Towards the Modelling of Complex Communication
Networks in AutomationML

Florian Patzer*, Aranya Sarkar!, Pascal Birnstill*, Miriam Schleipen* and Jiirgen Beyerer* *Fraunhofer Institute
of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany
Email: {florian.patzer | pascal.birnstill | miriam.schleipen | juergen.beyerer } @iosb.fraunhofer.de TOtto von
Guericke University Magdeburg, Magdeburg, Germany
Email: aranya.sarkar@st.ovgu.de

Abstract—For several decades production systems were con-
sidered as closed and decoupled units, where information and
network security has not been an issue. This is changing rapidly,
since in the age of smart factories, production systems and office
IT are growing together so as to transform entire value chains
into interconnected distributed systems. By this means, produc-
tion systems inherit the security challenges of office IT networks
connected over the Internet. Therefore and as they tend to be
operated for a much longer period of time, a prospective design
of security mechanisms is mandatory. For some time, the design
process of production systems gets modernised by the Automation
Markup Language (AutomationML, IEC 62714). AutomationML
incorporates formats of all engineering phases of production
systems, thus allowing engineers to model production systems
on various levels of abstraction. The language also provides
building blocks for modelling the network infrastructure, which
are presented in the AutomationML Communication whitepaper.
However, the level of detail that can be captured is currently not
sufficient for modelling most network protocols and therefore any
network security concept. Therefore, we propose an extension
to the AutomationML Communication whitepaper and its best
practice recommendations, which allows us to model networks
according to the established ISO/OSI model. Using this extension
we show that concepts like network separation can be modelled
and validated.

I. INTRODUCTION

The so-called fourth industrial revolution (Industry 4.0) is
characterized by globally distributed and highly flexible value
and supply chains. These are orchestrated beyond enterprise
networks, using the Internet in order to enable new higher-level
services and business models. This evolution is accompanied
by the application of Internet of Things and Services (IoTS)
paradigms to production systems and assets. The result is a
mash-up of office and production IT networks.

Since in the past the production networks where physi-
cally isolated from external networks, they generally have
no protection against cyber attacks. However, through the
connection of production networks to external networks such
protection is becoming a fundamental issue for those systems.
As with requirements in general, also paying attention to
security-related requirements becomes the more complicated
and expensive the later it is dealt with. As a result, the need
for considering security from the beginning of the system
engineering processes arises. The corresponding paradigm
is called Security by Design (SbD). Network security by

design requires full knowledge of the network topologies and
protocols at design time which needs to be consistent with the
later implemented system. Therefore, a model of the system
to be designed has to be created, propagated and refined
throughout all engineering phases. That way, it can be ensured
that currently deployed and future security protocols as well
as mechanisms are applied appropriately and security breaches
are avoided. Additionally, such a maintained model allows
continuous and efficient security analysis throughout the whole
lifetime of the respective production networks.

To achieve such a common information base for all engi-
neering phases and their tools has already been addressed by
several approaches [1][2][3]. A promising and standardized
approach is AutomationML (Automation Markup Language,
further called AML) [4]. It supports all engineering phases of
production systems. Unfortunately, AML lacks a methodology
to describe network topologies and protocols on a level of
detail such that security mechanisms can be modelled (cf.
section IV). Thus, we propose an extended AML modelling
concept with corresponding modelling libraries.

Our contribution extends the communication library of
AML [5] by supporting the well established ISO/OSI model
[6] so that we can depict networks on the granularity of its
layers and according protocols (cf. section I-A). This approach
can be combined with other existing modelling concepts,
e.g. the application recommendation for automation project
configuration [7].

This paper is structured as follows. At first, we give a short
introduction to the ISO/OSI model. Afterwards, we briefly
describe the aims and the structure of AML (cf. section II).
In section III we introduce an example network architecture,
by means of which we show the shortcomings of the current
AML communication library in section IV. Based on these
insights, we propose our extension of the communication
library (cf. section V) and demonstrate its application using
the example network architecture introduced beforehand (cf.
section VI). Subsequently, we discuss related work which
has been done regarding networks modelling in section VII.
Finally, we discuss our contribution and open issues in section
VIIL

978-1-5090-6505-9/17$31.00 (©2017 IEEE

A. ISO/0SI Model

The ISO/OSI model, in its latest revision [6], is the de-facto
standard for describing networks and classifying protocols. It
provides an abstraction for separating the different tasks of
computer networking into a scheme consisting of the following
seven layers:

The physical layer (layer 1), as the lowest layer, is con-
cerned with physical access to a network, i.e., for transmitting
the particular bits over a certain medium such as via modu-
lating an electrical signal on a copper cable. Ethernet and its
modifications, for example, define standards for such mediums
on the physical layer (i.e. 1000BaseT).

The data link layer (layer 2) groups bits into frames and is
responsible for recognizing and correcting transmission errors,
which occur, for instance, due to transients on the medium.
Ethernet and its modifications also operate on the data link
layer. Security protocols used on the data link layer include the
Extensible Authentication Protocol over LAN (EAPoL) [8],
through which nodes can be authenticated before being granted
access to a network.

The network layer, layer 3, enables communication across
the boundaries of the local network, i.e., its task is to transmit
data fragments from a source node to a destination node, often
by routing them across several networks. The widely known
protocol IP (Internet Protocol) and its security extension
IPsec [9], which enables authenticated and encrypted data
transmission, operate on the network layer.

The transport layer (layer 4) is concerned with the quality of
service of end-to-end transmission of data. The Transmission
Control Protocol (TCP) [10], for instance, provides a reliable
service over the Internet Protocol (IP) [11], which does
not cater for reliability of data transmission. The Transport
Layer Security protocol (TLS) [12] enables private end-to-end
communication on layer 4 using symmetric encryption and
message authentication.

