “use” relation indicates that a service

is using another one for providing its own functionality.

To indicate its service type stereotypes are defined that

can be assigned to each block. In Figure 6 a section of

the Service Structure of the use case (section 6)

comprising four services is illustrated. The three basic

services “TranslatePneumatic” (of a pneumatic cylinder)

and “DetectMagnetic1/2” (of two reed switches) are

composed to the service “VerifyingTranslate

Pneumatic1” that is used by another composed service

“AssemblyPneumatic”.

Figure 6. Example of a service structure.

The Service Orchestrations that determine the inner

behavior of process services are modeled as activities. In

an Activity Diagram the logic of an activity can be

designed by using actions, representing single process

steps, and control flow elements. The call of an

equipment service can be inserted by a

CallOperationAction that links to the operation of the

block that represents the required service. To insert a

process logic that is outsourced to another service

(product/supporting service) a CallBehaviorAction is

used that links to the respective activity. If the control

flow is bound to conditions either localPre/

Postconditions of actions or eventActions can be used.

Figure 7 illustrates how a service orchestration is

modeled as an Activity Diagram. The activity

“Cr_Production” comprises the action “Supply new

product base” that calls the operation “supply” of the

service “ControlStorage1”. The next action “Transport

new product base from storage to assembly module” is

not activated until the event “Product base ready”

happens. This action calls the service “PickAndPlace1”

and uses the input parameter “motionID” to adjust the

operation “motion”. After the condition “motion

finished” is fulfilled the activity “Pr_KeyFinder” is

called that represents the product service.

Figure 7. Service orchestration of the
service “Cr_Production”.

5. Process implementation with Grafchart

The designed control architecture in SysML is

completely independent of how the services and the

service orchestrations are implemented. In previous

work, an implementation concept with Grafchart as a

suitable process modeling language for the development

and execution of service orchestrations in combination

with the Devices Profile for Web Services (DPWS)

service technology was introduced [13] which is

connected to the SysML modeling in the following.

5.1. Introduction to Grafchart

Graphical programming languages are popular in the

automation industry. Some advantages are simplicity and

providing a better overview of the applications than

textual languages. Visualization of a graphical

application is also straightforward and more intuitive

compared to textual languages.

Grafchart is a graphical programming language based

on Sequential Function Charts (SFC), one of the IEC

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

61131-3 PLC standard languages, and uses the same

graphical syntax with steps and transitions [7]. Steps

represent the state of the application and transitions

represent the change of state. Associated with the steps

are actions which specify what to do at certain occasions.

Associated with each transition is a Boolean guard

condition. By using additional concepts like several

action types, alternative and parallel paths, hierarchical

structuring (macro steps), reusable functions

(procedures), exception handling (exception transitions),

it is convenient to implement large applications that are

maintainable and possible to overview.

5.2. Service-oriented control with JGrafchart

The tool JGrafchart (JG) is a free Grafchart

implementation that supports numerous graphical

elements to make it possible to create rich and

interactive operator interfaces. It also supports various

customizable IO to make it possible to connect

applications to practically any external environment with

only a small or moderate effort. Since version 2.1.0 JG

also has support for DPWS. JG depends on the DPWS

mandatory web service extensions WS-Discovery,

WS-MetadataExchange, and WS-Addressing to enable

automatic discovery of DPWS devices, retrieving

available services and operations, and connecting to

devices as a client. It also has generic support for

interacting with the devices. Writing a JG application

using DPWS devices is done by binding a portType in a

discovered DPWS device to a DPWS Object element in

JG. No device specific glue code is required to interact

with the device. Once the binding has been specified, the

operations are called on the DPWS Object, see Figure 8.

In the figure, a device called “Kitchen light” has been

automatically discovered and device metadata and

available services and operations have been added to the

service registry. To use the operations in the

“SwitchPower” portType a DPWS Object called

“myDPWSObj” has been added to the application and

bound to this portType. “myDPWSObj” is then used to

call the operations “Switch” and “GetStatus”. The

function dpwsSubscribe initiates a subscription and

dpwsHasEvent is used to check if an event of type

“StatusChanged” has been received.

In recent versions of JG the DPWS feature has been

further improved. In version 2.2.0 it is possible to detect

if a service call failed using the new functions

dpwsHasFault and dpwsGetFault and handle this in the

application. In version 2.3.0 it will also be possible to

start the execution without all devices being present and

to manually specify a binding for a device that will be

available later. This is especially useful in the beginning

of the implementation phase since all devices might not

yet exist. The possibility to have comments in transition

conditions has also been added to make it possible to

have text strings like the ones in a SysML activity

diagram as comments specifying the intended transition

conditions in natural language.

Figure 8. Integration of DPWS in JGrafchart.

5.3. Transformation of SysML to Grafchart

For realizing service-oriented control procedures the

chosen implementation concept uses DPWS as service

technology for the equipment services and JG to

implement the process services. Within JG the individual

services in the process layer are not implemented as

DPWS services but as independent Grafchart

Procedures. To reduce the effort of developing the

executable control applications the tool “SysML2JG”

automates the transformation of service orchestrations

specified as Activity Diagram to JG programs. The most

important transformation rules are listed in Table 1.

