Connecting ROS to a real-time control framework
for embedded computing

M.M. Bezemer and J.F. Broenink
Robotics and Mechatronics Group,
CTIT Institute, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
Email: m.m.bezemer@utwente.nl, j.f.broenink @utwente.nl

Abstract—Modern robotic systems tend to get more complex
sensors at their disposal, resulting in complex algorithms to
process their data. For example, camera images are being used
map their environment and plan their route. On the other hand,
the robotic systems are becoming mobile more often and need to
be as energy-efficient as possible; quadcopters are an example of
this. These two trends interfere with each other: Data-intensive,
complex algorithms require a lot of processing power, which is
in general not energy-friendly nor mobile-friendly.

In this paper, we describe how to move the complex algo-
rithms to a computing platform that is not part of the mobile
part of the setup, i.e. to offload the processing part to a base
station. We use the ROS framework for this, as ROS provides a
lot of existing computation solutions. On the mobile part of the
system, our hard real-time execution framework, called LUNA,
is used, to make it possible to run the loop controllers on it.

The design of a ‘bridge node’ is explained, which is used to
connect the LUNA framework to ROS. The main issue to tackle
is to subscribe to an arbitrary ROS topic at run-time, instead of
defining the ROS topics at compile-time. Furthermore, it is shown
that this principle is working and the requirements of network
bandwidth are discussed.

I. INTRODUCTION

Modern robotic systems have complex sensors in order to
perceive their environment as good as possible, resulting in
complex algorithms, like environment mapping, visual servo-
ing or path planning, to process the sensor data. Integrating
complex algorithms on computing platforms that are hard real-
time or part of a mobile or energy-efficient robot, is not a
straightforward task. The complex algorithms generally are
non-hard real-time, being not able to guarantee that they finish
before a deadline is met, making scheduling them together with
hard real-time processes impossible. Furthermore, complex
algorithms tend to use many resources, like CPU, memory or
storage, which as a result consume quite some power. Mobile
or energy-efficient robotic systems do not have such amount
of energy available in their batteries.

It would be possible to use dedicated hardware devices
containing loop controllers, which steer the actuators, for ex-
ample, ELMO Whistle! or Maxon Servoamplifier?. However,
during development of loop controllers, one wants to be free to
implement and experiment with own controllers, which is not

Thttp://www.elmomc.com/products/whistle-digital-servo-drive-main.htm
Zhttp://www.maxonmotor.com/maxon/view/content/controls

978-1-4673-7929-8/15/$31.00 © 2015 IEEE

) (=5

System overview showing the separation of algorithms.

Complex
Algorithms

Fig. 1.

feasible when using these hardware devices. Robotic setups
that require sophisticated, custom controllers also need their
own loop controllers, which are not available as pre-packaged
blocks, and also need their own software solutions.

Another solution to the problem is to offload the complex
algorithms to a so-called base station, which is a resource-
rich PC that does not have to be mobile or energy efficient.
An example of such a setup is depicted in Figure 1, showing
a mobile robotic setup, in the form of a helicopter, at the
right and the base station at the left. The helicopter and base
station are able to communicate wirelessly where the helicopter
typically sends location, speed, camera, etc. information, which
is processed by the base station. The base station sends new
commands to the helicopter as response, so it is able to fulfil
its tasks.

For this distributed approach, some software infrastruc-
ture is needed. In this work, we use ROS for the complex
algorithms running on the rich-resource platform, and our
LUNA execution framework [1] for the loop controllers on
the embedded platform. Using ROS allows easy combining
software parts, and their execution is soft real-time due to the
nature of ROS, as that is based on the publisher-subscriber
pattern. Programs in LUNA run hard real-time, provided the
underlying operating system supports hard real-time execution.
However, the connection between these two frameworks is
missing.

