
HAL Id: hal-01362400
https://hal.science/hal-01362400

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of safe operation sequences using iterative
refinements and abstractions of timed automata

Thomas Cochard, David Gouyon, Jean-François Pétin

To cite this version:
Thomas Cochard, David Gouyon, Jean-François Pétin. Generation of safe operation sequences using
iterative refinements and abstractions of timed automata. 21st International Conference on Emerging
Technologies & Factory Automation, ETFA 2016, Sep 2016, Berlin, Germany. �hal-01362400�

https://hal.science/hal-01362400
https://hal.archives-ouvertes.fr

Generation of safe operation sequences using

iterative refinements and abstractions of timed

automata

Thomas Cochard∗,†, David Gouyon∗,† and Jean-François Pétin∗,†

∗ Université de Lorraine, CRAN, UMR 7039,

Campus Sciences, BP 70239

54506 Vandœuvre-lès-Nancy cedex, France
† CNRS, CRAN, UMR 7039, France

Abstract—The main objective of operation procedure

engineering for complex and critical systems is to

provide action sequences satisfying safety requirements

specifications. A classical limit of the use of formal

generation approaches for this purpose is the

combinatorial explosion due to the size and the number

of required models. This article addresses this issue by

proposing an iterative approach for the generation of safe

operation sequences, using timed automata, and based on

reachability analysis. The originality of this approach is

to combine a bottom-up framework to build progressively

system models by abstraction, and a top-down iterative

action sequence generation.

Index Terms—Action sequences generation, Reachability

analysis, Iterative approach, Model checking, Timed

automata, Iterative refinement.

I. INTRODUCTION

Industrial processes are complex systems to control,

involving field devices (transmitters and actuators),

that may be manually controlled and monitored by

human field or control room operators, automated

reflex control system, and plant operation control.

In the case of safety critical systems, to operate

while ensuring the satisfaction of safety requirements,

operation is often based on predefined and qualified

procedures. Operating procedures are ordered sequences

of control and monitoring tasks, aiming to modify the

process state and to control its evolution. They are

mainly implemented in Supervisory Control And Data

Acquisition (SCADA) systems and/or Manufacturing

Execution Systems (MES).

The qualification of procedure needs the

demonstration of safety requirements satisfaction. This

may be aided using formal generation or verification

processes. Focusing on action sequences, which are

part of operating procedures, [1] showed, on the one

hand, the feasibility of an automatic approach for the

generation of safe sequences based on reachability

analysis, but, one the other hand, put also in evidence

some limitations related to scalability, mainly due

to combinatorial explosion. The considered action

sequences consist in sets of ordered actions. These

actions may be performed manually by an operator

(locally by a field operator or remotely by a control

room operator) or automatically by control devices.

They induce a change in the state or the status of a

device. This brings an evolution on the process physical

variables, leading the system from an initial situation

to a goal situation. A situation is characterized by the

state (such as functioning features) and status (such as

availability) of the system components and by a set of

physical values.

This article addresses the scalability issue highlighted

in [1]. It proposes an iterative modelling and generation

approach of safe action sequences. This approach is

based on:

• a bottom-up iterative system modelling framework,

which architecture is based on ISA88 standard [2]

hierarchical levels, and in which the behaviour of

system elements is formalised using timed automata

[3]

• a top-down iterative action sequence generation,

based on a ”two-by-two” decomposition with

detailed and abstract models, using reachability

analysis techniques (supported by model-checking

tools) to generate execution traces that model

possible action sequences.

This article is organized as follows. Section II

presents existing approaches for procedure modelling

and generation. Section III presents the iterative

approach proposed for system modelling and action

sequence generation, which is applied on a lab case

study in section IV.

II. EXISTING APPROACHES FOR ITERATIVE

PROCEDURE MODELLING AND GENERATION

Complex systems control has been formalized in

ISA88 [2] and IEC 61512 [4] standards, and combines

two sides: the first one considers automated control

remotely operated from a control room, and the second

one considers manual control, locally operated on the

process via human actions. If a critical process is

considered, the execution of such actions primarily

depends on the qualification of operating procedures.

