Evaluation and Improvement of Global Pose Estimation with
Multiple AprilTags for Industrial Manipulators

Christian Nissler*, Stefan Biittner*, Zoltan-Csaba Marton*, Laura Beckmann* and Ulrike Thomas'
*Institute of Robotics and Mechatronics, German Aerospace Center (DLR), 82234 Wessling, Germany
Email: christian.nissler @dlr.de
TRobotics and Human Machine Interaction Lab, Technical University Chemnitz, 09126 Chemnitz, Germany
Email: ulrike.thomas@etit.tu-chemnitz.de

Abstract— Given the advancing importance for light-weight
production materials an increase in automation is crucial. This
paper presents a prototypical setup to obtain a precise pose
estimation for an industrial manipulator in a realistic production
environment. We show the achievable precision using only a
standard fiducial marker system (AprilTag) and a state-of-the art
camera attached to the robot. The results obtained in a typical
working space of a robot cell of about 4.5m x 4.5m are in the
range of 15mm to 35mm compared to ground truth provided by
a laser tracker. We then show several methods of reducing this
error by applying state-of-the-art optimization techniques, which
reduce the error significantly to less than 10mm compared to the
laser tracker ground truth data and at the same time remove
existing outliers.

I. INTRODUCTION

In automobile manufacturing, aerospace constrution and
many more fields Carbon-fiber-reinforced polymers (CFRP)
structures are becoming a more and more important material,
providing good material characteristics at a very low weight
[1], [2]. The production with CFRP materials is leading to
several challenges. So is the placing of CFRP patches right
now a very little automated process, involving much manual
work, which is very tedious for the worker, containing for
example many steps where work has to be done overhead.
There are also possible health risks involved because fine,
respirable dust develops often when working with CFRP
materials [3]. Another important aspect is that the whole
production with CFRP is relatively expensive compared to
“traditional” material like e.g. aluminium.

This motivates to intensify the automation of the produc-
tion with CFRP. Several challenges arise thus, one being
the sensitivity of the CFRP patches in their “raw” state,
making the gripping, picking up and placing down of them an
open problem. Another problem is the needed high absolute
precision of the placing of the CFRP pieces. A typical CFRP
structure consists of many individual CFRP components of
different sizes, which are placed in a sandwich-like pattern in
a mold, where the alignment is chosen to optimize the strength
of the final structure. The placing of these parts requires a
very high precision (typically few mm). The DLR founded
the Center of Lightweight Production (ZLP) to investigate
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some of the mentioned fields and offering a prototypical
assembly line to test automated CFRP manufacturing in a
realistic scenario. Because CFRP components are put in molds,
an overhead configuration of robots, meaning robots hanging
from the ceiling instead of standing on the ground, is desirable.
This leads to the problem that the weight of the robot is
deflecting its linear axis. Also robots influence each other
and themselves by, for example, inducing vibrations. All of
this makes the pose estimation of the robot control, based on
the robot kinematics, unreliable. One approach to solve this
problem and achieve a reliable high-precision pose estimation
is by using a laser tracker. In the described environment a laser
tracker is available (Leica AT901). This offers a very precise
pose estimation by tracking a fiducial point on the robot. This
tracking fails however if there are occlusions by, e.g., other
robots or tools and if the robot “dives” into a mold. It also is
heavily affected by the industrial environment, e.g. dust can
prevent a robust tracking.

An open question which we address here is if the described
system would benefit from a camera system attached at the
robot end effector combined with a fiducial marker system
attached at outer structures. Many techniques used in visual
tracking, like Shi-Tomasi features and KLT [4], [5], [6], rely on
distinctive keypoints in the image data that can be re-detected
in subsequent frames. Azad et al. propose a method for
tracking (single, rigid) 3D models by instead rendering their
edges and computing the overlap between the image edges [7].
Ulrich et al. similarly match 3D CAD models in monocular
images [8]. In our case, in an industrial environment with
very little texture natural landmarks as mentioned above are
very hard to obtain in a robust and precise manner. State of
the art image features like SIFT [9] or SURF[10] fail when
confronted with objects with very little texture. On the other
side, fiducial marker based systems like the ARTag [11] and
the AprilTags [12] can be easily attached in the working
space of the robot. Those marker systems are widely used
in e.g. Augmented Reality [13], mobile robotics [14], even
camera calibration [15] and demonstrated to be reliable feature
trackers.