The focus of this paper is to connect an embedded applica-
tion to a ROS network. LUNA is used as example framework,
resulting in certain design choices, but most of it is generally
applicable to any other execution framework or application.
Background information, including a discussion on related
work and relevant details about ROS and LUNA are provided
in Section II. The actual solution to connect LUNA and ROS
is discussed in Section III. A proof of principle of discussed in
Section IV, followed by this paper’s conclusions in Section V.

II. BACKGROUND
A. Related Work

Combining different frameworks to support different de-
mands w.r.t. timeliness or other properties has been done
before. Also several interconnects to specific (real-time) frame-
works running on embedded systems and ROS have been
made. We review here four different interconnects. Further-
more, we discuss two rapid control-prototyping tools, which
are regularly used for embedded hard real-time software de-
sign.

R2P [2] is an modular approach to hardware and software
for robot prototyping. It focuses on the rapid prototyping of
small robots, and uses a CAN fieldbus between the robot
computer components, of which each one controls a small
robot part, e.g. one motor. It uses ROS for the high-level
control, using the straightforward publisher-subscriber pattern.
R2P cannot be used in our case, as we need run-time binding
of the signals, to prevent the complete LUNA execution engine
to be recompiled after every change in the model.

Unity-Link [3] focuses on interfacing FPGA-based con-
trollers to software running on a PC, where ROS is used as
middleware. This bridge between ROS-enabled algorithms and
hard real-time loop-controller code is quite specific, as the hard
real-time code runs on FPGAs. Therefore, it cannot be used
for our situation.

Scholl et al. [4] deal with connecting integrated wireless
sensor nodes to a computer. This work deals with a ROS
client only, thus only soft real-time. As we need hard real-
time functionality, this approach is not usable in our situation.

YARP [5] and Orocos [6], [7] are versatile robot mid-
dleware packages, supporting hard real-time and soft real-
time behaviour, and extensive ways of configuring and tuning.
This results in a quite large footprint, making them not really
suitable for UAVs that in general have restricted resources.

LabVIEW? is a rapid control-prototyping tool for designing
control-system software. By itself LabVIEW is only capable
of generating soft real-time signals, as it is running on a
regular operating system without hard real-time capabilities.
In combination with myRio4, which is a CPU/FPGA platform,
it is possible to let LabVIEW generate setpoints that are used
by myRio to generate the hard real-time steering signals for
the actuators. LabVIEW is only suitable for modelling the
controllers, it is not (easily) possible to model the plant and
simulate it together with to controllers to verify the dynamic
behaviour of the system.

Simulink® is a rapid control-prototyping tool in which a
developer draws block diagrams to direct the signal flows to
their destination blocks, which use these signals to perform the
algorithm calculations. Using the code-generation capabilities,
it is possible to have hard real-time execution of the block
diagrams on a computing platform. Unfortunately for simu-
lations, the model needs to be annotated with so-called ‘sink
blocks’ to visualize the simulation results. This mixes different
uses of the models, resulting in a cluttered diagram where the

3http://www.ni.com/labview/
“http://www.ni.com/myrio/
Shttp://www.mathworks.com/products/simulink/

actual (control software) model components becomes hidden
between the other non-relevant model contents.

B. ROS

The Robot Operating System (ROS) [8] is a software
framework that provides a set of tools and libraries to ease
the development of robotic behaviour in software.

One of its strong points is the support of nodes and their
interaction via a network of topics, which can be advertised by
nodes and subscribed to by other nodes. This helps in building
a network of complex algorithms that each provides a part of
the overall computations, each using the data that is sent via the
topics. This data can consist of sensor information, calculated
environment details or planned tasks.

Furthermore, ROS supports a wide range of sensors,
varying from simple force, torque or touch sensors to 3D
environment sensing sensors, like range finders or cameras.
The sensor-driver nodes handle interfacing with these sensors
and send the sensors data and control commands through
topics.