The session layer (layer 5) manages connections between
communicating nodes, i.e., it is responsible for establishing,
terminating, restarting, checkpointing, etc. It is usually part of
an application.

The presentation layer (layer 6) is required once intercon-
nected application entities use different syntax or semantics.
In such cases a presentation layer can provide a mapping for
translating between application and network data formats.

The application layer (layer 7), as the uppermost layer,
includes the actual functionality of a network applica-
tion. Security-related protocols on layer 7 include secure
shell (SSH) [13] or Hypertext Transfer Protocol over TLS
(HTTPS) [14].

Conceptually, the interconnection between services of one
ISO/OST layer and the one below or above is called a Service
Access Point (SAP), whereby each layer can only interact with
its direct neighbors, i.e., the layers it shares an SAP with.

II. AUTOMATIONML

In order to reduce the complexity of highly sophisticated
modern production systems, the system engineering process
of the production system is broken down into various phases

and this leads to different and specialized engineering tools
for each phase. Naturally, a broad list of heterogeneous tools
is witnessed with varied data formats and lack of support for
data exchange among them [1]. Hence, AML was developed
as a vendor-independent, neutral data format based on XML to
support such an lossless exchange of engineering information.

The basic architecture of AML consists of the following
standards:

e CAEX: CAEX (standardized as IEC 62424) acts as
the top level format and it stores the plant topology
information

e COLLADA: COLLADA (standardized as ISO/PAS
17506 : 2012) stores the geometric and the kinematic
information.

o PLCopen XML: PLCopen XML is used for the storage
of sequences and behavior.

AML objects (the core elements of AML) represent in-
stances and can further consist of administration items, at-
tributes, interfaces, relations and references [15]. AML pro-
vides the following specifications for this reason:

o InterfaceClassLib: The interface class library comprises
of the interfaces or the description of relations among
the various objects. A standard library is already existent
in AML containing many abstract classes for a general
automation system and these can be further extended.

o RoleClassLib: The role class library consists of the
semantic descriptions of the AML objects, i.e. it explains
the general functionality of a CAEX object within its
context.

o SystemUnitClassLib: System unit library is the area
where all the user-defined AML classes are stored for
reusability. Thus, there are no concrete specifications of
a certain SystemUnitClassLib in AML, however a proper
guideline is defined for the design methodology.

« InstanceHierarchy: The concrete or the overall project
data is stored in the instance hierarchies. They are the
core of the AML data and are structured in a hierarchical
arrangement of the object instances with their proper-
ties, interfaces, references and relations. The hierarchy
is stored with nested CAEX InternalElements (IE) and
each object is characterized by a unique Global Unique
Identifier (GUID) and an arbitrary name [1].

Figure 1 shows these specifications in a nutshell.

The interfaces of objects are represented by the CAEX
Externallnterfaces or Els. Els are typically connected to each
other using InternalLinks (the CAEX link mechanisms). Thus,
InternalLinks model the relations between objects. To under-
stand this concept in detail, the interested reader is referred to
the "Modelling of relations’ section in [5].

III. EXAMPLE NETWORK ARCHITECTURE

For better understanding of the contribution of this paper, we
introduce an example of a simple network architecture using
network separation via VLANSs (cf. Figure 2). Since network
separation is a basic security concept, such an architecture can
be found in nearly every enterprise network. In section IV we

ﬂnstance Hierarchy (IHN/ System Unit Library \
O O .(--.......................--.:
Instantiation

of Objects

Object_Lmking

I(................ -
External Data
Referencing

.........

Use of
Interfaces

Fig. 1. Overview of the AutomationML Specifications and their relations

Physical Links ——-— =~ Tcp
Ethernet

Temperature
Sensor

Switch1 Switch 2

Fig. 2. Example Network Architecture

show that already this simple example cannot be sufficiently
modelled using the current communication library of AML.

The architecture model consists of a temperature sensor, a
PLC (Programmable Logic Controller) which hosts an OPC
UA (Open Platform Communications Unified Architecture
[16]) server, a HMI which serves as the OPC UA client, two
engineering station PCs (PC 1 and PC 2) and two industrial
switches (Switch 1 and Switch 2). A physical link based on
the RS-232 standard is present between the sensor and the
PLC. The PLC and PC 1 are physically connected to the
RJ45 ports of Switch 1. In a similar fashion, the HMI and PC
2 are physically connected to RJ45 ports of Switch 2 using
1000BaseT as wire standard. Switch 1 and Switch 2 are also
connected via a 1000BaseT wire. The protocols used for the
communication between the components, namely ’Ethernet’,
’IP’, "TCP’ and *OPC UA’, are visualized in the architecture
model as well.

Furthermore, the network is segmented using VLANs (Vir-
tual LANs), as can been seen in Figure 2. These VLANs
create isolated networks within the overall network, enhancing
the network security and broadcast control (this is known as
network segmentation). In our example, VLAN 1 and VLAN
2 are the tags (or names) of the two Virtual LANs, where the
PLC and the HMI belong to VLAN 1 and the other devices,

[CommunicationRoleClassLib
A PhysicalDevice { Class AutomationMLBaseRole }
PhysicalEndpointlist { Class AutomationMLBaseRole }
PhysicalConnection { Class AutomationMLBaseRole }
PhysicalNetwork { Class AutomationMLBaseRole }
- LogicalDevice { Class AutomationMLBaseRole }
LogicalEndpointlist { Class AutomationMLBaseRole }
LogicalConnection { Class AutomationMLBaseRole }
LogicalMetwork { Class AutomationMLBaseRole }
CommunicationPackage { Class AutomationMLBaseRole }
[AutomationMLBaseRoleClassLib
- AutomationMLBaseRole { Class }

»

Fig. 3. Role classes of the AutomationML communication library [5]

& CommunicationinterfaceClasslib
=0 PhysicalEndPoint { Class Communication }
=0 LogicalEndPoint { Class Communication }
=0 DatagrammObject { Class Communication }
/& Hardwarelnterfacelib
=0 Socket { Class PhysicalLayerEndpoint }
=0 Plug { CIaswhysicalLayerEndpoim }

Fig. 4. Interface classes of the AutomationML communication library [5]

i.e. the PC 1 and PC 2, are assigned to VLAN 2. This is
achieved by enabling a static VLAN mechanism (port-based
VLANS) in the switches and assigning the correct VLAN tag
to the respective port numbers of the switches.