In this work we focus on evaluating the performance of the
AprilTag system, and improving its performance by taking into
account multiple detections, in the same image or over time.
This problem bears close resemblance to (and uses techniques
from) the 6DoF pose estimation domain, i.e. 3D registration.



Fig. 1. The experiment setup, showing the used robot with the attached end
effector containing the camera on the right and a table with the attached
AprilTag markers on the left

There are two main types of registration approaches, one
where the initial state is already close to the optimal (e.g.
during sequential data acquisition), called local registration,
and the other being global registration, where the initial state
is arbitrary (and typically not used for finding the solution).
Since in robotic applications as considered in this paper, the
targeted tags are observed multiple times as the robot moves,
local registration techniques could be used to localize the robot
more precisely.

One of the main uses of local registration is to improve
alignments obtained with other methods and the large field
of Simultaneous Localization And Mapping (SLAM). An
overview and evaluation principles are presented in [16]. For
our application data correspondence is not a problem, and
there is no need to create a map, so one needs to only
deal with measurement and ego-motion uncertainties. This
can be efficiently dealt with using Sequential Monte Carlo
methods [17], [18], [19]. Therefore, we are using a particle
filter to fuse the results obtained at individual timestamps,
which is a widely used method for localization tasks, with
various techniques available for improving their accuracy [20],
[21], [22].

An important part of global registration is how to find and
filter correspondences between the source and target model.
As discussed in [23], several methods focus on finding consis-
tent/common transformations among many hypotheses derived
from point, surflet or local reference frame correspondences.
Two common approaches are voting, or density-based estima-
tions [24], [25], [26], and ones based on random sampling
consensus (RANSAC) [27], like for example [28], [29], [23].
In the case of AprilTags, the problem then becomes to find the
most likely robot/camera pose at each timestamp, given the
estimates based on the detections of multiple tags. To find a
maximal consensus set, i.e. rejecting misdetections, we employ
RANSAC and compare it to a least-squares solution. The idea
of RANSAC is, instead of using the full set of data points and
trying to find a model minimizing the global error, to use only

a minimal subset of datapoints, iteratively estimating a model
with those points and evaluating this model with the residual
data points. This approach has the advantage to least-squares
methods that it also works with very noisy data and in presence
of outliers. However, it is computationally more complex and
- being a iterative approach - it’s not possible to guarantee a
runtime (but a maximal runtime). While the proposed solution
based on the particle filter integrates information over time, the
RANSAC one optimizes over multiple detections in the same
image.

In summary, this paper deals with the question what pre-
cision a pose estimation with a camera attached to the end
effector of a robot can achieve in a realistic setting. In order
to show this, experiments with a prototypical end effector were
conducted and compared to ground truth obtained by the laser
tracker mentioned before. We present methods to improve the
precision in case of a single tag being detected/tracked, and
for the case where multiple ones are visible in the camera
image.

This work can be considered an extension of a previous
preliminary result presented at ETFA 2015 [30].

II. EXPERIMENT DESCRIPTION

The experimental setup consists of a KUKA KR 210 robot
with an attached end effector and a test rig, consisting of a
table with 12 AprilTags mounted on top (see figure 1). This
rig is supposed to simulate a tooling, e.g. a mold.

The end effector is designed and constructed as a prototype,
containing a AVT GigE camera and an embedded PC. A
fanless embedded computer is used, which is industry-grade
hardware suitable for environments found in production lines,
providing an i7 quad core processor, 8GB of RAM and a SSD
drive in a rugged, fanless chassis. This setup was constructed
with regard to the special environment. Because very fine
dust can exist during handling of CFRP materials, a fully
enclosed space for the camera and the embedded computer
is desirable. This is an even bigger problem considering
that CFRP material can be electroconductive and is therefore
potentially dangerous to the entire electronic equipment. For
cooling and preventing dust from getting inside, pressured
air is constantly maintaining a positive pressure against the
surrounding. It is an integrated system which only needs power
and pressured air connections. All the calculations for the
pose estimation and marker detection run on the embedded
computer, thus making a usage on any robot possible.