Usually, a node written in C++ subscribes to a fixed set
of topics, which are determined by using their data structures
in the code. As a result the data structures of these topics are
checked by the C++ compiler, resulting in a robust design. This
is due to the compiler being able to match the used fields with
the defined fields of a data structure and alert the developers
about mismatches, for example a field being removed in the
defined structure, or having its data type changed. Additionally,
the defined data structures have an MDS5 checksum attached
to them, calculated using the field information of the structure
and thus making the checksum unique. The MD5 checksum
is run-time checked with an expected checksum when a node
connects to a topic. When these sums do not match, the user
is alerted that the expected and defined data structures of the
topic do not match.

Due to its complexity and extensiveness, ROS is not
capable to provide a hard real-time software environment. The
arrival of data on a topic, the scheduled time of a node and so
on cannot be guaranteed, as this depends on too many unknown
factors. On the other hand, most of the time these things will
go as expected or designed, making ROS suitable for soft real-
time use.

C. LUNA

LUNA [1] is a hard real-time framework that provides
all kind of support for embedded applications, like loop-
controller implementations. It is component-based, meaning
that functionality that is or is not required can be enabled or
disabled, resulting in an as small as possible software footprint.

LUNA also provides a CSP-execution engine, that is capa-
ble of executing processes according to the Communicating
Sequential Processes (CSP) algebra [9]. The CSP algebra
provides mathematical constructs for scheduling concurrent
processes and the rendez-vous communication between them.
The resulting schedules can be formally verified for correct-
ness, like dead-locks and live-locks. This is used to be able to
guarantee that processes are executed before their deadlines,
resulting in hard real-time software execution. Another result

is that the required execution time can be calculated, which can
be used to determine the maximum possible control frequency
of the software loop-control implementation for any computing
platform.

LUNA-based software is typically developed using MDD
techniques, provided by the TERRA tool-suite, making use
of the CSP execution engine. As a result, data-flows in LUNA
applications are implemented using CSP rendez-vous channels.
These channels require both ends to be actively present in order
to communicate the data.

III. DESIGN OF THE ROS TO LUNA BRIDGE

Together ROS and LUNA fulfill all requirements to design
the software for a complex robotic system, as described
in the previous section. Therefore, integration between both
frameworks is required, which is provided by a so-called luna-
bridge ROS node. The LUNA application connects to this ROS
node and is able via this node to communicate with the ROS
network. The system overview is shown in Figure 2. The work
that is described in this paper, is emphasised in this figure. The
design choices for the luna-bridge node and the requirements
of the LUNA application are discussed in the remainder of this
section.

As mentioned earlier, communication in LUNA CSP appli-
cations is typically implemented using rendez-vous channels.
It is required for the integration between LUNA and ROS to
provide means to connect these rendez-vous channels to the
luna-bridge node. ROS does not have rendez-vous communi-
cation, so the connection between ROS and LUNA must deal
with the mismatch between regular or periodic communication
and rendez-vous communication.

The integration between both framework must be as flexi-
ble as possible. This implies the following requirements:

e Any primitive data type needs to be supported, so the
users are not limited in their designs by a (small) set
of data types.

e Complex data types should be build using these primi-
tive data types, further expanding the support different
data types.

e Conversion between LUNA rendez-vous channels and
ROS topics must be available, since both are the native
means for communication.

e Naming conversion must be provided to connect a
LUNA channel to a ROS topic field, as their names
are not the same by default.

The LUNA application is located on the embedded plat-
form, whereas the luna-bridge is located on a resource-rich
platform, as depicted in Figure 2. The resource-rich platform
has access to plentiful resources and computing power. Con-
necting these platforms requires support to communicate. Us-
ing existing networking hardware is the most straightforward
way to connect the platforms to a robotic network. Nowadays
all computing platforms have access to networking hardware,
via a regular LAN port or a WiFi adapter. The latter is
suitable for mobile robotic platforms that cannot have a cabled
connection to the robotic network. An advantage of using

Resource-rich Platform 3 Embedded Platform 3 Plant
1 |
luna-bridge g" T Cl:) 1P go LS;:])A 3
node 2 | > § / .@lﬁb
raw_msgs lib § S PID |

parameter
topics

setpoint
topics

Har‘d Real-Time
|
|
|
|
|
|
|
|
|
I
|

Algorithm | Environment
<
node Sensors

Fig. 2. Architectural overview of the interconnected software platforms.

existing network hardware is that other components can make
use of this infrastructure as well. For example a video camera
can send its video stream over the same network, being able
to reach all computing platforms as well.