In the operational domain, a procedure is composed

of two main types of operations: observations, to verify

that operator process view is consistent with the process

actual state, and actions, to operate on devices in order

to control the global process. The field of procedure

modelling [5], [6], generation [7] and verification [8] is

an active research domain since the work of J. Rivas in

[9] which highlighted these problems in process control.

Among the languages used in operation modelling

and synthesis ([10], [5], [7], [11]), timed automata,

introduced in [3], have been chosen by [8] and [1] for

their formal definition. Timed automata can be defined

by a 9-uplet A = (S, V,X, I, L, T, Sm, s0, v0) such that:

• S is a finite set of locations;

• V is a finite set of variables;

• X is a finite set of clocks;

• I is a mapping that label each location s ∈ S with

some clock constraints

• L is a set of events, decomposed in three disjoints

subsets Li, Lo and Ll, where:

– Li is the set of reception labels;

– Lo is the set or emission labels.

– Ll is the set or local labels.

• T is a set of transitions (s, l, g,m, s′) ∈ S × L ×
G×M × S, where:

– G is a set of guards (constraints on the clocks

of X and the variables of V);

– M is the set of the updates on the valuation of

variables and clocks.

• Sm ⊆ S is a set of marked locations;

• s0 ∈ S is the initial location;

• v0 represents the initial values of variables of V .

Using timed automata, [1] recently proposed to

evaluate the feasibility of an approach to automatically

generate safe action sequences. An action sequence,

included in a procedure, is a set of actions to perform

on the process, whether automatic controls or manual

operations by field agents. The proposed approach was

based, on the one hand, on multilevel models using

timed automata (the operated system is then considered

with three hierarchical levels: Device, Function, Recipe),

and, on the other hand, on model checking to analyse

the reachability of a target state. Even if the feasibility

has been shown, the main problem which has been

highlighted is the combinatorial explosion [12].

A first possible way to reduce the size of the explored

state space is to reduce the size of the considered models.

The use of abstraction techniques [13] seems to be

efficient to this end [14]. One technique is based on data

abstraction, using a mapping function from one set of

variable to another [15]. In other works, [16] proposed

a methodology applied to Markov chains to reduce state

space, by generating partial Markov chains from high

level implicit descriptions, while assessing that the lost

of precision relies on acceptable approximations.

A second possible way is to reduce the number of

considered models, by using a structured approach.

As an example, [17] proposed an iterative approach

for the modular control synthesis and implementation.

This approach combines the iterative way of thinking

proposed by the automation object-oriented methods,

and the modular formal synthesis techniques to obtain

iteratively hierarchical controllers. The criteria used to

structure the control system were based on the structure

of the physical process itself, leading to a bottom-up

design starting from the field device models.

III. PROPOSITION OF AN ITERATIVE APPROACH FOR

SYSTEM MODELLING AND ACTION SEQUENCE

GENERATION

A. Overview of the approach

As presented in section II, the feasibility of an

approach based on timed automata and reachability

analysis to generate action sequences has already been

shown, and some limits were highlighted, mainly

regarding the combinatorial explosion problem.

In this article, the limits due to the combinatorial

explosion are addressed. The main originality of

the proposed approach is the combined use of a

bottom-up modelling framework, based on hierarchically

organized models of the system, and a top-down

iterative action sequence generation, based on a

”two-by-two” decomposition with detailed and abstract

models (Figure 1).

The entry points, which are highlighted with a black

triangle in the lower right corner in Figure 1, are

threefold, and detailed later in this section1:

• Model of a sequencer at the higher hierarchical

level;

• Detailed models of the system elements at every

hierarchical level;

• Model of the system elements at the lower

hierarchical level.

The main principle of the proposed approach is the

following: at the various hierarchical levels, system

models are influenced by a sequencer automata, which

models the authorized behaviour of the system. First,

the model checking is performed on these models at the

higher hierachical level, to check the reachability of a

goal situation. If the goal situation can be reached, an

execution trace is then generated, corresponding to an

admissible actions sequence. This actions sequence is

used to automatically build a new sequencer automata.