In order to simulate typical process steps, three different
motion profiles are executed for these experiments: A hori-
zontal and a vertical arc around the table and another linear
motion towards the markers, as shown in figure 2.

Figure 3 shows the principal setup of the experiment, depict-
ing the robot with the attached image processing end effector
including the camera, the laser tracker, and the simulated mold
with the attached AprilTags. For transformations the following
notation is used: T%, meaning a (passive) transformation from
reference frame a to reference frame b, therefore: T¢ = T¢TY.
The used transformations are thus:



Fig. 2. Concept of the three camera motion profiles.
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Fig. 3. Overview of the transformations

« T} the transformation from the laser tracker to the tracked
ficudcial point on the robot end effector,
o T the transformation from the the tracked fiducial point
to the camera,
e T7% the transformation from the camera to the observed
AprilTag marker, where ¢ is the id of that marker,
o T]" the transformation from the laser tracker to the
AprilTag marker, where ¢ is the corresponding id.
The transformations T and T}m are static, which means they
have to be determined once before the experiment, in the
calibration step, see II-A. The transformation T7** is obtained
from the AprilTag algorithm explained in section II-B and the
transformation T} is the ground truth obtained by the laser
tracker. The latter two transformations are not static and are
measured throughout the experiment. The frame of reference
of the laser tracker is a stationary coordinate system and is
therefore (without loss of generality) considered as the world
coordinate system.

A. Calibration Process

For handling of CFRP material, e.g. putting components in a
mold or handling material with two robots simultaneously, an
absolute positioning, meaning not only relative to the robot
is needed. In order to be able to achieve a positioning to a
determined world coordinate system, the size and the location

of the AprilTag markers have to be measured. The size is
determined by a high-precision microscope, whereas the loca-
tion and rotation is measured by a laser tracker (Leica AT901),
which allows for a 3D measurement precision of 0.5pm and an
angular accuracy of 0.14 arc sec [31]. Therefore, it is possible
to know precisely the location and orientation of the markers
and their respective sizes. For every marker, its corresponding
marker based coordinate system, located at the middle point
of the marker, was then calculated.

The intrinsic parameters of the camera (focal length, prin-
cipal point and distortion parameters) and the transformation
T from the camera frame to the fiducial point tracked by the
laser tracker were established by taking pictures of a precisely
know chessboard pattern at different poses of the robot tracked
by the laser tracker. This is a classical hand-eye calibration
problem [32], [33] and was solved with the DLR CalDe and
CalLab [34] camera calibration software.

B. Image Acquisition and Processing

The tag detection software is a C++ port of the original
AprilTag algorithm presented in [12] allowing full feature
localization (position and orientation) relative to the camera
from a single image. We chose the AprilTag system because it
improves upon previous ones, incorporating a fast and robust
line detection system, a stronger digital coding system and
greater robustness to occlusions, warping and lens distortions
than for example the ARTag [11] system. In order to compare
the estimated poses, the output of the tag detection system
(translation and rotations of the AprilTag relative to the camera
frame) and the corresponding marker id are saved in every
step along with the ground truth transformation from the laser
tracker to the robot end effector.

Because we want to evaluate the absolute error between
our camera based pose estimation and the ground truth we
estimate:

¢ = (T Ty (1)

which is the transformation from the laser tracker to the
camera frame based on the pose estimation of the camera.
Note that we assume the error in the transformation from laser
tracker to be neglectable. This is because we measured the
AprilTags like explained in section II-A very precisely.

Ty = T (TL) @

is the transformation from the laser tracker to the camera
based on measurements. Note that the transformation 77 is
obtained in the hand-eye calibration phase. Therefore we can’t
assume to have “true” ground truth here. By comparing the
transformations we can however make a statement about the
overall error in the transformation chain. Because we want to
evaluate the absolute error between our camera based pose
estimation and the assumed ground truth we compare 1 and
2:

B (Tf) 3)



which is our error matrix. If we split this error matrix E in
its translational vector ¢tz and its rotational part described
by the axis-angle representation (v,a) we can evaluate the
translational error and angular error:

e = [tz er = |al )

C. Single Aprillags

The three motion profiles mentioned before are performed
several times and in certain intervals measurements are ob-
tained, meaning the captured image frames, depicting the
marker locations, are saved and the location of the laser-
tracked point at the end effector of the robot are measured.
Note that our system also would make dynamic measurements
possible, but because a synchronization of the laser tracker
and our system is not yet possible at the moment, static
measurements are done.