IV. AUTOMATIONML COMMUNICATION LIBRARY

The AML communication library was derived from the
AutomationML Whitepaper - Communication [5]. Within [5]
two types of communication related information are addressed
as main targets of the modelling approach. The first type con-
sists of communication relevant information for configuration
of communication components of sensors and actuators. The
second type consists of communication network configura-
tion and structure information and includes, among others,
infrastructure device configuration, wiring and quality of ser-
vice information. In consequence of the gathered modelling
requirements, the authors derived role and interface classes
which can be used to model such communication related
information.

Figures 3 and 4 show the PhysicalX and Logical X role
and interface classes, where X is a placeholder for either
Device, EndPoint, Connection or Network. In [5] the authors
defined the Physical X classes as representation of layers 1
and 2 and the Logical X classes as representation of layers
3-7 of the ISO/OSI model (cf. section I-A). In the following
paragraphs we briefly describe the key concepts behind those
classes which are necessary to understand our contribution (cf.
section V).

Physical/Logical Device: A physical device (e.g. a Switch
or PLC) may contain multiple logical devices which, for
example, represent applications with their own endpoints (of
type LogicalEndPoint).

Physical Connection: A physical connection is modelled
between Els of devices. The interfaces have to be of the type
Socket. The Socket class is derived from the PhysicalEndpoint
class. Like in the real world, sockets are interfaces where one
is located on every connection partner device. The counterpart

B CommunicationExamplelnterfaceClassLib
o CommunicationXYPhysicalPlug { Class PhysicalEndPoint }
+o CommunicationXYPhysicalSocket { Class PhysicalEndPoint }
«o ApplicationXYLogicalEndPoint { Class LogicalEndPoint }

Fig. 5. Example for technology specific interface classes of the Automa-
tionML communication library [5]

of a Socket is, again like in the real world, an EI of the type
Plug. The Plug class is also derived from PhysicalEndpoint.
Multiple implementations of transmission mediums can fulfill
the role of a physical connection. Therefore, the library
consists of a PhysicalConnection role class from which those
implementations can inherit. An IE supporting the Physical-
Connection role must contain at least one Plug instance in
order to be able to link it to Socket instances.

Logical Connection: A logical connection is always mod-
elled between Els of devices. The interfaces have to be of
the type LogicalEndPoint. As for the physical connections,
the library contains a LogicalConnection role which can be
supported by logical connection IEs. Additionally, an IE
supporting the LogicalConnection role has to contain at least
one LogicalEndPoint interface in order to be able to link it to
the interfaces of devices.

For the logical and physical endpoints, technology specific
interface classes should be implemented. The described Els
used for physical or logical connections should be derived
from those technology specific classes to enrich the model
with more details. The original example of such classes is
depicted in Figure 5.

Physical/Logical Network: The AML communication li-
brary contains the PhysicalNetwork and LogicalNetwork role
classes to model the network topology. Such a topology is
defined by its connections. Thus, an IE supporting the role
PhysicalNetwork consists of IEs which support the role Phys-
icalConnection (analog for logical network and connections).
Consequently, a physical or logical network is a container for
the corresponding connections within the InstanceHierarchy.

A. Discussion

Due to the lack of rules and intuition in the application of
the AML communication library it is unclear how to model
network protocols and components. Even though the example
of section III is neither complex nor dynamic (e.g. it does not
consist of routing mechanisms and components or firewalls)
several issues arise.

We found that the library is sufficient to model the physical
layer of the ISO/OSI model. Nevertheless, the Physical X role
and interface classes were not adequate to model the data link
layer (like defined in [5]). A simple example is the network
separation using VLANs. Even though VLANSs operate on
the data link layer, they cannot be modelled with physical
connections since they are realized on the logical level and
use multiple physical connections.

This leads to another issue, the relationship between pro-
tocols is not considered in [5] and cannot be modelled with
the current library. However, the information about such rela-
tionships is an essential fragment of modelling and building

networks. Protocols make use of each other extensively and
without the possibility to derive protocol stacks from an
information model, this model is useless for other tools or
will lead to false interpretation. Furthermore, to model security
mechanisms, which was our original objective, a complete
model of the underlying network including all protocol re-
lationships is indispensable.

Consequently, clear rules of how to model protocols, their
relationships and their impact on the network topology are
needed. In section V we provide such rules and explain
augmentations of the original library, which we implemented
to ensure compliance to those rules.

V. EXTENDING THE AUTOMATIONML COMMUNICATION
LIBRARY

In section IV-A, we discussed the issues of modelling
networks with the AML communication library. As a con-
sequence, we provide a concept to solve those issues and
present an extension of the original library which supports the
implementation by additional role and interface libraries (cf.
Figures 6, 7 and 8). Since the following paragraphs are easier
to understand by having an example at hand, we create an
AML model of the example network architecture from section
IIT and explain selected segments of that model in section VI.

