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Abstract

Systems for process automation become increasingly
complex and also tend to be composed of autonomous sub-
systems, which is strongly driven by the progress made in
information technology. An active field of research is the
implementation of monitoring and control at sub-system
level using cognitive approaches. In this paper we present
a method for autonomous and sensorless condition mon-
itoring of an electric drive train. Based on experiment
design we measured phase currents of a physical demon-
strator device including mechanical defects and extracted
signal features using proper orthogonal decomposition.
In favor of classification of different defect states we per-
formed a linear discriminant analysis, which yields appro-
priate data for a Fuzzy-Pattern-Classification algorithm.
As a result we were able to identify different reference de-
fect states as well as previously unknown states.

1 Introduction

A worldwide trend to increasingly complex systems for
process automation, strongly driven by computer science
and information technology (IT) can be observed. Due to
the wide range of topics of the tasks to be faced it is not
surprising that solutions are often treated separately, thus
causing complexity problems. In many cases, cognitive
approaches are therefore used to establish autonomous
systems. However, holistic concepts and implementations
of such systems for process automation and production
engineering which secure, control and monitor complex
installations are still in the initial stage of research and de-
velopment activities [4]. The important reduction of com-
plexity can be achieved by (partial) autonomy of the sys-
tems. In this context the results presented in this paper are
related to and part of the strategies of the initiatives [2, 5].

In this paper we present a method to perform sensorless
diagnosis of an autonomous electric drive train. The unit
under investigation is composed of a synchronous motor

and several attached components, e. g. bearings, axles, and
a gear box. It, thus, represents a typical and crucial com-
ponent within a plant or other machinery. Damage to the
drive may cause severe disturbances and increases the risk
of encountering breakdown costs. Condition monitoring
for such applications usually requires additional sensors.
Our approach instead is to directly use the phase currents
of the motor for health state characterization of the entire
unit. The measurement does not involve any sensors apart
from the built-in current sensors of the motor control. In
this respect the diagnosis performs autonomously.

Section 2 describes the experimental setup of the drive
train. Since it has been built for the development of condi-
tion monitoring methods, we refer to it as a demonstrator.
It consists of several plug-in modules to emulate certain
defect states. To decrease the experimental effort we rely
on design of experiment techniques (DoE) yielding suit-
able parameter sets to be applied for each measurement.
Typically, the raw data is not particularly suitable for fea-
ture generation and needs to be pre-processed in consider-
ation of the properties of a synchronous motor. In Sect. 3
we describe the steps of data processing and the applica-
tion of a coordinate transform in order to densify signal
information in a manageable number of so-called feature
variables. We use subspace methods for this purpose.

An adequate feature set, described in Sect. 4, needs to
be identified for classification of defect states. This pro-
cess also performs feature reduction, as a smaller number
of features leads to more efficient and reliable decisions.
Increased interpretability as well as reduced information
complexity lead to less learning effort for classification al-
gorithms. Moreover, the response time of condition moni-
toring systems decrease—an important criterion for future
implementations in industrial applications. The Linear
Discriminant Analysis (LDA) [1] is used for the definition
of an optimized feature space, which allows for a robust
distinction between defect classes. Section 5 addresses
the validation of the proposed method based on measure-
ments of the demonstrator. The classification is done by
a Fuzzy Pattern approach, which provides a membership
value for each data set with respect to known classes.



2 Experimental Setup and Data Acquisition

The basis for data acquisition is a demonstrator devel-
oped within a publicly funded research project being part
of the German Federal Ministry for Economics and Tech-
nology’s funding programme AUTONOMICS [2].Various
intact and defective components can be plugged into the
demonstrator, which is then operated under different load
conditions. The basis for feature extraction is given by
two measured phase currents of the electric drive denoted
by ϕi, with i = {1, 2}. For experimental convenience,
the currents are measured with an external probe using an
oscilloscope.

The purpose of the demonstrator is to cover a well de-
fined range of typical defects in drive train applications.
Within this project artificial pitting of ball bearings, axle
displacement and inclination of gear-wheels served as ref-
erence damages. To reduce experimental effort, design of
experiment techniques (DoE) were used to identify rea-
sonable combinations of those defects. According to [10],
an orthogonal arrayOA

(
12, 4132

)
was used representing

12 runs of the experiment in total with different configu-
rations. The term 41 refers to four realized levels of pit-
ting, whereas the other two reference damages had 3 levels
each, leading to the term 32. The DoE approach ensures
a high variation of influential parameters with respect to
each other, while the neccessary number of experiments
is kept to a minimum.

For characterization of the demonstrator a variation
of operating conditions was applied to all 12 basic runs,
each representing a certain combination of reference de-
fects. We chose to vary the rotational frequency and load
torque of the drive train as well as the lateral forces of
the bearings with three levels each in terms of DoE. This
leads to an experimental design using the orthogonal array
OA

(
9, 33

)
. Hence, 12 · 9 = 108 states of the demonstra-

tor were measured in total.