To show the benefits of integrating multiple measurements
of the same tag over time, the individual detections are used
in a standard particle filter [17], [19]. The measurement and
motion models assume zero-mean Gaussian errors, with the
variances determined based on approximate accuracies of the
robot and the AprilTag detection method. More specifically,
for representing the rotational part of the motion and mea-
surement model the Bingham distribution is used [35]. The
rotational and translational parts are sampled and weighted
independently, with the final weight being computed as the
product of the translational and rotational probabilities.

For estimating the most likely 6DoF pose, the expected
value of the distribution of the particles are used. The ro-
tational part requires again special care, as averaging rotations
is not straightforward. However, the normalized arithmetic
mean was shown to be a good approximation of the opti-
mal solution [36], and is therefore used in our system. We
use 100,000 particles in our experiments, of which 1% are
uniformly sampled in each time step to avoid depletion.

D. Multiple AprilTags

If more than one marker is visible, a common pose estima-
tion based on these several markers may be more beneficial
than one based on individual markers. For this the outer
corners of all visible markers in a camera image are obtained
from the AprilTag detection software. Because the location and
orientation of the markers were measured in the calibration
step (II-A), these corner points can be calculated in the world
frame of reference. With that, the pose T of the camera in
a world coordinate system is sought. This can be solved in a
Least-Squares approach:

2

;
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where A is the camera matrix which maps from camera space
to pixel coordinates and which was obtained by the camera cal-
ibration (depicting the camera intrinsics). | z; y; 2 1 |

is the vector of the object coordinates (of the ¢-th corner
point), which are in our case the known marker corners in
the laser tracker frame of reference, and [ u; v; w; ]t
are the corresponding marker corners detected in the image.
Note that this is a 2D-homogenous vector and w; is just a
scale parameter. This is a classical Pose-from-n-Points (PnP)
algorithm and can be solved iteratively by a Levenberg-
Marquardt optimization.

To address for example misdetections or bad measurements,
that can affect the least squares solution, RANSAC was used.
In contrast to the Least-Squares Approach (Equation 5) only
the minimal amount of data to estimate a pose (i.e. 4 marker
corners) are used to obtain one possible solution. Then the
distance of every data point to this estimated model (i.e. the
reprojection error) is calculated. If the distance is under a
certain threshold this point is considered as an inlier. These
steps are then repeated until a maximum number of iterations
is reached and the resulting model is the one with the most
inliers over all these iterations. In each step, the maximum
number of iterations can be obtained from the best number of
inliers found so far using a probabilistic formula [27], ensuring
that the probability of finding a solution with more inliers is
below a user-given threshold (typically < 1%).

III. EXPERIMENTAL RESULTS
A. Single Aprillags

Figure 4 shows the mean, minimal, and maximal transla-
tional and rotational error (4) for the motions described in
section II, namely a horizontal semicircle motion in figure 4a, a
vertical semicircle in figure 4a and a linear motion approaching
the markers in 4c. The average error over all measurements is
in all cases around 15mm. Even if this sounds rather imprecise
compared to the robot precision, one has to keep in mind the
large working space of the robot: in case of the linear motion
we start the motion from a distance of about 4.5m.

One interesting issue is the behaviour in the linear motion
case: the error decrease as the robot comes closer to the
markers, as expected. However, the errors increase again after
reaching a minimum of about 5mm. This can be explained by
the chosen configuration of the camera’s optics. It was chosen
to be in focus in almost the complete workspace distance,
however, if the camera gets too close the image becomes too
blurry reducing the performance of the april tag detection.

The detections are then used in a particle filter, that report
in each step the expected value of the relative transformation
between the tag and the camera. As marker number 8 is
visible most often, we report the results for that in figure 5.
The different trajectories are treated again separately, but the
detections from the three runs are merged to better illustrate
the behavior of the filter over time. The estimated 6DoF
pose’s error to the ground truth provided by the laser tracker
is in general more reliable than the raw detections, being
able to filter out the more inaccurate detections’ effects. The
translational errors are below 10mm, and rotational ones
below 0.5 degrees (or even lower). Additionally, the MAP
estimate are also computed for the last step, which differs
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Fig. 4. Mean of the translational (top row) and the rotational error (bottom row) of the pose estimation based on individual AprilTag detections in mm/degrees,

for

(a), (d) : horizontal semicircle
(b), (e) : vertical semicircle
(c), (f) : linear motion.