The concept is based on the established and well-known,
layer-based ISO/OSI model (cf. I-A). By applying this model
we support the way network architects, engineers and com-
ponents separate technologies and protocols. However, our
approach to utilize the ISO/OSI model slightly differs from
the definition given in [5]. Instead of mapping the layers
one and two to the PhysicalX roles (see section IV), we
only map layer one to these roles. We support this mapping
by adding layer-based endpoint classes located in a library
called IsoOsiLib and deriving technology specific endpoint
interface classes (located in the libraries ProtocolsLib and
HardwarelnterfaceLib) from them respectively (see Figure 6).
Based on this mapping, the following paragraphs introduce
the extensions and describe the concept we followed, which
can be used as collection of rules to add additional network
protocols and devices.

Devices: Devices are modelled as explained in section IV.
Additionally, we introduce roles of the class LogicalDevice
located in a library called DevicesLib for each protocol or
technology which differentiates a device from another just by
supporting the protocol or technology. For example, as not all
switches support VLANs we created a VlanDevice role (see
DeviceLib in Figure 7). To model a switch which supports
VLANS one can simply add VIanDevice as supported role to
the switch’s IE instance (cf. Figure 10).

Connections: As described in section IV, connections are
modelled as IEs supporting either the PhysicalConnection or
LogicalConnection role. To be able to connect protocol end-
points, we augment this concept by creating protocol specific
connection roles (i.e. ConnectionsLib). Following our layer-
based concept, the physical layer connections extend the Phys-
icalConnection role class and the other layers’ connections
the LogicalConnection role class. These new connection roles

A Hardwarelnterfacelib
«o0 Socket { Class PhysicallayerEndpoint }
=0 Plug { Class PhysicallayerEndpoint }
A lsoOsilib
=0 PhysicallayerEndpoint { Class PhysicalEndPoint }
=0 DatalinkLayerEndpoint { Class LogicalEndPoint }
o NetworkLayerEndpoint { Class LogicalEndPoint }
«0 TransportLayerEndpoint { Class LogicalEndPoint }
«0 SessionLayerEndpoint { Class LogicalEndPaint }
«0 PresentationLayerEndpoint { Class LogicalEndPaint }
o0 ApplicationLayerEndpoint { Class LogicalEndPoint }
«o Saplnterface { Class Communication }
@ ProtocolsLib
«o EthernetEndpoint { Class NetworkLayerEndpaoint }
«o |pEndpaint { Class TransportLayerEndpoint }
«o TcpEndpoint { Class DatalinkLayerEndpoint }
«o VlanEndpoint { Class NetworkLayerEndpaint }
+~0 OpcUaEndpointl5 { Class SessionLayerEndpoint }
«o0 OpcUaEndpointl6 { Class PresentationLayerEndpoint }
«0 OpcUaEndpointl7 { Class ApplicationlayerEndpoint }
/i Pluglib
«0 RJ45 { Class Plug }
«0 DB-9{ Class Plug }
A SocketlLib
«0 RJ45 | Class Socket }
=0 DB-9 { Class Socket }

Fig. 6.
extension

Interface classes of the AutomationML communication library

B ConnectionsLib
a Ethernet { Class LogicalConnection }
a Ethernet-Interfaces
«0 DatalinkLayerinterface1 { Class EthernetEndpoint} 0 A© B0
a Ip { Class LogicalConnection }
a Ip-Interfaces
«o0 NetworklLayerInterface { Class IpEndpoint} 0 A© B0
- Tcp { Class LogicalConnection }
- Tep-Interfaces
=0 TransportLayerinterface1 { Class TcpEndpoint} 0 A B0
=0 TransportLayerinterface? { Class TcpEndpoint] 0 A© B0
- 1000BaseT { Class PhysicalConnection }
- 1000BaseT-Interfaces
+o Physicallayerinterface1 { Class Plug } 0 A<BO
+o Physicallayerinterface2 { Class Plug } 0 A<BO
a OpcUa { Class LogicalConnection }
a OpcUa-Interfaces
~o SessionLayerinterface1 { Class OpcUaEndpointl5} 0 A B0
«o SessionLayerinterface2 { Class OpcUaEndpointL5 I}D A9BO
+o PresentationLayerinterface { Class OpcUaEndpointl6} 0 A©B 0
+o PresentationLayerinterface2 { Class OpcUaEndpointl6} 0 A©B O
+o ApplicationLayerinterface1 { Class OpcUaEndpointl7 } 0 A€ B0
+o ApplicationLayerinterface? { Class OpcUaEndpointl7} 0 A© B0
a Vlan { Class LogicalConnection }
a Vlan-Interfaces
«o DatalinkLayerinterface1 { Class VlanEndpoint} 0 A2 B0
A RS232 { Class PhysicalConnection }
- RS232-Interfaces
=0 PhysicallLayerinterface1 { Class Plug} 0 A B0
=0 Physicallayerinterface? { Class Plug} 0 A= B0
i Devicelib
VlanDevice { Class LogicalDevice }

Fig. 7. Network Connection and Device role classes of the AutomationML
communication library extension

contain interfaces which implement the respective endpoint
classes. We demand that endpoints (like device sockets) are
only linked to connection endpoints of the same endpoint
interface class. The restriction to link only interfaces of the
same type is already part of the basic concepts of AML
[4]. Furthermore, we distinguish between single-layer and
multi-layer connections which depends on the number of

ISO/OST layers they operate on and multiparty and end-to-
end connections which describes whether an arbitrary number
of endpoints can be connected or exactly two. In the following
list the connection roles of Figure 7 are mapped to those types:

o Ethernet, IP and VLAN connections are single-layer
multiparty connections. They have one interface which
can be linked internally to each participating Ethernet, IP
or VLAN endpoint.

o RS232, 1000BaseT and TCP connections are single-layer
end-to-end connections. They have exactly two interfaces
which are instances of the same endpoint interface class.

e An OPC UA connection is a multi-layer end-to-end
connection. An OPC UA connection has two interfaces
for each ISO/OSI layer OPC UA operates on (the suffixes
L5, L6 and L7 refer to the respective ISO/OSI layer).