A. Robotic Network Design

The robotic network, depicted in Figure 2, spans multiple
computing platforms. Two of these computing platforms are
shown in the figure, connected by a TCP/IP link to depict
the physical network topology. This is the minimally required
network setup. Of course it is possible to add more platforms
to the network if desired.

The resource-rich platform contains the ROS network, to
which two nodes are connected. The algorithm node uses the
environment-sensor data to perform its complex calculations.
In practice it is common to separate complex calculations
over multiple nodes, each with their own sub-task to execute.
Besides algorithm-related nodes, the ROS network typically
contains task-planning related nodes as well, to determine
and schedule the short and long running tasks of the robotic
system, depending on the purpose of the system and its
current environment. The final results of the algorithms, in this
situation ‘setpoints’, are provided via their topics. The luna-
bridge node is subscribed to such topics in order to be able to
send the results to the embedded platform. Additionally, the
luna-bridge node can send parameter values to the algorithm
node to properly configure it, depending on the needs of the
embedded loop-controllers for example.

The embedded platform contains the hard real-time, em-
bedded loop-controllers. These controllers calculate the steer-
ing signals using the results provided by the luna-bridge node
and the sensors. Again, only one controller (application) is
depicted in the figure, but in practice multiple controllers are
typically present, each requiring one or more signals from
the luna-bridge node. The example application consists of a
simple PID controller, but any other hard real-time controller
implementation can be used, depending on the requirements
of the actuators and the complexity of the movements of the
robotic system.

B. Connection Management

As mentioned in the previous section, it is likely that mul-
tiple controllers are present on an embedded platform and/or

that these controllers require more than one of the calculated
values. Setting up a TCP connection for each controller and its
input values, would result in too much resource usage, which
especially needs to be prevented on embedded platforms.

Adding a connection manager on both the embedded and
resource-rich platforms, solves this issue. The connection
manager on the embedded platform establishes a single con-
nection to the connection manager of the luna-bridge. Now
the managers are able to collect the data and send it over the
single connection. This even allows to bundle data of different
topics, and send it using a single TCP packet, further reducing
overhead introduced by the TCP headers that accompany each
packet.

C. Run-time Topic Binding

As briefly mentioned in Section II-B, the software de-
veloper needs to decide at compile-time to which topics the
application requires to subscribe to. In other words, the appli-
cations are bound to the topics at compile-time. This results
in (virtually) no possible mismatches between the actual and
the expected data format of the topics, making ROS-enabled
programs as robust and smooth as possible with respect to
topics.

Unfortunately, the luna-brige node has no definitive infor-
mation about the topics it is going to connect to when it gets
compiled, as this depends on the LUNA applications, which
are designed separately (LUNA is used as a framework, i.e. a
pre-compiled library). It would be possible for a developer to
collect all required topics, depending on the topology of the
robotic network and the applications that are connected to it,
but that would become an error-prone and tedious task. Es-
pecially during development, when the embedded applications
tend to change a lot until they are working properly. Another
disadvantage would be that the luna-bridge needs to be re-
compiled every time one of the embedded applications require
the information of another topic. In other words, compile=time
binding to topics is not useful, and run-time binding to any of
the available topics is required by the luna-bridge node.