Note that the error bars depict the minimal and maximal error and the blue line is the total average over all measurements.

from the expected value if the distribution represented by the
particles is skewed and/or is not unimodal. The fact that for
the measurements there is usually a nearby particle (so that
there is no depletion) is shown by the fact that the particle
having the highest data likelihood has similar translational and
rotational errors than the detection.

B. Multiple AprilTags

1) Least Squares: Figure 6 shows the mean, minimal, and
maximal translational and rotational error after Least Squares
Optimization for the motions described in section II.

The Least Squares approach lowers the error in most cases.
Note that the missing bars to the right in figure 6¢ are because
the camera is that close to the mold, that only one marker is
visible. Then, the Least Square error is the same as the result
of the several AprilTag result in figure 4c.

2) RANSAC: Figure 7 shows the mean, minimal, and
maximal translational and rotational error after RANSAC
Optimization for the motions described in section II. We also
report the inlier ratios, which is the number of data points
RANSAC treats as valid data points divided by the total
amount of data points for each measurement step and a total
average in table I.

The RANSAC approach lowers the error vastly — the total
average of all measurements goes down to only 8 to 10mm.
It is interesting to see that outliers, which are probably bad

detections of a marker, are rejected, for example marker 10
compared to figure 7c. Another interesting fact is that the
error seems to be quite static, also during the approach to
the markers in the third figure to the left. This means that the
error is the same when the camera is far away from the scene,
but can see a lot of markers and the case when the camera is
close to the scene and sees only one marker (filling more of the
camera image however). The residual error could be explained
by static error in the transformation chain, for example errors
induced by the hand-eye calibration to the transformation from
the fiducial point of the laser tracker to the camera (7).

IV. CONCLUSIONS

We presented an evaluation of the widely used AprilTag
detection algorithm based on a well calibrated system that
allows for high-accuracy ground truth estimates. The resulting
dataset will be released online to facilitate the development of
other improvements.

Our approach focused on improvements in two areas, first
for single AprilTags, and second on estimates based on multi-
ple AprilTags. Our experiments show clear improvements over
the off-the-shelf methods. This warrants further analysis of
the detection and tracking methods in order to improve on
the accuracy. Obtaining reliable, very precise pose estimates
would benefit not only our application, but many others,
especially in industrial, controlled environments.



TABLE I
INLIER RATIO FOR EACH MOTION PROFILE OVER ALL MEASUREMENTS IN %

shot Nr. 0 1 2 3 4 5 6 7 8 9 10 11 total
horizontal semicircle | 89 | 74 | 69 70 | 78 | 75 | 72 | 77 76
vertical semicircle 91 | 78 | 96 67 | 82 83
linear motion 82 | 73 | 100 | 67 | 89 | 79 | 75 | 67 | 69 | 78 | 100 | 100 79
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Fig. 5. Translational errors in mm (top part) and rotational errors in degrees
(bottom part) of the raw detection (dashed black lines), of the estimated
relative transformation (blue lines), and of the particle with the highest data
likelihood (purple line) in each time step (and the MAP estimate for the last
one), separately for the three types of motion.

In our case, we can guarantee a precise hand-eye calibration
because of the usage of a laser-tracker in the calibration
stage. In cases where this is not possible, and the infor-
mation resulting from the robot’s inverse kinematics is not
sufficiently precise, visual servoing is usually performed [37].
This however is computationally complex, requires a line of
sight continuously during the operation and can cause some
stability problems [38].