Networks: The paper [5] describes networks as a collection
of connections. However, it does not define a rule to map
connections to networks. Thus, we recommend to model
networks close to reality by creating hierarchies. In such a
hierarchy the root object is the overall network and the leafs
are technology or protocol-specific connections. The children
of the root object support protocol specific network roles
and can consist of additional networks, supporting the same
technology- or protocol-specific network role. How deep the
respective encapsulation will be and what roles are used to
isolate the hierarchy levels along the path from each other
is technology or protocol dependent. This strategy is close
to reality since, depending on the used protocol stack, one
can, for example, create logically separated networks. These
networks may again consist of sub-networks within which sub-
groups of participating devices can exist that are isolated from
each other.

Inter-Layer Relationships: With the concept depicted in
the previous paragraphs, we are able to model networks on
different protocol levels. Nevertheless, it is not yet possible to
create protocol stacks and in particular protocol relationships.
Our objective was to link a representative of one ISO/OSI layer
to the representative of an adjacent ISO/OSI layer directly
below or directly above. Such a representative has to be
device-independent which is why linking endpoints of devices
is not sufficient. However, we observed that connections meet
the requirements to be such representatives. Furthermore, by
linking connection endpoints directly, a parser or modeller
would not be supported in ensuring that only adjacent layers
are interconnected. Therefore, we introduce Service Access
Point (SAP) role classes (cf. IsoOsiServiceAccessPointLib in
Figure 8) and an interface class (cf. IsoOsiLib/SaplInterface in
Figure 6). When linking two connections of different layers,
our concept requires to create an SAP IE which supports the
respective SAP role from the IsoOsiServiceAccessPointLib
and let it be a child of the higher layer connection’s IE.
Furthermore, it is required to add an external interface of the
type Saplnterface to each of the two connections. In addition,
we demand that interfaces of the type Saplnterface are only
linked to SAP interfaces and vise versa.

Note: Due to the space limitations, we exclude attribute
details like VLAN IDs or bandwidths in this paper.

A IsoOsiServiceAccessPointlib
A Layerilayer2Sap { Class Resource }
- LayerWLayerZSap—lntehaces
=0 Physicallayerlnterface { Class PhysicallayerEndpoint} 0 A B0
=0 DatalinkLayerInterface { Class DatalinkLayerEndpoint} 0 A= B0
- Layer2Layer3Sap { Class Resource }
a Layer2Layer3Sap-Interfaces
+o DatalinkLayerinterface { Class DatalLinkLayerEndpoint} 0 A® B0
+o MetworkLayerinterface { Class NetworkLayerEndpoint} 0 A B0
a Layer3Layer4Sap { Class Resource }
a Layer3Layer4Sap-Interfaces
«o NetworkLayerInterface { Class NetworkLayerEndpoint} 0 A©BO
«o TransportLayerinterface { Class TransportLayerEndpoint} 0 A B0
a LayerdLayer5Sap { Class Resource }
a LayerdLayer5Sap-Interfaces
«o TransportLayerinterface { Class TransportLayerEndpoint} 0 A B0
«o SessionLayerinterface { Class SessionLayerEndpoint} 0 A© B0
a Layer5Slayer6Sap { Class Resource }
a LayerSlayer6Sap-Interfaces
«o SessionLayerinterface { Class SessionLayerEndpoint} 0 A© B0
«o Presentationlayerinterface { Class PresentationLayerEndpoint} 0 A©B0
A Layer6layer7Sap { Class Resource }
- Layer6layer7Sap-Interfaces
~o PresentationLayerinterface { Class PresentationLayerEndpoint} 0 A®B0
=0 ApplicationLayerinterface { Class ApplicationLayerEndpoint} 0 A B0

Fig. 8.
extension

SAP role classes of the AutomationML communication library

[IE] PLC { Class Device Role PLC }
b PLC-Interfaces
=0 Port 1 {Class RJ45} Q0 A©B1
=0 Port 2 {Class DB-9} 0 A<B1
=0 Ethernet { Class EthernetEndpoint} 0 A B 1
=0 VLAN { Class VlanEndpoint} 0 AeB1
=0 |P { Class IpEndpoint} 0 A<B1
=0 TCP { Class TcpEndpoint} 0 A©B 1
=0 OPC UA LS { Class OpcUaEndpointl5} 0 A@B1
AutomationMLCSRoleClassLib/ControlEquipment/Controller/PLC
CommunicationRoleClassLib/PhysicalDevice
[TE] HMI { Class Device Role HMI }
- HMI-Interfaces
«o Port 1{Class RJ45} 0 A©B1
«o Ethernet { Class EthernetEndpoint} 0 Ao B 1
«o VLAN { Class VlanEndpoint} 0 A©B1
=0 IP { Class IpEndpoint} 0 A©B1
=0 TCP { Class TcpEndpoint} 0 A< B1
«0 Opc Ua L5 { Class OpcUaEndpointl5} 0 A©B1
AutomationMLExtendedRolelib/HMI
CommunicationRoleClassLib/Physical Device
[IE] Sensor { Class Sensor Role Sensor }
- Sensor-Interfaces
=0 Port 1 {Class DB-3} 1A©B0
AutomationMLCSRoleClassLib/ControlEquipment/Sensor
CommunicationRoleClassLib/Physical Device

Fig. 9. InstanceHierarchy of devices PLC, HMI and Sensor with their
respective endpoints and roles

VI. EXAMPLE MODEL USING AN EXTENDED
COMMUNICATION LIBRARY

In this section we demonstrate the applicability of the
proposed concept (cf. section V). For better comprehensibility
we explain the different parts of section V on an AML model
of the example network architecture from section III.