This sequencer, used as a refined model of the

authorized behaviour, influences system models of lower

hierarchical level, and enables the generation of a

refined sequencer. This is done iteratively from the

higher hierarchical level, down to the lower level, which

corresponds to the device level.

From the entry points and using the proposed

approach, all other sequencers and abstract models can

be automatically deduced, as explained in the next

sections.

B. Bottom-up system modelling using timed automata

In this article, the considered hierarchical structure of

the system is similar to the one used in [1], and limited

to three hierarchical levels which are linked by causal

relations:

• Level 1 - Devices: the lower hierarchical level,

consists mostly in valves and pumps, which are

elements on which whether operator or control can

operate to change state;

1In the timed automata models presented in this article, the

following graphical conventions are used: location names are given

in bold, initial location is given by a transition with no source, guards

on transitions or state invariants are between brackets [], events are in

italic and followed by ”!” or ”?”, to represent respectively emission

or reception, events sets are between braces {}, and variables updates

are underlined.

• Level 2 - Functions: from a functional point of view,

devices are grouped into ”functions” enabling the

evolution of physical variables. The configuration

of a function depends on the state of devices;

• Level 3 - Recipe: the higher hierarchical level,

which describes the set of possible situations, is

specific to each process. The evolution of the

values of physical variables, which characterize the

situations of the system recipe, depends on the

configuration of functions.

In order to guide system modelling, generic models

are proposed in this article. Based on the actinomy [18]

To Prepare, To Do and To Close, a sequence patterns is

proposed: each sequence starts with a Request reception,

and ends with a Response emission. The core of the

sequence is more or less detailed, depending on the

type of model, and on its hierarchical level.

1) Lower level models: Devices, at the lower

hierarchical level, are mostly valves and pumps. They

are the elements on which an operator or the control

operates to change its state. Each device is characterized

by a couple (State, Status) defined as:

• State characterises a set of discrete values to

represent a device state (e.g. for a valve:

open/closed),

• Status characterises a device operational

configuration (e.g. padlocked, condemned...). The

Status can be represented by a discrete variable

which value is to be fixed at the initialisation of

the model (in v0), and will not change during the

state space exploration. This hypothesis is realistic

because a constraint of the approach is to propose

an action sequence to reach a given situation while

taking into account the current devices Status.

An example of a generic device behaviour is given

in Figure 2, concerning more especially valves. In

this model, the locations on the left and the right

expresses that the device is in a stable state: for valves,

it corresponds respectively to closed (corresponding to

state=0), and open (corresponding to state=1). Two

sequences enable to go from one of these location to

another:

• starting with the reception of a request (Open? or

Close?), conditioned by safety and status constraints

(guard [!Contraints]);

• changing the state of the device (state=1 or

state=0);

Common property for all models : EF Sequencer.EndOfSequence

Lvl 3
det. view
System

Lvl 2
abs. view
System

Lvl 3
Sequencer analysis

Reachability

Lvl 2
det. view
System

Lvl 1
abs. view
System

Lvl 2
Sequencer analysis

Reachability

Lvl 2
Execution trace

Lvl 1
Execution trace

Abstraction

Indicates entry models.

Figure 1. Overview of the action sequences generation approach

Open Close

Open?
[!Constraints]

state=1

IsOpened!

Close?
[!Constraints]

state=0

IsClosed!

Figure 2. Generic model of a device (valve)

• ending with the emission of a report (IsOpen! or

IsClosed!).

It is assumed that, from a temporal point of view,

the time needed to operate a device can be neglected

in comparison to process timing constraints. This

hypothesis is realistic because a device operation lasts

only some seconds, while process evolutions often need

some hours.

2) Function detailed models: In this section, a generic

model of functions is detailed (Figure 3).