We plan to extend this work in several directions: One
interesting experiment would be to obtain dynamic measure-
ments instead of the static measurements. This allows to
make statements about the accuracy which are closer to the
reality in industrial environments. A further line of research
is to enhance the precision and robustness (to e.g. camera
occlusions) by fusing information from additional sensors (e.g.
acceleration sensors) and/or the robot kinematics. Another
improvement would be to utilize SLAM based methods in
the marker calibration step, so instead of manually measuring
every marker, a SLAM based approach could be used to
automatically estimate the markers’ positions. We wanted to
focus on very precise pose estimations and therefore used the
measurements obtained by the laser tracker. Finally, the two
presented approaches, integration over time and over multiple
tags, could be fused, s.t. the particle filter uses the RANSAC
solution as a fused measurement, and the reprojection error as
weighting the particles.



errormm]

0 1 2 3 a
shot Nr

(@)

errormm]

shot Nr

()

errormm]

6
shot Nr

(©)

4

°©

errorldegrees]

14
ks

a
shot Nr

()

Fig. 6. Mean of the translational (top row) and the rotational error (bottom row) for the pose estimation based on Least Squares of all visible markers in

mm/degrees, for

(a), (d) : horizontal semicircle
(b), (e) : vertical semicircle
(c), (f) : linear motion.

error{degrees]

o
ks

N
w
n 1

.J
IS
w

shot Nr

(e)

error[degrees]

14

4

6
shot Nr

®

Note that the error bars depict the minimal and maximal error and the blue line is the total average over all measurements.

18 14

"
=

9]

error(mm]
P
o w5 &
error(mm]
o v s o o O
;
error(mm]
o o

0 1 2 3 5 1 6
shot Nr shot Nr shot Nr
(a) (b) (©
1.0 1.0 1.0
0.8 0.8 0.8
G 06 g o. G 0.6
] g @
5 5 5
g g g
= = =
s s s
504 5 0.4 504
0.2 0.2 0.2
0.0 0.0 0.0
o 1 2 3 4 5 6 7 8 0 1 2 3 a 5 o 2 4 6 8 10 12
shot Nr shot Nr

shot Nr
(C)) (e) ®
Fig. 7. Mean of the translation (top row) and the rotational error (bottom row) of the pose estimation based on RANSAC of all visible markers in mm/degree,
for
(a), (d) : horizontal semicircle
(b), (e) : vertical semicircle
(c), (f) : linear motion.
Note that the error bars depict the minimal and maximal error and the blue line is the total average over all measurements.



[1]
[2]

[3]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. Corum, “Basic properties of reference crossply carbon-fiber compos-
ite,” Oak Ridge National Lab., TN (US), Tech. Rep., 2001.

R. G. Boeman and N. L. Johnson, “Development of a cost competitive,
composite intensive, body-in-white,” SAE Technical Paper, Tech. Rep.,
2002.

P.-J. Tsai, H.-Y. Shieh, W.-J. Lee, and S.-O. Lai, “Health-risk assessment
for workers exposed to polycyclic aromatic hydrocarbons (pahs) in a
carbon black manufacturing industry,” Science of the total environment,
vol. 278, no. 1, pp. 137-150, 2001.

C. Tomasi and T. Kanade, “Detection and tracking of point features,”
Carnegie Mellon University Technical Report CMU-CS-91-132, Tech.
Rep., 1991.

J. Shi and C. Tomasi, “Good features to track,” in 1994 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’94), 1994, pp. 593
- 600.

J. Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature
Tracker: Description of the algorithm,” Jean-Yves Bouguet, 2002.

P. Azad, D. Munch, T. Asfour, and R. Dillmann, “6-DOF Model-based
Tracking of Arbitrarily Shaped 3D Objects,” in ICRA, 2011.

M. Ulrich, C. Wiedemann, and C. Steger, “Cad-based recognition of 3d
objects in monocular images,” in International Conference on Robotics
and Automation, 2009, pp. 1191-1198.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2. Ieee, 1999, pp. 1150-1157.

H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer vision—ECCV 2006. Springer, 2006, pp. 404—
417.

M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 2. 1IEEE, 2005, pp. 590-596.
E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2011, pp. 3400-3407.

C. Feng and V. R. Kamat, “Augmented reality markers as spatial
indices for indoor mobile aecfm applications,” in Proceedings of 12th
international conference on construction applications of virtual reality
(CONVR 2012), 2012, pp. 235-24.

S. Dong, A. H. Behzadan, F. Chen, and V. R. Kamat, “Collaborative
visualization of engineering processes using tabletop augmented reality,”
Advances in Engineering Software, vol. 55, pp. 45-55, 2013.