3 Feature Generation

3.1 Data Pre-processing
The classification algorithms presented in this paper

rely on the nonambiguous correlation of continuously
measured time signals and certain health states of the
demonstrator drive train. It is therefore important to pre-
process the signals in favor of comparability and repro-
ducibility. In case of the sinusoidal phase currents ϕi a
potential phase offset will disturb the classification pro-
cess. To address this problem we use the analytic signal
representation

ϕai (t) = ϕi (t) + jϕ̂i (t) (1)

instead of the original phase currents, where ϕ̂i is the
Hilbert transform of the corresponding signal :

ϕ̂i (t) =
1

π

∫ ∞
−∞

ϕi (t)

t− τ
dτ. (2)

The transformed signal ϕai (t) is interpreted as a series
of complex numbers with a certain amplitude and angle
α, which allows for statistical analysis. We confine the
analysis to the calculation of a limited number of nor-
malized statistical values ϕ̄a with respect to N values of
α ∈ [0, 2π]. The resulting vectorial signal

s = [ϕ̄a (α1) , . . . , ϕ̄a (αN )]
T (3)

is the basis for feature extraction described in the follow-
ing section.

3.2 Feature Extraction
In pattern recognition, machine learning and classifica-

tion the processing is rarely done on signal level. Instead,
features are used to derive a decision since this approach
is usually less computational expensive. The challenge
in machine diagnosis is to find features representing the
most typical physical characteristics of a technical sys-
tem. Apart from empirical methods a model based tech-
nique can be used as described in [3] for instance. Once
a suitable feature set of n features is found, the classifi-
cation process is applied to the so-called feature space of
dimension n. Ideally, features generated from signals of a
certain machine condition will form dense clusters in the
feature space. The distance between clusters representing
different operating states should be as large as possible to
facilitate classification. For the drive train application we
propose a feature generation method based on proper or-
thogonal decomposition (POD) as known from model or-
der reduction theory [8]. We assume that (3) represents a
single data point in a space of dimension N . POD is used
to find a reduced orthogonal basis, which spans a smaller
subspace containing approximately all of the measured
and pre-processed data. For this purpose all measurement
data is collected within the snapshot matrix

S = [s1, . . . , sK ] (4)

considering K measurements in total. The eigenvalue de-
composition (

SST
)
vi = λivi (5)

provides eigenvectors vi, which represent the new orthog-
onal basis. The eigenvalues λi contain information about
the significance of the respective eigenvector. The re-
duced basis results from selecting only the first n signifi-
cant eigenvectors. Any signal s incorporated in the POD
process may then be expressed as

sk ≈
n∑
i=1

ckivi = Vck; 1 ≤ n < N (6)

with vi being the reduced basis vectors, sorted accord-
ing to their eigenvalues. This method captures significant
characteristics of s within the first n coefficients cki . The
value of n depends on the desired projection error and is
typically much smaller than the signal length N . Hence,



the signal can be described by a comparatively small num-
ber of coefficients. This consolidation of information usu-
ally leads to a good clustering of data within the subspace.
If there are noticeable differences in measured data of dif-
ferent drive train conditions, discriminable clusters will
form as long as noise does not obscure the effects. The
features of the measured data may be arranged within a
feature matrix

F = [c1, . . . , cK ]
T (7)

of size K × n, with K representing the number of data
sets and n being the number of considered features.

Apart from classes representing only one drive train
condition, the user may also want to define separate
classes comprising of more than one condition of the sys-
tem. In the following each of the above mentionend 12
basic setups refers to a separate defect class containing 9
different machine conditions respectively. The next sec-
tion describes how to generate a reduced feature set com-
prising much less than n features, which will then be used
for identification of such user defined classes.

4 Feature Analysis and Reduction

The feature matrix F in (7) contains all measured data.
To discriminate between user defined classes, i.e. de-
fect states, separate feature matrices F(d) are introduced
with d as the class index. We use the LDA algorithm [1]
to define a minimum set of new features derived from
the original set because of its possibility of faster dis-
criminant adaption compared to Support Vector Machines
(SVM) [9]. The LDA is a method to find a direction w
in the feature space such that the projection of data onto
w leads to maximum separation between the projected
classes. The values

yk = wTck (8)

may then be used for classification. The class separation
D can be expressed as

D(w) =
wTΣbw

wTΣw
−→ max

w
(9)

where Σb is the interclass covariance and Σ is the sum of
intraclass covariance matrices. Σb and Σ are of size n×n
and are generated using the class feature matrices F(d).
For a certain direction w the separation D(w) will be
maximized, more precisely the ratio of interclass and intr-
aclass distances becomes maximal. Equation (9) leads to a
generalized eigenvalue problem, where the solution for w
equals the most significant eigenvector of

(
Σ−1Σb

)
. For

the given problem one direction w may not be sufficient
for reliable classification. Instead we construct a sub-
space with the non-orthogonal basis