Initially, the function is in a configuration in which

no physical variable can evolve, and is waiting for

a Request from the sequencer. The reception of the

request, conditioned by constraints to be fulfilled (such

[clk≤delay]

ϕ
+

+
,c

lk
=

0
[c

lo
ck

≥
d
el

ay
]R
eq

u
es

t?
[!
C

o
n
st

ra
in

ts
]

{Sub-request!}

{Sub-response?}
[!ConfigurationB]

{Sub-response?}
[ConfigurationB]

state=1

cl
k
=

0
R

es
p

o
n
se

!
R

eq
u
es

t?

{Sub-request!}

{Sub-response?}
[!ConfigurationA]

{Sub-response?}
[ConfigurationA]state=0

R
es

p
o
n
se

!

Figure 3. Detailed generic model proposed

as mutual exclusion between functions), is the beginning

of a sequence. The core of the sequence changes the

configuration of the function. It consists in a set of

possible interactions with device models via a set of

sub-requests and a set of sub-responses with lower level

models (devices models). Each sub-response reception is

coupled with the evaluation of the configuration reached

via the action performed on a device. Once the function

is in the required configuration, a state variable is then

updated, and the function model close the sequence by

reporting on the reached configuration via the emission

of a Response event.

When a function is configured, some physical

variables may evolve, in function of time. In the model,

their evolution (ϕ++) is dependant on clock values

(clock≥delay), used both to model the dynamics of the

process, and to synchronise all evolutions (in the case

where multiple functions are configured).

To come back to the initial configuration of a

function, a similar sequence is modelled, starting by

the reception of a request, exchanging with lower level

models, and, once the initial configuration is reached,

ending by the emission of a report.

3) Recipe model: In recipe models, locations

represents the possible situations of the process.

Transitions between locations are bind to a guard

modelling a set of constraints on physical variables

and on devices status which characterizes the situation

reached by the transition. As recipes are specific to each

considered system, it is difficult to propose a generic

recipe model. An example is proposed in the case study

presented in section IV.

4) Models abstraction : As this article proposes

a top-down iterative approach of action sequence

generation, only a sub-set of all events is considered

at each level. For this reason, it is possible to build an

”abstraction” of a ”detailed” model by a projection which

keeps only the events shared at the considered level. The

advantage is that it reduces the size of the explored state

space during the reachability analysis. For example, it is

possible to generate at the recipe level some sequences

of functions without considering the events in relation

with the devices. These events will be in fact included

in the device action sequence generation.

Let us consider the generic function model of Figure 3.

Request and Response are two events of the same level of

abstraction as the system model, while Sub-request and

Sub-response interact with the lower level models. The

principle is to project this detailed model to remove all

the event which does not belong to the alphabets shared

with the sequencer.

Considering two sets LN and LN−1 representing the

labels interacting respectively with levels N and N − 1,

a projection operator PLa→Lb is defined, such that:

PLa
→Lb(ǫ) = ǫ

∀ l ∈ La, PLa
→Lb(σ) =

{

l if l ∈ Lb

ǫ else

∀ la ∈ La, lb ∈ Lb, PLa
→Lb(lalb) = PLa

→Lb(la)PLa
→Lb(lb)

(1)

In the resulting timed automata models, transitions

with ǫ are then suppressed, and both source and

sink locations of the transition are merged. The other

transitions are kept, with the associated guards, events

and updates. The result of the projection of the generic

detailed model of Figure 3 is also a generic abstract

model, shown in Figure 4. This model remains structured

with two sequences, starting and ending by request and

report events, and keeps clock constraints in locations.

[clk≤delay]

ϕ
+
+
,c
lk
=
0

[c
lo
ck
≥
d
el
ay

]

Request?
[!Constraints]

state=1

clk=0
Response!

Request?

state=0

Response!

Figure 4. Abstract generic model obtained by projection

C. Reachability analysis and sequencers generation

1) Higher level sequencer: The role of a sequencer

is to restrict the behaviour of the system. Sequencers are

build iteratively by refining a fully permissive sequencer

down to a device level action sequencer.

The higher level sequencer, which is the most

permissive, is only concerning function events and recipe

constraints (Figure 5). It enables to start every functions

of the system, which set is dependant of the considered

system. After each function start request, it evaluates if

the goal situation is reached. This goal is modelled by a

guard corresponding to the characterization of the goal

situation in the recipe model (guard on the transition

entering in the goal location).

EndOfSequence

{Request!}

{Response?}

[Goal] [Goal]

Figure 5. Higher level sequencer

The refinement of sequencers concerns the events

which are involved. This is done using iterative

reachability analyses, which generate at each hierarchical

level execution traces interpreted into a lower level

sequencer, as described in the next subsections.

2) Execution trace generation: The reachability

analysis is performed via model checking, using on the

one hand system and sequencer models, and on the other

hand a property expressing that the sink location of the

sequencer is reachable (EF Sequencer.EndOfSequence),

as shown in Figure 1. If the sink location is reachable,

the analysis returns a timed execution trace leading

from the initial location of the model to the satisfaction

of the property. This trace consists in a timed set of

states and transitions, which is then interpreted into a

lower level sequencer.

3) Interpretation of an execution trace into a

sequencer: In order to generate a new sequencer at level

N−1, which is a refinement of the sequencer of level N ,

transformations are made to the execution trace. Indeed,

the trace consists in a sequence of events, defined on

events of LN and LN−1, which reception and emission

by the system are necessary to reach the goal location.

In order to restrict the behaviour of the system at the

level N − 1, the sequencer will emit and receive these

events:

• Requests received by the functions at level N − 1
become emitted events by the new sequencer, at the

same clock value;

• Responses emitted by the functions at level N − 1
become received events by the new sequencer, at

the same clock value.

IV. A CASE STUDY: CISPI

A. Case study presentation

CISPI2 is a lab platform dedicated to Safe

and Interactive Operating of Industrial Processes. It

represents some key features of an auxiliary feed water

system, with various physical redundancies. A partial

process flow diagram of the platform is given in Figure 6.

2http://safetech.cran.univ-lorraine.fr/

Figure 6. Process flow diagram of the CISPI platform

Various operational situations of CISPI are included in

the recipe model (Figure 7). It corresponds to a view of

the system at the higher hierarchical level. The possible

situations considered are characterized by tank levels. As

three operating situations are considered, three locations

are used in the model. Transition from one location to

another is conditioned by values on physical variables.

For example, 002BA>=2 indicates that it is necessary

to have a level higher than 2 in the tank 002BA to reach

the situation modelled by the location on the right.

_002BA <= 2

_001BA >= 0 ||
_002BA >= 0

_001BA <= 4
_001BA == 0 &&
_002BA == 0

_002BA >= 2_002BA >= 4

Figure 7. Recipe model

According to the various flows redundancies and

devices of the process, 9 functions of this platform are

considered (F1 to F9). Their configurations are given

in Table I and have an influence on the levels in tanks

001BA and 002BA. In the table:

• ”o” means that the valve must be opened;

• ”c” means that the valve must be closed;

• ”r” means that pump must be running;

• ”-” means that the state of the device is of no

importance;

• ”Delay” gives the delay which is needed to have a

evolution of physical values;

• ↓ of ↑ indicate if the variable is decremented or

incremented by the function.

http://safetech.cran.univ-lorraine.fr/

0
0
1
V

M

1
0
1
V

M

1
0
2
V

M

1
0
3
V

M

2
0
1
V

M

2
0
2
V

M

2
0
3
V

M

0
0
2
V

M

0
0
3
V

M

0
0
4
V

M

0
0
1
P

O

0
0
2
P

O

D
el

ay

0
0
1
B

A

0
0
2
B

A

F1 - o o o - - c c c - r - 4 ↓ ↑
F2 - o o c - - o c o o r - 8 ↓ ↑
F3 - - - c o o o c - c - r 7 ↓ ↑
F4 - - - o o o c c o o - r 8 ↓ ↑
F5 - o c c c o o o - c r - 9 ↓ ↑
F6 - o c o c o c o o o r - 10 ↓ ↑
F7 - c o o o c c o - c - r 9 ↓ ↑
F8 - c o c o c o o o o - r 10 ↓ ↑
F9 o - - - - - - - - - - - 1 ↑ -

Table I

FUNCTIONS CONFIGURATIONS

The generic models presented in section III have been

instantiated to model the 12 devices and 9 functions of

the CISPI platform. It is assumed that the system is in an

initial situation where all devices are closed or stopped

and all tanks are empty. The function detailed models

have been projected to obtain function abstract models,

according to the projection operator defined in section

III.

The implementation of recipe, function, device and

sequencer models with timed automata has been

performed with the Uppaal model checking tool [19].

This tool is also used to perform reachability analyses.

B. Iterative sequence generation results

As the case study proposed in this article considers

three hierarchical levels, the sequence generation is

applied iteratively two times:

• First step, on model of the recipe, abstract models

of the functions, higher level sequencer, to obtain a

refined functions sequencer;

• Second step, on detailed models of the functions,

abstract models of the devices, sequencer previously

generated, to obtain the final action sequence.

1) First step: ”recipe” and abstract ”functions”

levels: Using models of the recipe, abstract models of

the functions, and the higher level sequencer (the most

permissive), a first reachability analysis is performed

to evaluate the property EF Sequencer.EndOfSequence.

Eventually, as the property is evaluated to true, an

execution trace is generated, and given thereafter:

• at T=0

– StartF1?

– F1Started!

– StartF9?

– F9Started!

• at T=8

– StopF9?

• at T=20

– Property is verified.

This trace indicates that, to reach the goal situation,

F1 and F9 have to be started at T=0, F9 has to be

stopped at T=8, and the goal situation is reached at T=20.

2) Second step: detailed ”functions” and abstract

”devices” levels: The execution trace produced then

is transformed, using the rules defined in section III,

into a timed automata modelling this action sequence

(Figure 8).

EndOfSequence

clk<=20clk<=8

_002BA >= 5 && _001BA >= 2 &&
clk>=20

clk>=8
StopF9!

F9Started?

StartF9!F1Started?StartF1!

Figure 8. Sequencer generated using previous execution trace

This new sequencer automata is used, along with

detailed models of functions and abstract models of

device, in a second generation step. The verification

of the property EF Sequencer.EndOfSequence eventually

leads to the generation of a new execution trace, which

is a refinement of the previous one, given thereafter:

• at T=0

– StartF1?

∗ Open101VM?

∗ _101VMOpened!

∗ Open102VM?

∗ _102VMOpened!

∗ Open103VM?

∗ _103VMOpened!

∗ Launch001PO?

∗ _001POLaunched!

– F1Started!

– StartF9?

∗ Open001VM?

∗ _001VMOpened!

– F9Started!

• at T=8

– StopF9?

• at T=20

– Property is verified.

This trace is a refinement of the previous one,

with the addition of device related events. It precises

how the functions F1 and F9 can be configured by

actions on devices. This trace can finally be proposed

to operate the system in order to reach the goal situation.

V. DISCUSSION AND PERSPECTIVES

This article proposes a framework using jointly a

bottom-up approach to build models and a top-down

iterative approach to generate action sequences. It has

been illustrated here on a reduced scale lab case study,

which size enables its inclusion in an article, to show its

feasibility. For this example, the system was decomposed

in three levels, though the proposed approach could be

used with more. Using a breadth first search algorithm,

reachability analysis has then been performed twice. On

the upper level, the property verification took 539 ms to

return the first sequence indicating in which order some

functions can be used. It then took 284 ms to determine

the actions sequence to perform on devices.

The scalability of the approach has been evaluated

on larger systems, including an industrial size case

study from the CONNEXION Cluster3, composed of

71 devices and 11 functions. Sequences where then

generated in a time lower than 2 seconds, where the

approach proposed previously in [1] failed to find a

possible action sequence due to combinatorial explosion.

In future works, the projection operator will be

formalized in order to take into account explicitly

guards and invariants, and an algorithm to automatically

deduce sequencers from execution trace will be

proposed. Also, the notion of cone of influence [15],

which principle is to focus only on the variables of

interest to reach the goal situation, will be investigated

in order to reduce even more the state space to explore.

ACKNOWLEDGMENT

This works is supported by the CONNEXION

Cluster, financed through the ”Investissements d’Avenir

/ Briques Génériques du Logiciel Embarqué”.

REFERENCES

[1] T. Cochard, D. Gouyon, and J.-F. Pétin, “Generation of safe

plant operation sequences using reachability analysis,” 20th

IEEE International Conference on Emerging Technologies and

Factory Automation, 2015.

[2] ISA, “Ansi/isa-88.01-1995 : Batch control - part 1 : Models and

terminology,” The Instrumentation, Systems and Automation

Society, 1998.

[3] R. Alur and D. L. Dill, “A theory of timed automata,”

Theoretical computer science, vol. 126, no. 2, pp. 183–235,

1994.

[4] I. TC65, “Iec 61512-1: Batch control–part 1: Models and

terminology,” International Electrotechnical Commission, 1997.

3http://www.cluster-connexion.fr/

[5] S. Viswanathan, C. Johnsson, R. Srinivasan,

V. Venkatasubramanian, and K. E. Ärzen, “Automating

operating procedure synthesis for batch processes: Part i.

knowledge representation and planning framework,” Computers

& chemical engineering, vol. 22, no. 11, pp. 1673–1685, 1998.

[6] ——, “Automating operating procedure synthesis for batch

processes: Part ii. implementation and application,” Computers

& chemical engineering, vol. 22, no. 11, pp. 1687–1698, 1998.

[7] Y.-F. Wang, H.-H. Chou, and C.-T. Chang, “Generation of batch

operating procedures for multiple material-transfer tasks with

petri nets,” Computers & chemical engineering, vol. 29, no. 8,

pp. 1822–1836, 2005.

[8] J.-H. Li, C.-T. Chang, and D. Jiang, “Systematic generation

of cyclic operating procedures based on timed automata,”

Chemical Engineering Research and Design, vol. 92, no. 1,

pp. 139–155, 2014.

[9] J. R. Rivas and D. F. Rudd, “Synthesis of failure-safe

operations,” AIChE Journal, vol. 20, no. 2, pp. 320–325, 1974.

[10] K.-E. Arzen and C. Johnsson, “Object-oriented sfc and

isa-s88. 01 recipes presented at the world batch forum,” ISA

transactions, vol. 35, no. 3, pp. 237–244, 1996.

[11] M. Lind, H. Yoshikawa, S. B. Jørgensen, M. Yang,

K. Tamayama, and K. Okusa, “Multilevel flow modeling of

monju nuclear power plant,” Nuclear safety and simulation,

vol. 2, no. 3, pp. 274–284, 2011.

[12] A. Valmari, “The state explosion problem,” in Lectures on Petri

nets I: Basic models. Springer, 1998, pp. 429–528.

[13] A. Bouajjani, P. Habermehl, and T. Vojnar, “Abstract regular

model checking,” in Computer Aided Verification. Springer,

2004, pp. 372–386.

[14] G. Faraut, L. Piétrac, and E. Niel, “Formal approach to

multimodal control design: Application to mode switching,”

Industrial Informatics, IEEE Transactions on, vol. 5, no. 4, pp.

443–453, 2009.

[15] E. M. Clarke, O. Grumberg, and D. Peled, Model checking.

MIT press, 1999.

[16] P.-A. Brameret, A. Rauzy, and J.-M. Roussel, “Automated

generation of partial markov chain from high level

descriptions,” Reliability Engineering & System Safety,

vol. 139, pp. 179–187, 2015.

[17] D. Gouyon, J.-F. Pétin, and A. Gouin, “Pragmatic approach for

modular control synthesis and implementation,” International

Journal of Production Research, vol. 42, no. 14, pp. 2839–2858,

2004.

[18] C. Vogel, Génie cognitif (In French). Masson, 1988.

[19] G. Behrmann, A. David, K. G. Larsen, J. Hakansson,

P. Petterson, W. Yi, and M. Hendriks, “Uppaal 4.0,” in

Quantitative Evaluation of Systems, 2006. QEST 2006. Third

International Conference on. IEEE, 2006, pp. 125–126.

http://www.cluster-connexion.fr/