The solution is to use a custom way of connecting to a
topics, circumventing the default subscription method of ROS.
This is already done by some software parts of ROS:

e The Python wrappers for ROS®, as an Python appli-
cation is not, per se, compiled before being executed,
so connecting to topics happens at run-time.

e Some of the ROS commands, that are part of the
ros_comm package7, are able to show information
about the available topics and monitor them.

The simple ros_comm commands are written in Python, ba-
sically providing means to easily access the information that
is provided via the Python wrappers. But the more complex
commands, like rosbag, are written in C++, and therefore
use some other mechanism to circumvent the compile-time
topic subscriptions. These commands use the rather unknown
topic_tools package, which has the following description®:

Ohttp://wiki.ros.org/rospy
7http://wiki.ros.org/ros_comm
8http://wiki.ros.org/topic_tools

“Tools for directing, throttling, selecting, and other-
wise messing with ROS topics at a meta level. None
of the programs in this package actually know about
the topics whose streams they are altering; instead,
these tools deal with messages as generic binary
blobs. This means they can be applied to any ROS
topic.”

This package provides the undocumented ShapeShifter
API, that contains the actual mechanics to handle the topics
as binary blobs. An overview containing the ShapeShifter
class and related classes is depicted in Figure 3. Using its
getMessageDefinition() function, it is possible to obtain the
string representation of the names and data types of the topic
fields at run-time for any topic. This provides some basic
means to verify that a topic indeed contains the expected data
and its location in the binary blob, as required by the embedded
applications. Using the data types of the field, its actual data
value can be extracted/decoded from the binary blob.

Due to the complexity it makes sense to provide a separate,
reusable software library that provides the functionality of
decoding the binary blobs of topics, so any application can
just simply request the required data of any topic field. This is
exactly what the raw_messages library® is doing (see Figure 2).
It provides a MessageDecoder class that is able to decode
the raw messages receive from topics and a MessagePublisher
class to publish messages. The luna-bridge node, makes use of
this library to subscribe to or publish at any topic (field) at run-
time, when requested by an embedded application connected
to it.

The overview of the classes involved by luna-bridge in
receiving messages from arbitrary topics is shown in Fig-
ure 3. When an application connects to the luna-bridge
node (depicted as LUNABridge) and requests to receive data,
LUNABridge instantiates a TopicListener and adds it to its
listeners list. The TopicListener subscribes to an arbitrary topic
using the ShapeShifter class. The callback() function is called
when a message is received, with the ShapeShifter class as
message format, which is provided to the MessageDecoder.
The MessageDecoder is able to provide values of the topic
fields to LUNABridge in order to send them to the LUNA
application.

Sending messages from a LUNA application into the
ROS network is more straightforward compared to receiving
them. When the LUNA application requests to send a value,
LUNABridge uses the MessagePublisher to create a message
that can be sent over a topic. The MessagePublisher is con-
figured with the topic and field type, this information is used
when one of the publish() functions is called. These functions
check whether the configured type is matching, as an additional
safety check. If this is the case, it creates the corresponding
ROS message and simply sends it to the topic.

In order for this to work, the message types have to be
known in the luna-bridge node on beforehand. All ROS build-
in native types are currently supported in the luna-bridge
node. Therefore, the messages can only contain a single field
consisting of such a build-in type. Each type has its accompa-
nying publish() function. Without this limitation the amount

%https://github.com/veger/ros-raw_message

ShapeShifter MessageDecoder

msgBuffer: uint8_t* msg: ShapeShifter

decodeNextField()

findField(name: String)
getFieldString(): String
getFieldInt64(): int64_t

getMessageDefinition():
String

MessagePublisher

topic: String
fieldType: FieldTypes

publish(str: String)
publish(i: int64_t)

Fig. 3.

of publish() functions would exponentially increase, as all
combination would require their own function. Of course, it is
possible to add several application-specific message types that
are required by the robotic system, for example, a message type
containing location and rotation information seems sensible to
include.