Devices: When modelling a device like the PLC (cf. Figure
9), we create an EI for each of its physical ports and assign the
respective socket standard’s interface class to it (cf. SocketLib
Figure 6). In addition, we create an EI for every protocol
and layer the PLC shall support. In our example the PLC
uses Ethernet, IP, TCP and OPC UA on layer 5 (OPC UA

[iE] Switch 1 { Class Switch Role }
- Switch 1-Interfaces

«0 Port 1{ClassR}45} D A©B2

«0 Port2{ClassR}45} D A©B2
0 Port3{ClassRJ45} 0 AcB2
-0 Ej‘r\émet { Class EthernetEndpoint} 0 A®B1

=0 VLAN { Class VlanEndpoint} 0 A©B2

CommunicationRoleClassLib/PhysicalDevice
Devicelib/VlanDevice

Fig. 10. InstanceHierarchy of Switch 1 with its endpoints end roles

[TE] Networks { Class Role }

« |[IE] Physical Network { Class Role PhysicalNetwork }
« |[IE] Ethernet Network { Class Role Fthernet }

w |[IE] VLAN 1 Network { Class Role Vian}

w |[IE] VLAN 2 Network { Class Role Vian }

« |[IE] IP Network { Class Role Ip}

« | [IE] TCP Network { Class Rele Tcp }

« | [IE] OPC UA Network { Class Role OpcUa }

Fig. 11. InstanceHierarchy showing all network instances the model consists
of

on layer 6 and 7 was omitted since it is not relevant for our
model). Furthermore, a VLAN EI was modelled to be able to
add the PLC to a VLAN. It is essential that the protocol and
technology-specific endpoints are derived from the IsoOsiLib
endpoints. To create VLANSs, Switch 1 and Switch 2 have to
support the VLAN technology. This is indicated by means of
supporting the role VlanDevice (cf. Figure 10).

Networks: Figure 11 gives an overview of the networks
we created for the example of section III. We modelled each
VLAN as a separate network, whereas only one IP network
IE exists. The IP network IE could also consist of several
sub-networks, which is a classic example of the previously
described hierarchy (cf. section V). Since our example is too
small to contain sub-networks, the IP connection IE in Figure
12 is a direct child of the IP Network IE. The picture also
shows that the roles NetworkLib/Ip and NetworkLib/Tcp are
supported by the corresponding network IEs.

Connections: Figure 12 gives an example for two of the
three connection types, i.e. two single-layer end-to-end TCP
connections and one single-layer multiparty IP connection. All
device IP endpoints in our example model are internally linked
to the NetworkLayerInterfacel EI of IP Connection 1. The
TCP Connection 1 has an interface TransportLayerInterfacel
which is internally linked to the PLC’s TCP endpoint and an
interface TransportLayerInterface2 which is internally linked
to the HMI's TCP endpoint. Analogously, the TCP Connection
2’s transport layer interfaces are internally linked to the TCP
endpoints of PC1 and PC2. The third connection type is
depicted in Figure 13, which shows a multi-layer end-to-end
OPC UA connection where we only linked the session layer
interfaces to the respective OPC UA layer 5 endpoints of the
HMI and the PLC (cf. Figure 9).

SAPs: In Figure 12 TCP Connection 1 has an interface
towards the upper layer called SaplnterfaceL5 and one to-
wards the lower layer called SapInterfacel.3. To model TCP
over IP (often referenced as TCP/IP), we created the Sap34
IE which supports the Layer3Layer4Sap role. This role has
two predefined interfaces derived from the network layer

[IE] IP Network { Class Role Ip }
« |[IE] IP Connection 1 { Class Logical IP Connection Role Ip }
- IP Connection 1-Interfaces
«o Sapinterfacel4 { Class Sapinterface} 0 A©B 2
=0 Saplnterfacel? { Class Saplnterface } 1A©B0
«o Metworklayerinterface { Class IpEndpoint} 4 ASB 0
~ [if] Sap23 { Class Role Layer2Layer3Sap }
ConnectionsLib/Ip
NetworkLib/Ip
[iE] TCP Network { Class Role Tcp }
a |[I]] TCP Connection 1 { Class Logical TCP Connection Role Tcp }
- TCP Connection 1-Interfaces
«o Saplinterfacel5 { Class Sapinterface} 0 A©B1
+o Saplnterfacel3 { Class Sapinterface } 1A©B0
~o Transportlayerinterface1 { Class TcpEndpoint} 1A B0
«o TransportLayerinterface2 { Class TcpEndpoint} 1A© B0
« [If] Sap34 { Class Role Layer3LayerdSap }
a Sap34-Interfaces
«o NetworklayerInterface { Class NetworklLayerEndpoint} 1A© B0
«o TransportLayerinterface { Class TransportlayerEndpoint} 0 A®B1
IsoOsiServiceAccessPointlib/Layer3LayerdSap
ConnectionsLib/Tcp
| [IE] TCP Connection 2 { Class Logical TCP Connection Role Tcp }
- TCP Connection 2-Interfaces
=0 Saplnterfacel5 { Class Sapinterface} 0 A®B0
«o Saplinterfacel3 { Class Sapinterface} 2 A®B0
«o TransportLayerinterfacel { Class TcpEndpoint} 1A< B0
«o TransportLayerinterface2 { Class TcpEndpoint} 1A< B0
~ [if] Sap34 { Class Role Layer3LayerdSap }
ConnectionsLib/Tcp
NetworkLib/Tep