A. Richardson, J. Strom, and E. Olson, “Aprilcal: Assisted and repeat-
able camera calibration,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. 1EEE, 2013, pp. 1814-1821.
J. Sturm, W. Burgard, and D. Cremers, “Evaluating Egomotion and
Structure-from-Motion Approaches Using the TUM RGB-D Bench-
mark,” in IEEE International Conference on Robotics and Automation
(ICRA), Oct. 2012.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan, “An Introduction
to MCMC for Machine Learning,” pp. 543, 2003.

0. Cappé, S. J. Godsill, and E. Moulines, “An Overview of Existing
Methods and Recent Advances in Sequential Monte Carlo,” Proceedings
of the IEEE, vol. 95, no. 5, pp. 899-924, May 2007.

A. Doucet, S. Godsill, and C. Andrieu, “On Sequential Monte Carlo
Sampling Methods for Bayesian Filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197-208, 2000.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]
(32]

[33]

[34]

[35]

[36]

[37]

(38]

D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in Neural
Information Processing Systems 14. MIT Press, 2001.

N. Kwak, I. K. Kim, H. C. Lee, and B. H. Lee, “Analysis of Resampling
Process for the Particle Depletion Problem in FastSLAM,” Robot and
Human interactive Communication, 2007. RO-MAN 2007. The 16th
IEEE International Symposium on, pp. 200-205, Aug. 2007.

A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast,
B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point
cloud library: Three-dimensional object recognition and 6 dof pose
estimation,” Robotics & Automation Magazine, IEEE, vol. 19, no. 3,
pp. 80-91, 2012.

U. Hillenbrand, “Consistent parameter clustering: Definition and analy-
sis,” Pattern Recognition Letters, vol. 28, pp. 1112-1122, Jul. 2007.

B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3d object recognition,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2010, pp.
998-1005.

F. Tombari and L. D. Stefano, “Hough voting for 3d object recognition
under occlusion and clutter,” IPSJ Transactions on Computer Vision and
Applications, vol. 4, pp. 20-29, 2012.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.

C. Chen, Y. Hung, and J. Cheng, “RANSAC-based DARCES: A New
Approach to Fast Automatic Registration of Partially Overlapping Range
Images,” IEEE Transactions PAMI, vol. 21, pp. 1229-1234, 1999.

R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D Registration,” in IEEE International Conference on
Robotics and Automation (ICRA), May 2009, pp. 3212-3217.

G. Braun, C. Nissler, and F. Krebs, “Development of a vision-based 6d
pose estimation end effector for industrial manipulators in lightweight
production environments,” in Emerging Technologies & Factory Automa-
tion (ETFA), 2015 IEEE 20th Conference on. IEEE, 2015, pp. 1-6.
Leica Geosystems, “PCMM System Specification,” Tech. Rep., 2013.
K. H. Strobl and G. Hirzinger, “Optimal hand-eye calibration,” in In-
telligent Robots and Systems, 2006 IEEE/RSJ International Conference
on. IEEE, 2006, pp. 4647-4653.

K. Strobl and G. Hirzinger, “More accurate camera and hand-eye cali-
brations with unknown grid pattern dimensions,” in IEEE International
Conference on Robotics and Automation, 2008. ICRA 2008., May 2008,
pp. 1398-1405.

K. H. Strobl, W. Sepp, S. Fuchs, C. Paredes, and K. Arbter.
(2010, July) DLR CalDe and DLR CalLab. Institute of Robotics and
Mechatronics, German Aerospace Center (DLR). Oberpfaffenhofen,
Germany. [Online]. Available: http://www.robotic.dlr.de/callab/

C. Bingham, “An Antipodally Symmetric Distribution on the Sphere,”
Ann. Statist., vol. 2, no. 6, pp. 1201-1225, 11 1974. [Online]. Available:
http://dx.doi.org/10.1214/a0s/1176342874

1. Sharf, A. Wolf, and M. Rubin, “Arithmetic and geometric solutions for
average rigid-body rotation,” Mechanism and Machine Theory, vol. 45,
no. 9, pp. 1239 - 1251, 2010.

B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” Robotics and Automation, IEEE Transactions on,
vol. 8, no. 3, pp. 313-326, 1992.

F. Chaumette, “Potential problems of stability and convergence in image-
based and position-based visual servoing,” in The confluence of vision
and control.  Springer, 1998, pp. 66-78.