IV. TESTING
A. Essential tests

A straightforward test is performed to determine that ev-
erything works as intended, i.e. all luna-bridge communication
paths are tested, both to the LUNA application and to the ROS
network. The data flows of this test are depicted in Figure 4.

The embedded platform is implemented using a Gumstix
Overo Fire module!©, running Linux version 3.2.21 and Xeno-
mai 2.6.3. A regular desktop PC with an Intel i7 860 2.8 GHz
CPU and 12 GB RAM is used for the rich-resource platform.
The desktop PC has Kubuntu 14.10 and ROS Indigo, build
from sources!!, installed on it. Both computing platforms are
connected using a 1 Gbit/s dedicated LAN.

First, the user is asked for 2 values on the embedded
platform. These values are sent to the ROS network via the
luna-bridge node on the resource-rich platform. A node on
the ROS network performs a complex calculation (a simple
addition) using these values. Finally, the result is then sent back
to the embedded platform via the luna-bridge, and showed to
the user for verification.

The test showed that the luna-bridge node is working as
intended. It is able to connect the rendez-vous channels to ROS
topics, two channels to send the user input and one channel to
obtain the result of the algorithm.

B. Network occupation

The bandwidth required to communicate with the luna-
bridge node is neglectable in comparison with the bandwidth

10https://store.gumstix.com/index.php/products/227/
https://github.com/veger/ros-builder

Class Diagram showing the relation between the different classes used by the luna-bridge node.

0"%> TopicListener L> LUNABridge
decoder: MessageDecoder listeners
- publishers
callback(msg: ShapeShifter)
0.*
|
Resource-rich Platform | Embedded Platform
' 2a
A/_'_\ ju

. 1 2b
luna-bridge |4—F—— LUNA :__E-
node 1 y{ application
6

Algorithm
node

Fig. 4. Data flow diagram of the test setup.

of (WiFi) networks. A typical camera is able to send about 25
to 30 frames per second, but depending on the capabilities
and complexity of the algorithms a resource-rich platform
might not be able to process the frames at this same rate.
Assuming that 25 loop-controllers get their setpoints at a
10 Hz rate, somewhat lower than a camera is able to send
the frames, it results in 250 packets per second. In a most
simple implementation, these setpoints are not bundled into a
single TCP/IP packets but send separately. These 25 packets,
each 1500 bytes (or 12,000 bits) large, result in a 3 Mbit/s
bandwidth requirement. We expect that this can be covered
by a WiFi connection, taking into account the often lower
channel capacity due to distance, wheather etc. So, we assume
at least 5-10 % of the theoretical maximum of a normal WiFi
connection to be available.

A TCP/IP packet is large enough to bundle about 90
setpoints, assuming that 16 bytes of data are required per
setpoint. So by bundling the 25 setpoints of the example
calculation into one TCP/IP packet, the bandwidth requirement
is reduced by a factor 25. Other means like data compression,
reducing the setpoint frequency, and so on can further reduce
the required bandwidth. Hence it is safe to conclude that
the required bandwidth to connect to the luna-bridge node is
neglectable.

Since the network has lots of left-over bandwidth available,
it makes sense to connect the ‘Environment Sensors’ to the
network as well, in order to communicate their measured
data. For example, if the mobile robotic systems has a camera
attached, its video stream can be sent over the network. For
example, a full HD video stream with H.264 encoding has a
bit rate of about 4.5 Mbit/s. Using a 54 Mbit/s WiFi network
to connect a mobile robotic system, like a quadcopter, with
the resource-rich platform, would have enough bandwidth to
theoretically stream up to 12 full HD video streams. However,
in practical outdoor situations, such video streams might be
too much to let the bundle of setpoints be transported in
a normal way. Note that this paper focuses on the network
bridge, leaving development of (quad-copter) applications out
of the paper’s scope.

It is assumed in the previous discussion that the connection
strength is optimal; in practice this is often not the case.
By implementing quality of service (QoS) mechanisms, it
is possible to drop frames from the video streams in order
to make sure that the luna-bridge communication is getting
through when the available bandwidth is too low. Besides
dropping frames when the connection drops, the mobile system
needs to be robust enough to handle temporarily connection
drops, so it will not continue flying to a direction and get lost,
or crash into obstacles.

V. CONCLUSION

The essential test showed that the principle is working as
intended. It is possible to send and receive data between a
hard real-time embedded platform to a resource-rich platform.
Thereby solving the problem of offloading resource intensive
algorithms from a embedded platform to a resource-rich plat-
form.

It is also argued that the available bandwidth is amply suf-
ficient for the required communication between the platforms.
There is even additionally bandwidth available to transport
data from environment sensors, like a camera, over the same
network. In order to use this additional bandwidth safely,
quality-of-service mechanisms may be necessary.

Therefore, this solution aids in adding more and more
computing platforms to a robotic system, as the the luna-bridge
deals with the data transport between the computing platforms.

Future work is to test the luna-bridge solution in more com-
plex research setups. We plan to use it in our ProductionCell,
i.e. a scale model of a molding machine, to combine vision
with basic control of the setup. A second use-case is to use
it on our drones in order to offload the vision algorithms to a
ground station.

Further future work is to develop QoS in the form of
producing warning messages when the available bandwidth is
below a given threshold, such that this can be used in appli-
cations to update their strategy (for example, let a quadcopter
hoover or even fly back until the connection is strong enough
again).

Additionally, we plan to extend our tool chain to support
this work, such that it is possible to model the connection
between the embedded and resource-rich platforms and include
this information into the generated code.

The principle of connecting the platforms is generally
applicable, so implementing it for other tool chains should not
impose too many problems. So, whether ROS and LUNA are
used or other frameworks, or adding support to other (MDD)
tool chains does not matter.

REFERENCES

[1] M. M. Bezemer, R. J. W. Wilterdink, and J. F. Broenink, “LUNA: Hard
Real-Time, Multi-Threaded, CSP-Capable Execution Framework,” in
Communicating Process Architectures 2011, Limmerick, ser. Concurrent
System Engineering Series, P. Welch, A. T. Sampson, J. B. Pedersen,
J. M. Kerridge, J. F. Broenink, and F. R. M. Barnes, Eds., vol. 68, no.
WoTUG-33. Amsterdam: I0S Press BV, Nov. 2011, pp. 157-175.

[2] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi, “R2p: An open
source hardware and software modular approach to robot prototyping,”
Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1073-1084, 2014.

[3] A.B.Lange, U. P. Schultz, and A. S. Sgrensen, “Unity-link: A software-
gateware interface for rapid prototyping of experimental robot controllers
on fpgas,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Tokyo, Japan, November 3-7, 2013, 2013, pp. 3899—
3906.

[4] P. M. Scholl, M. Brachmann, S. Santini, and K. Van Laerhoven, “Integrat-
ing wireless sensor nodes in the robot operating system,” in Cooperative
Robots and Sensor Networks 2014, ser. Studies in Computational Intel-
ligence, A. Koubaa and A. Khelil, Eds. Springer Berlin Heidelberg,
2014, vol. 554, pp. 141-157.

[5] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot plat-
form,” Int’l J. on Advanced Robotics Systems, vol. 3, no. 1, pp. 043 —
048, Mar. 2006.

[6] H. Bruyninckx, “Open robot control software: the OROCOS project,” in
Robotics and Automation (ICRA), 2001. IEEE International Conference
on, vol. 3. IEEE, 2001, pp. 2523 — 2528.

[71 H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in Robotics and Automation, 2003.
Proceedings. ICRA '03. IEEE International Conference on, vol. 2, Sep.
2003, pp. 2766 — 2771 vol.2.

[8] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in ICRA Workshop on Open Source Software, 2009.

[9] C. A. R. Hoare, Communicating Sequential Processes.
International, 1985.

Prentice Hall