Fig. 12. InstanceHierarchy of the TCP and IP networks and connections with
their roles, endpoints and SAP instances

[1iE] OPC UA Network { Class Role OpcUa }
| [IE] OPC UA Connection 1 { Class OPC UA Connection Role OpcUa }
- QPC UA Connection 1-Interfaces
«o Sapinterfacel4 { Class } 1A©BO
+o SessionLayerinterface1 { Class OpcUaEndpointl5} 1 A< B0
+o SessionLayerinterface2 { Class OpcUaEndpointl5} 1 A< B0
=0 PresentationLayerinterface { Class OpcUaEndpointle} 0 A B0
~o PresentationLayerinterface2 { Class OpcUaEndpointle} 0 A2 B0
«o ApplicationLayerinterfacel { Class OpcUaEndpointlL7 } 0 A B0
«o ApplicationLayerinterface2 { Class OpcUaEndpointlL7 } 0 A B0
-« [I[] Sap45 { Class Sap45 Role LayerdLayer5Sap }
a Sap45-Interfaces
«o TransportLayerinterface { Class TransportlayerEndpoint} 1A© B0
«0 SessionLayerinterface { Class SessionLayerEndpoint} 0 A®B1
IsoQsiServiceAccessPointlib/Layer4Layer5Sap
ConnectionsLib/OpcUa
NetworkLib/OpcUa

Fig. 13. InstanceHierarchy of the OPC UA network and its connection with
the respective roles, endpoints and SAP intstances

and the transport layer interface classes. To build the ac-
tual protocol relationship, we created an internal link from
the SaplInterfaceL.3 EI to the TransportLayerInterface of the
Sap34 IE. Furthermore, we created an internal link from the
NetworkLayerInterface EI of Sap34 to the Saplnterfacel.4
EI of the IP Connection 1 IE. These steps fully establish a
semantic relationship between the two layer representatives
TCP Connection 1 and IP Connection 1.

We mainly modelled protocols and their inter-layer relation-
ships. However, VLAN is an example for a technology or pro-
tocol feature. Thus, a VLAN connection has no own interface
towards other ISO/OSI layers and relies on a protocol for this.
To build the relationship between a VLAN connection and its
protocol instance we equip it with an SAP EI towards its own

[IE] VLAN 1 Network { Class Role Vian}
4 |[IE] Vlan Connection 1 { Class Role Vian}
- Vlan Connection 1-Interfaces
«o DatalinklLayerinterface1 { Class VlanEndpoint} 4 A B0
=0 Saplnterfacel? { Class Saplnterface } 1A= B0
ConnectionsLib/Vlan
NetworkLib/Vian
[TE] VLAN 2 Network { Class Role Vian }

Fig. 14. [InstanceHierarchy of the VLAN networks with the respective
connection, role and interfaces of VLAN 1

layer (cf. SapInterfacel.2 in Figure 14). With this interface we
are able to internally link it to Ethernet connections (via an
SaplnterfaceL2 EI of the Ethernet connection). Since the link
is layer-intern, no SAP element is required.

VII. RELATED WORK

The NETCONF Data Modelling Language Workgroup in-
troduced the data modelling language YANG [17] to model
configuration and state data manipulated by the Network
Configuration Protocol (NETCONF). Ongoing acitivities of
the workgroup include a draft, which is dealing with network
topology modelling and covers layers 1 to 3 of the ISO/OSI
model [18]. While YANG is a completely generic modelling
language, the draft provides additional types covering layers 1
to 3 of the ISO/OSI model. The key differences to our work are
the scope and the level of detail. As our future aim is modelling
security protocols and properties of networks, we need to cover
all layers of the ISO/OSI model, as proposed in this paper.
In terms of the level of detail, our library extension contains
building blocks for various concrete protocols such as IP,
TCP or OPC UA. Those building blocks enable the modelling
of inter-protocol relationships, protocol support on specific
devices and a concrete mapping of protocols and features
to all ISO/OSI layers. Furthermore, it is possible to model
layer-specific properties of a multi-layer protocol like OPC
UA. However, recent approaches of Pfrang and Kippe [19]
to support event correlation for intrusion detection show the
relevance of modelling networks with YANG to apply smart
security mechanisms. Given these related works, a mapping
of our AML network modelling methodology onto YANG and
respective tool support seems to be a reasonable future step.

Model-Driven Networking (MDN) [20] can be used to
generate SDN-based (Software-Defined Networking) networks
given a proper model. Domain-Specific Modelling Language
(DSML), also proposed in [20], can be used to create such
a model. Unfortunately, DSML cannot be linked to AML
component models and is not sufficient to model necessary
details like inter-layer relations. Nevertheless, MDN over
DSML could be used as transformation from an AML model
to an SDN source code.

The need for a methodology to model communication in
AML is not new. In 2013 a paper was published addressing
this issue [21]. Subsequently, it was refined as the whitepaper
in 2014 and published by the AutomationML Consortium
[5] (cf. section IV). Later on this methodology was refined
again [22] and has already been used to create exemplary
network components [23]. However, as we explained in section

IV-A their approach is not yet sufficient to model common
communication networks and security properties.