{
w1, . . . ,wd̂

}
with

wd representing the most significant eigenvectors and d̂ is
the number of user defined classes. We use d̂ basis vectors
instead of the sufficient number of (d̂ − 1) for separation

of known classes. This inreases the capability of detect-
ing unknown class data, which was not part of the analysis
in (4). Let the projection matrix be W =

[
w1, . . . ,wd̂

]
,

then the reduced feature vectors yk read

yk =
(
WTW

)−1
WTck. (10)

In (10) we account for the rectangular matrix W by using
its pseudo-inverse, such that the elements of yk are equiv-
alent to the coordinate values of the projection of ck with
respect to the basis vectors. The reduced feature matrix

Fr = [y1, . . . ,yK ]
T (11)

denotes the input training data for the Fuzzy-Pattern-
Classifier described in the next section.

5 Classification method

The features chosen by the aforementioned concepts
are classified using a Fuzzy-Pattern-Classification ap-
proach, actually the Modified-Fuzzy-Pattern-Classifier
(MFPC). As MFPC is well-suited for industrial imple-
mentations, it has been already applied in many applica-
tions where it proved its performance [7]. Another reason
we chose MFPC is to avoid rigorous classification and
to increase interpretability of the class membership val-
ues. Based on fuzzy membership functions µ(d)

i ∈ [0, 1],
MFPC is employed as a useful approach to modelling
complex systems and classifying noisy data. MFPC’s
membership function for an observation xi is a unimodal
parameter-based potential function of the form

µ
(d)
i

(
xi,p

(d)
i

)
= exp

−
(
xi − ȳ(d)i

ν
(d)
i

)γ(d)
i

ln 2


with respect to class d and feature number i. The param-
eter vector p

(d)
i = (ȳ

(d)
i , ν

(d)
i , γ

(d)
i ) defines the member-

ship function’s properties, namely mean value ȳ(d)i , width
ν
(d)
i , and steepness of its edges γ(d)i with

ȳ
(d)
i = ∆ + min

k
(y

(d)
ki

), ν
(d)
i =

(
1 + 2 ν

(d)
iE

)
·∆,

∆ =
max
k

(y
(d)
ki

)−min
k

(y
(d)
ki

)

2
.

Parameter ν(d)iE
∈ R+ is a tuning parameter which can be

adjusted by an expert, if needed. The MFPC membership
function’s parameters are obtained automatically during a
learning phase, where the features yki are extracted from
K typical observations of a class. All outputs of the func-
tions are aggregated with a fuzzy averaging function net-
work resulting in a single membership value µ(d)

µ(d)
(
x,p(d)

)
=

(
M∏
i=1

µ
(d)
i

(
xi,p

(d)
i

)) 1
M

(12)
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Figure 1. Membership values µ̄(d) for each
tested class against known classes.

per class d, where M is the number of features. The
most likely class membership of a single observation x
is found by defuzzifying the corresponding membership
values (12) using

dx = arg max
d

(
µ(d)

(
x,p(d)

))
.

More detailed information can be found in [6].

6 Results and Outlook

The previously elaborated feature selection approach
is validated with data from the demonstrator. Our evalua-
tion is focused on measured data as explained in Sect. 2.
Based on DoE, there were d̂ = 12 measurement runs of
different defect states, which represent the defect classes.
Class d = 1 does not comprise any defects and acts as
a reference for the good state. For each class a reduced
feature set (cf. Eq. (10)) was calculated. For training of
the MFPC we used classes d = 1 . . . 11, whereas class
12 was considered as an unknown state for testing pur-
poses. The MFPC parameters were set to γ(d) = 8 and
ν
(d)
iE

= 0.01, which lead to satisfactory results within the
scope of the considered application. We performed a clas-
sification of the known training data as well as the un-
known data from class 12. All membership values µ(d) of
a data set {k} related to a certain class d were averaged.
Hence, mean membership values µ̄(d), d = 1 . . . 11 can be
assigned to each class, representing the mean membership
with respect to all known classes. The re-classification
procedure of known classes should lead to a 11 × 11 ma-
trix with a dominant diagonal. Furthermore we added the
classification results for class 12, such that the matrix be-
comes 11 × 12. Figure 1 shows the classification result.
As can be seen, the first 11 classes were correctly classi-
fied. Since class 12 represents an unknown state, it cannot

be assigned to any known class resulting in the compar-
atively small membership values. Thus, the classification
algorithm is able to detect new, i. e. unknown defect states,
which is important for practical applications.

We presented a method to perform condition monitor-
ing for electric drive trains without using any additional
sensors. The feature generation and classification algo-
rithm relies on reference measurements at least of the
good state, which leads to an adaptive method suitable for
applications similar to the one presented in this paper. The
identification of previously unknown states is possible and
allows for the estimation of the general health state of a
system. For this paper we used data from a demonstrator
device. The integration of signal analysis into the drive
control and application under field conditions is planned
as the next step.
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