Table 1. Transformation rules from SysML to

JGrafchart

S dpwsSubscribe(myDPWSObj, "PT10M");
S myDPWSObj.Switch("ON");

S newStatus = myDPWSObj.GetStatus();

dpwsHasEvent(myDPWSObj, "StatusChanged");

myDPWSObj

SysML Grafchart

Action Step

Activity Procedure

Link to service block in
CallOperationAction

DPWS object + action with
service call in step

link to service block in
CallOperationAction

procedure object + procedure
step

Input pins Variable

Event or Pre/Post-condition
of an action

Transition condition

InterruptibleActivityRegion
with ExceptionHandler

Marco step with exception
transition

Initial/Final node Enter/Exit step

Fork/JoinNode Parallel Split/Join

Additional information (input
parameters, etc.)

Comments in steps and
transitions

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

The SysML model has to be exported to the

standardized XMI format which serves as input for the

“SysML2JG” tool. The tool analyses the XMI file and

automatically generates a JG file that comprises all the

information about the process services that was specified

in the SysML model. To make the JG file executable it

only needs to be detailed with implementation specific

details and the service bindings.

6. Use case

6.1. Demonstration system

The presented concept was applied to a real

demonstration system of the SmartFactoryKL. It is a

production unit that assembles several product parts to a

finished product. It comprises three different assembly

modules, a conveyor belt, a Pick&Place unit, two

storages, and several other devices with a total of about

50 field devices. In a first version the unit was controlled

by a PLC that should be replaced by a distributed control

system with service-oriented control.

To employ the production equipment as mechatronic

units that expose their functional capabilities directly as

services, some enhancements have been made to the

hardware. 13 so-called service gateways were installed

which extend several production modules and some

single field devices with computational power and an

Ethernet interface. A service gateway is realized with a

Digi Connect ME 9210 microcontroller and an I/O board

to connect the device interfaces to the microcontroller.

Figure 9 depicts the complete demonstration system and

its pneumatic assembly module that is extended by a

service gateway.

Figure 9. Demonstration system (left),
pneumatic assembly module (middle),
microcontroller (right)

6.2. Control system development

The service-oriented control architecture was

designed according to MDE for SOA-AT including the

development of a SysML model of the complete

demonstration system. The equipment services (40 basic

services and 12 composed services) have been

implemented as DPWS Web services on the micro

controllers by using the DPWS Core toolkit [22, 23].

The implementation of the equipment services

constituted the foundation to enable creation of high-

level process services.

In addition to the control service, two product

services were defined to produce two different product

types. The SysML2JG tool was used to transform the

SysML model to a JG program. The content of the

control service was transferred to the top level of the JG

program and the product services were transformed to

Grafchart procedures. Then the natural language

comments were replaced by actual service calls and

transition conditions. Furthermore, some details

concerning error handling were added. To receive the

production orders, a connection to the ERP system was

implemented by using the JG Socket IO capability. In

the last step the service bindings were established. The

DPWS Objects were bound to the available services in

the automation network that could be selected via the JG

service registry. The abstract service allocations in the

product services were carried out with dynamic

references that are allocated dynamically to the

respective DPWS Object depending on the current order.

This applies for deciding which assembly station to

choose.

The implementation and testing of the new control

program were performed successfully and the complete

production unit now runs on a service-oriented control

architecture that replaces the PLC systems completely.

7. Conclusions and outlook

The presented MDE method provides an integrated

procedure from design to implementation of service-

oriented control procedures. The tool for the automatic

transformation from SysML to JG will be further

developed and made freely available. The reference

architecture constitutes a design guideline for a suitable

structuring and definition of services. Here, further

collaborating activities are needed to establish

standardized and vendor-independent service libraries.

The application of the method has shown that the

development of the overall control procedures can be

performed very easily and quickly as soon as the

equipment services are established. Various extensions

and changes to the control logic and enhancements on

the equipment were made. Due to the raised clarity of

the control structure and the high reusability of the

services the control procedures could be adapted

conveniently and with low efforts. The advantages and

disadvantages compared to ordinary PLC engineering

will be examined systematically in the future.

Since the implementation of the equipment services

on the embedded systems was the most complicated part

there is much room for improvement. In future work the

automatic implementation of the equipment services

Copyright 2013 IEEE

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6648044

based on the engineering models will be elaborated. The

use of embedded devices as a computational platform

selected here constitutes the basis for the development of

future cyber-physical production systems. The vision

contains the dynamic deployment of services on varying

hardware platforms that are distributed in an automation

network. Another possible solution to evince a migration

path for today’s automation systems would be the

implementation on ordinary PLCs.

Acknowledgements

The presented contents are part of several research

projects: the research project RES-COM financed by the

German Federal Ministry for Education and Research

(BMBF), the LCCC Linnaeus Center funded by VR, the

LISA project funded by VINNOVA, and the ELLIIT

Excellence Center funded by VINNOVA/VR.

References

[1] Zühlke, D. and Ollinger, L., “Agile Automation Systems

Based on Cyber-Physical Systems and Service-Oriented

Architectures”, Advances in Automation and Robotics,

Vol. 122, Part 1, pp. 567–574, Springer Berlin

Heidelberg, Germany, 2012.

[2] Vogel-Heuser, B., Witsch, D., Katzke, U.: “Automatic

code generation from a UML model to IEC 61131-3 and

system configuration tools”, Proceedings of the

International Conference on Control and Automation,

ICCA 2005, pp. 1034 –1039 Vol. 2, 2005.

[3] Chiron, F., Kouiss, K.: “Design of IEC 61131-3 function

blocks using SysML”,Proceedings of the Mediterranean

Conference on Control Automation MED 2007, 2007.

[4] Thramboulidis, K., Frey, G.: “An MDD process for IEC

61131-based industrial automation systems”,

Proceedings of Emerging Technologies & Factory

Automation (ETFA 2011), 2011.

[5] S. Klein, G. Frey, M. Minas, “PLC Programming with

Signal Interpreted Petri Nets”, in: Aalst, W.M.P. van der,

Best, E. (Eds.), Applications and Theory of Petri Nets

2003, Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pp. 440–449, 2003.

[6] D. Thapa, C. M. Park, S. C. Park, G. N. Wang, “Auto-

generation of IEC standard PLC code using t-MPSG”,

Int. J. Control Autom. Syst. 7, 165–174, 2009.

[7] C. Johnsson., A Graphical Language for Batch Control,

Ph.D. thesis, Department of Automatic Control, Lund

University, Sweden, March 1999.

[8] IEC-61131-3 ed2.0, “Programmable Controllers, Part 3:

Programming languages”, Technical report, International

standard, International Electrotechnical Commission,

2003.

[9] F. Jammes, A. Mensch, H. Smit, “Service-oriented

device communications using the Devices Profile for

Web Services”, Proceedings of the 3rd International

Workshop on Middleware for Pervasive and Ad-hoc

Computing (ACM), Grenoble, France, pp. 1–8, 2005.

[10] L. Souza, P. Spiess, D. Guinard, M. Köhler, S.

Karnouskos, D. Savio, “SOCRADES: A Web Service

based Shop Floor Integration Infrastructure”,

Proceedings of the Conference Internet of Things 2008,

Zurich, Switzerland, pp. 50–67, 2008.

[11] S. Karnouskos, A. W. Colombo, F. Jammes, J. Delsing,

T. Bangemann, “Towards an architecture for service-

oriented process monitoring and control”, Proceedings of

the 36th Annual Conference on IEEE Industrial

Electronics Society. (IECON), 2010.

[12] L. Ollinger, J. Schlick, S. Hodek, “Leveraging the

Agility of Manufacturing Chains by Combining Process-

Oriented Production Planning and Service-Oriented

Manufacturing”, Proceedings of the 18th IFAC World

Congress. Milan, Italy, 2011.

[13] A. Theorin, L. Ollinger, C. Johnsson, “Service-oriented

Process Control with Grafchart and the Devices Profile

for Web Services”, Studies in Computational

Intelligence, Vol 472, pp 213-228, Springer, 2013.

[14] L. Ollinger and D. Zühlke, “An Integrated Engineering

Concept for the Model-based Development of Service-

oriented Control Procedures”, Proceedings of the IFAC

Conference on Manufacturing Modelling, Management

and Control (MIM 2013) (to be published), Saint

Petersburg, Russia, June 2013.

[15] L. Ollinger, M. A. Wehrmeister, C. E. Pereira, D.

Zühlke, “An Integrated Concept for the Model-Driven

Engineering of Distributed Automation Architectures on

Embedded Systems”, Proceedings of the 11th IFAC

Workshop on Intelligent Manufacturing Systems (MIM

2013) (to be published), São Paulo, Brazil, May 2013.

[16] D. Krafzig, K. Banke, D. Slama, Enterprise SOA:

Service-Oriented Architecture Best Practices, Prentice

Hall, Upper Saddle River, New Jersey, USA, 2005.

[17] T. Erl, Service-Oriented Architecture: Concepts,

Technology, and Design, Prentice Hall, 2005.

[18] K. Güttel, P. Weber, A. Fay, “Automatic generation of

PLC code beyond the nominal sequence”, Proceedings of

the IEEE International Conference on Emerging

Technologies and Factory Automatio ETFA 2008, pp.

1277–1284, September 2008.

[19] PLCopen Technical Committee (2011). Function blocks

for motion control, Version 2.0, Technical Specification.

[20] eCl@ss e.V, eCl@ass 7.0: Classification and Product

Description, URL: http://www.eclass.de, retrieved March

18, 2013.

[21] OMG, Systems Modeling Language V1.3 (SysML),

Specification doc., http://www.sysml.org/specs/, 2012.

[22] OASIS, Devices Profile for Web Services Version 1.1,

OASIS Standard, URL: http://docs.oasis-open.org/ws-

dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf, 2009.

[23] SOA4D Forge, Service-Oriented Architecture for

Devices Project website, URL https://forge.soa4d.org/

(accessed January, 3.2013), retrieved March 21, 2013.