VIII. CONCLUSION

We proposed an extension to the AML Communication
whitepaper and its standard libraries, which adds the role
and interface classes required for fine-grained modelling of
network protocols and their interdependencies. It is based on
the established ISO/OSI model whereby protocols of adjacent
layers are interconnected via elements supporting service
access point roles. If a device deploys a certain protocol or
technology, we let it support the corresponding role class. Con-
nections on the different layers are modelled via elements sup-
porting certain connection roles. Connection roles implement
endpoint interfaces which must only be connected to endpoints
of the same interface class. Intuitively, networks are modelled
hierarchically as trees. The root element is the overall network,
and the leafs are protocol specific connections. Children of the
root support either protocol- or technology-specific network
roles and can consist of further networks supporting the same
technology- or protocol-specifc role.

Our extension enables engineers to model networks on a
level of detail, which is adequate for considering security by
design and secure extension or maintenance of the networks.
The resulting models allow in-depth security analysis, consis-
tency checks of what has been planned against what is actually
deployed in a production network and to derive configurations
for switches, endpoints and, to a certain degree, routers and
firewalls.

A key task in our future work will be a concept for
modelling dynamic network components such as firewalls
or routers, which requires the integration of semantic rules.
We are also engaged in the AutomationML standardization
activities so as to incorporate our work into future versions of
the standard.

REFERENCES

[1]1 R. Drath, A. Liider, J. Peschke, and L. Hundt, “Automationml-the glue
for seamless automation engineering,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. IEEE, 2008.

[2] T. Moser and S. Biffl, “Semantic tool interoperability for engineering
manufacturing systems,” in Emerging Technologies and Factory Automa-
tion (ETFA), 2010 IEEE Conference on. 1EEE, 2010, pp. 1-8.

[3] T. Moser, R. Mordinyi, D. Winkler, M. Melik-Merkumians, and S. Biffl,
“Efficient automation systems engineering process support based on se-
mantic integration of engineering knowledge,” in Emerging Technologies
& Factory Automation (ETFA), 2011 IEEE 16th Conference on. 1EEE,
2011, pp. 1-8.

[4] IEC, “IEC 62714-1:2014 Engineering data exchange format for use
in industrial automation systems engineering - Automation markup
language - Part 1: Architecture and general requirements,” IEC standard,
2014.

[5] AutomationML Consortium, “AutomationML Whitepaper Communica-
tion,” AutomationML - The Glue for Seamless Automation Engineering,
2014.

[6] ISO, “IEC 7498-1: 1994 information technology—open systems
interconnection—basic reference model: The basic model,” ISO standard
ISO/IEC, pp. 7498-1, 1994.

[71 AutomationML Consortium, “Application Recommendations: Automa-
tion Project Configuration,” AutomationML - The Glue for Seamless
Automation Engineering, 2016.

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

D. D. Nelson and A. DeKok, “Common Remote Authentication Dial
In User Service (RADIUS) Implementation Issues and Suggested
Fixes,” RFC 5080, Dec. 2007. [Online]. Available: https://rfc-
editor.org/rfc/rfc5080.txt

K. Seo and D. S. T. Kent, “Security Architecture for the Internet
Protocol,” RFC 4301, Dec. 2005. [Online]. Available: https://rfc-
editor.org/rfc/rfc4301.txt

“Transmission Control Protocol,” RFC 793, Sep. 1981. [Online].
Available: https://rfc-editor.org/rfc/rfc793.txt
“Internet Protocol,” RFC 791, Sep. 1981.
https://rfc-editor.org/rfc/rfc791.txt

T. Dierks, “The Transport Layer Security (TLS) Protocol Version
1.2 RFC 5246, Aug. 2008. [Online]. Available: https://rfc-
editor.org/rfc/rfc5246.txt

C. M. Lonvick and T. Ylonen, “The Secure Shell (SSH) Transport
Layer Protocol,” RFC 4253, Jan. 2006. [Online]. Available: https:/rfc-
editor.org/rfc/rfc4253.txt

E. Rescorla, “HTTP Over TLS,” RFC 2818, May 2000. [Online].
Available: https://rfc-editor.org/rfc/rfc2818.txt

AutomationML Consortium, “Whitepaper AutomationML Part 1 - Ar-
chitecture and general requirements,” AutomationML - The Glue for
Seamless Automation Engineering, 2016.

IEC, “IEC TR 62541-1:2016 OPC unified architecture - Part 1: Overview
and concepts,” IEC standard, p. 26, 2016.

M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020, Oct. 2010. [Online].
Available: https://rfc-editor.org/rfc/rfc6020.txt

J. Medved, N. Bahadur, H. Ananthakrishnan, X. Liu, R. Varga,
and A. Clemm, “A Data Model for Network Topologies,”
Internet Engineering Task Force, Internet-Draft draft-ietf-i2rs-yang-
network-topo-12, Mar. 2017, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-i2rs-yang-network-topo-12

J. Kippe and S. Pfrang, “Network and topology models to support ids
event processing,” in Proceedings of the 3rd International Conference
on Information Systems Security and Privacy - Volume 1: ICISSP,, 2017,
pp. 372-379.

F. A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, ‘“Model-driven
networking: A novel approach for sdn applications development,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. 1EEE, 2015, pp. 770-773.

M. Dehof, A. Liider, and M. Heinze, “An approach for modelling
communication networks in industrial control systems,” in Industrial
Electronics Society, IECON 2013-39th Annual Conference of the IEEE.
IEEE, 2013, pp. 7702-7707.

F. Bendik and N. Schmidt, “Exchange of engineering data for commu-
nication systems based on automationml using an ethernet/ip example,”
in ODVA Industry Conference and 17th Annual Meeting, Friso, Texas,
USA, 2015.

A. Liider, N. Schmidt, and M. John, “Lossless exchange of automation
project configuration data,” in Emerging Technologies and Factory Au-
tomation (ETFA), 2016 IEEE 21st International Conference on. IEEE,
2016, pp. 1-8.

[Online]. Available:

