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Abstract—This paper presents a methodology to model and
check the behavior of a part of the Linux kernel by applying
automaton theory and in-kernel tracing from real execution. It
is possible to check that the state transitions of the kernel during
a real execution match with the allowed ones, according to the
formal model. The scope of the paper is limited to the IRQ/NMI
subsystem of the Linux kernel.

Index Terms—Real-time, Linux, Modeling, Discrete event sys-
tem, Automata.

I. INTRODUCTION

Linux, albeit being a general-purpose operating system,
has been evolving over time in terms of features and timing
behavior, so as to become increasingly suitable for a multitude
of other and more challenging scenarios, particularly real-
time (RT) systems. Linux has undergone a remarkable and
relentless effort by several developers to improve real-time
performance, e.g., adding full preemptability, chasing and
removing any use of the old global “big kernel lock”, up
to the PREEMPT RT [1] rework of its kernel internals. This
includes deferring part of interrupt handlers kernel threads,
and recasting spinlocks and semaphores as rt-mutexes, where
priority inheritance can work to prevent priority inversion
scenarios, among others. Finally, the introduction of the
SCHED DEADLINE [2] scheduler based on the Constant-
Bandwidth Server [3] and EDF added to the capabilities to
support real-time and deadline-constrained workloads. The
impact of this evolutionary process is witnessed by a number
of successful Linux-based OS products for industrial real-time
scenarios, such as Red Hat Enterprise Linux for Real-Time [4]
(RHEL-RT), among others.

The de facto standard for kernel developers and practitioners
to evaluate the real-time performance of the kernel is by using
the cyclictest tool. This allows for measuring the kernel
latency, defined as the time elapsed from when a task is
supposed to resume execution according to its programmed
wake-up time, and the time it is actually dispatched on a
CPU [5]. Practitioners’ mission is to keep the kernel latency
bounded, below a precise threshold, e.g., RHEL-RT is known
for a latency below 150µs on Intel x86 64 platforms.

On the other hand, the academic literature on real-time
systems relies heavily on well-founded theoretical models of

real-time applications and kernel behavior, on top of which
mathematical abstractions can be effective in identifying the
worst-case scheduling scenarios leading to the highest possible
response times. However, such approaches often cannot be
directly applicable in the context of an OS/kernel like Linux,
due to the mismatch between such theoretical behavioral
models and the inherent complexity due to the GPOS nature
of Linux. The situation is often overly complicated by the
presence of different contexts (user-space, kernel-space, “soft
IRQ”, “hard IRQ”, ...), as well as the possibility to enable
or disable at any given time hardware (maskable) interrupts,
preemption and migrations.

Theoretical schedulability analysis techniques could be im-
proved to model some of the complexities mentioned above,
e.g., by modeling kernel latencies as jitters [6] or as blocking
times, or by measuring the aggregated effect of OS overheads,
and adding it to the tasks execution times [7]. However, these
approaches apply theoretical tools for worst-case analysis,
using empirical measurements where the worst-case is rarely
observed, so the actual input data needed in the analysis,
such as worst-case kernel latency, interrupts’ minimum inter-
arrival times, etc., remains largely unknown or dangerously
under-estimated. While the current engineering approach to
evaluate such data is to empirically measure them on a running
system for extended time periods (see for example the OSADL
Realtime QA Farm1), a more theoretically sound approach
is needed. A first baby-step into the direction of such a
more detailed analysis of the Linux kernel timing behavior is
the one to build a precise behavioral model of the complex
kernel internals, starting from IRQ/NMI handling and task
scheduling. It is also important to have practical and automated
means to verify the correctness of the model, as well as the
correctness of the kernel own behavior w.r.t. such model,
particularly useful to verify the absence of latency regressions
after bugfixes or enhancement patches.

a) Paper contributions: This paper represents a first step
toward the definition of a formal model of the internal behavior
of the Linux kernel, focusing on the subsystem handling Non-
Maskable Interrupts (NMIs) and regular hardware interrupts
(IRQs). The model is based on automata theory [8], [9], where
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the actions influencing the interrupt handlers behavior are
modeled as events.

In the proposed approach, the actual system behavior at
run-time is traced in specific points of the kernel by using the
perf tool2, and the obtained trace is automatically matched
against the possible run-time behaviors as specified in the
proposed formal model through the verification tool presented
in Section III. The verification tool traces Linux execution,
checking if traces recorded on a running Linux kernel match
with the automata-based theoretical model. By confirming that
the sequences of events generated by Linux are correctly
captured by the automata, it is possible to show that the system
is correctly modeled, as well as that its observed evolution is
compliant with the formal model.

b) Paper organization: The paper is organized as fol-
lows: Section II provides a short summary of the automata
theory used in this paper; Section III provides some details of
the used modeling strategy and discusses the development and
verification of the proposed model, while Section IV describes
the proposed model, based on the concepts introduced in
the previous sections. Finally, Section V briefly recalls some
related work and Section VI presents the conclusion of this
work, pointing to the next step toward a better description of
Linux’s tasks using well defined real-time theory terms.

II. BACKGROUND

Since the formal model for NMIs and IRQs presented in
this paper is described through automata, this section quickly
recalls basic concepts of automata and the related theory.

We model the Linux kernel evolution over time as a Discrete
Event System (DES). A DES can be described in various
ways, for example using a language (that represents the “legal”
sequences of events that can be observed during the evolution
of the system). Informally speaking, an automaton is just a
formalization used to model a set of well-defined rules that
define such a language.

A DES is characterized by a number of (internal) states. A
trace of its run-time behavior can be described as a sequence
of the visited states and the associated events causing state
transitions. Hence, a DES evolution is described as a sequence
of events e1, e2, e3, ...en.

All possible sequences of events define the language that
describes the system. Representing a language using an ap-
propriate modeling formalism is then fundamental for the
analysis, control and performance evaluation of a DES.

The starting point to describe a DES is the underlying set
of events E = {ei} associated with it, that represents the
“alphabet” used to form “strings” (or “words” or even “traces”)
of events that compose the DES language. This framework
can be used either to define the language to be performed by
a new system, or to formally identify the language spoken by
an existing system.

A string composed of no events is called the empty string
and it is denoted by ε. The length of a string is the number

2See https://perf.wiki.kernel.org/index.php/Main Page.
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Fig. 1. State transitions diagram (based on Figure 2.1 from [9])

of events contained in it, counting repeated events. If s is a
string, |s| will denote the length of s.

a) Language Definition: A language defined over an
event set E is a set of strings formed from events in E.

For example, if the event set is E = {a, b, c}, then it is pos-
sible to define a language L1 = {ε, a, ab, acc} composed by
the four strings/traces ε, a, ab, acc. It is also possible to define
the language L2 composed by all strings with two elements
starting from a: L2 = {aa, ab, ac}. Of course, it is also pos-
sible to define languages with an infinite set of strings/traces,
such as, for instance, L3 = {all strings starting with a}.

A DES can be formally modeled through a language de-
scribing all admissible sequences of events that the DES can
produce or process, but this kind of modeling is not easy for
complex systems, because of the absence of an additional level
of structures to describe the system logical behavior. This is
where automata come to the rescue. Moreover, the automata
formalism is amenable to composition operations, and analysis
as well, considering the finite-state case.

One of the key features of an automaton is its directed
graph or state transition diagram representation. For example,
consider the event set E = {a, b, c} and the state transition
diagram in Figure 1, where nodes represent the system states,
labeled arcs represent transitions between states, the arrow
points to the initial state and the nodes with double circles are
marked states. Formally, a deterministic automaton, denoted
by G, is a quintuple

G = {X,E, f, x0, Xm} (1)

where X is the set of states, E is the finite set of events,
f : X × E → X is the transition function (defining the state
transition between states from X due to events from E), x0
is the initial state and Xm ⊆ X is the set of marked states.

For instance, the automaton G represented on Figure 1
can be described by defining X = {x, y, z}, E = {a, b, g},
f(x, a) = x, f(y, a) = x, f(z, b) = z, f(x, g) = z,
f(y, b) = y, f(z, a) = f(z, g) = y, item x0 = x and
Xm = {x, z}. The automaton starts from the initial state x0
and moves to a new state f(x0, e) upon the occurrence of an
event e ⊆ E with f(x0, e) defined. This process continues
based on the transitions for which f is defined. Informally,
following the graph of Figure 1 it is possible to see that the
occurrence of event a, followed by event g and a will lead
from the initial state to state y. The language generated by an



automaton G = {X,E, f, x0, Xm} consists of all possible
chains of events generated by the state transition diagram
starting from the initial state.

One important language generated by automata is the
marked language. The marked language is composed of the
set of words in L(G) that lead the state transition diagram to a
marked state. The marked language is also called the language
recognized by the automaton. When modeling systems, a
marked state is generally interpreted as a possible final or
secure state for a system.

Automata theory also enables operations between automata.
An important operation is the parallel composition of two or
more automata that can be synchronized to compose a single
automaton. In the parallel composition, events not shared
between the automata are possible at any state in which it is
possible in the local state. Events shared between two automata
are possible only when it is possible in every automaton for
which the event is part of the set of events. The initial state of
the parallel composition is the initial state of all the composed
automata. A state is marked if and only if the state is marked
in all the automata in the parallel composition.

In general, complex systems can be modeled as composed
of many concurrent (and simpler) sub-systems. Automata
operations enable the modeling of a complex DES by decom-
posing it in modules. For example, the approach presented
by Ramadge and Wonham [10] allows the modeling of a
system composed by many sub-systems. With this approach,
the system is modeled as a set of completely independent
sub-systems and each sub-system is known as a plant or
generator. The composition of all sub-systems generates all
possible chains of events, even sequences of events that
cannot really be generated by the system in practice. Hence,
specifications are defined to remove “impossible sequences”
from the language. Specifications are automata using events
common in the generators they aim to synchronize.

Using such approach, IRQs and NMIs can be modeled using
a set of sub-systems; then, the restrictions imposed to the
possible sequences of events (interrupt handlers cannot execute
before the corresponding interrupt fires, etc...) are modeled
as specifications, allowing the interaction of each event to be
precisely described.

III. MODEL DEVELOPMENT

During the model development, described in Figure 2, the
informal knowledge about Linux tasks’ are modeled using
automata theory. The main source of information, in order
of importance, are previous papers about the subject [6],
hardware vendor documentation [11], kernel documentation
and the observation of the system’s execution using various
tracing tools.

The NMI and IRQ handlers in the Linux kernel have been
modeled as two automata, whose alphabets are the two sets
of relevant kernel events in Tables I and II.

On a running Linux system, traces composed of these events
can be captured using tracepoints3. The Linux kernel already

3See https://www.kernel.org/doc/Documentation/trace/tracepoints.txt.

Fig. 2. Modeling Phases.

TABLE I
ALPHABET ENMI , USED TO DESCRIBE NMI.

Event Description
nmi Non-maskable interrupt

nmi entry NMI’s software handler start
nmi exit NMI’s software handler return

provides some useful tracepoints, but others were added as
well. Currently, it is not possible to trace hardware events
such as the “irq” or “nmi” events in Linux; however, it is
possible to assert if the event took place. For example, the
interrupt handler is called as a side effect of the occurrence
of an interrupt, hence an “irq entry” event implies that a
corresponding “irq” event happened before. The perf tool
enables and collects the tracepoints from the kernel.

The automata describing the formal model have been devel-
oped using the Supremica IDE [12]. Supremica is an integrated
environment for verification, synthesis and simulation of dis-
crete event systems using finite automata. Supremica allows
to export the result of the modeling in the DOT format that
can be plotted using graphviz [13], for example.

To validate the model, the perf tool was extended with
a new command named task_model. This new command
automates the tracing of kernel events and the verification of
the model against the captured trace. perf task_model
works in two stages: first, in the record mode, the tool

TABLE II
ALPHABET EIRQ , USED TO DESCRIBE IRQS.

Event Description
nmi entry NMI’s software handler start
nmi exit NMI’s software handler return

irq Hardware interrupt
irq entry IRQ’s software handler start
irq exit IRQ’s software handler return

irq disable Disables a single IRQ on all CPUs
irq enable Enables a single IRQ on all CPUs

local irq enable Enable local interrupts
local irq disable Disable local interrupts, by software

local irq disable hw Disable local interrupts,
as a consequence of the interrupt

local irq disable hw n Disable local interrupts,
as a consequence of another interrupt



enables the tracing points associated with the events in ENMI

and EIRQ event sets; then, in the verification mode, the tool
checks if the captured trace is consistent with the model.

The trace captured in the record mode is saved in the
default perf format. On a 4 CPUs Intel core i7 computer,
this generates about 23MB of trace per second.

The verification mode receives three inputs: 1) the recorded
trace; 2) the NMI model and 3) the IRQ model (both models
are exported using the DOT format). With these inputs, an
internal representation of the system (composed by m CPUs)
is created. Each CPU has one vector of interrupts and one
NMI4. The NMI and every vector entry are associated to its
respective model. At the beginning, all the automata are placed
in their initial states; then, the tool starts to parse the trace.
Every event is associated to a handler, which is a function that
parses it. When invoked, the handler checks if the event is
accepted in the current state of the model. Each event is tried
in the models in which the event is part of the event set. For
example, since nmi_entry is in both ENMI and EIRQ, all
models of the CPU in which the event took place will be
checked. On the other hand, irq_entry is not present in
ENMI , hence the NMI automaton is not tried. If the event is
accepted, the current state of the automaton is changed to the
new state. If the event is not accepted in any model, an error
is generated (printing debug information).

When the tool found that the formal model was not compati-
ble with some trace captured with perf, the model was changed
to comprise the observed behavior of the system, and validated
again. This iterative refinement of the model was repeated until
the automata matched all the traces captured with perf. It was
needed around 100 runs to develop the model. In order to
create a load in the system, the rt-tests tools where used.
The rt-tests is the main tool set to evaluate real-time Linux,
including cyclictest.

IV. A MODEL FOR NMIS AND IRQS

Intel CPUs provide two mechanisms to notify occurrence
of asynchronous or synchronous events (generated by external
devices or by the CPU). These mechanisms are Interrupts
and Exceptions. Interrupts or exceptions generally force a
change in the execution path of the current task, activating
the execution of their respective handlers (in kernel space).

Interrupts are used by external devices to notify asyn-
chronous events (handled by the OS kernel using a special
routine). For example, a network card uses interrupts to notify
the arrival of network packets, which are handled by the driver
to deliver the packet contents to an application. Exceptions
are generated by the CPU when some predefined exceptional
conditions occur (errors like a division by 0, but also page
faults, or the execution of CPU instructions that a debugger is
waiting for, etc.). While exceptions are synchronous (always
generated in response to events happening in the current
program), interrupts can be raised due to requests not related to

4Due to its particular behavior, the NMI is represented outside of the
interrupt vector.

the current program. Therefore, exceptions can be considered
as part of the current task, while interrupts are asynchronous
and can not be considered part of it (so, they are considered to
be executing in their own context - or being a different class
of tasks). As this work aims at modeling the system as a set
of tasks, hereafter we consider only the interrupts behavior.

A. Interrupts

The automata presented in this paper model both the hard-
ware NMIs / IRQs and their handlers in the Linux kernel.
Hardware NMIs and IRQs are delivered to the CPU when the
values of two dedicated logical lines (NMI and INTR) are set
to 1, and are associated with the nmi and irq events.

The left part of Figure 3 presents the hardware part of a
NMI. The hardware activates the NMI, represented by the nmi
event. A similar behavior is presented by an IRQ, as modeled
with the automaton presented in the right part of the figure.

S0

nmi

S0

irq

Fig. 3. NMI (on the left) and IRQ (on the right) states.

Note that each automaton constrains the sequence of possible
events: node names are automatically picked by Supremica,
so nodes with the same name in different diagrams are not
related, whilst events with the same name are the same event.

B. Interrupt Handlers

On occurrence of an IRQ, the processor saves the context
of the current task and starts the execution of the IRQ handler,
which is a software routine. The control returns to the current
task after the handling of the IRQ.

Figure 4 presents the handlers of an NMI (on the left) and
of an IRQ (on the right). The nmi entry event notifies the start
of the NMI handler, that finishes execution with the nmi exit
event, while the irq entry event notifies the start of the IRQ
handler, that finishes its execution with the irq exit event.

C. Hardware and Software Interrupts Modeling

The hardware and software models presented in Figure
3 and 4 must be synchronized. The synchronization of the
automaton for hardware NMIs and the automaton for their
handler (Figure 4) results in the automaton of Figure 5, that
enables all the possible combinations of events. However,
there are sequences of events which are not possible: for
example, it is not possible to have an nmi entry event before
the corresponding nmi event.

In order for this automaton to be correct, a control specifi-
cation must be added to it, as shown in Figure 6: according
to this specification, the software handler events are blocked
until the occurrence of the nmi event. Moreover, the nmi is
blocked until the occurrence of the event nmi exit (the NMI
is disabled until the end of its handler).

The product of the two generators and the specification
generates the full behavior of an NMI (both hardware and
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Fig. 4. NMI (on the left) and IRQ (on the right) handler.
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Fig. 5. NMI model describing both hardware and handler.

software handler), presented in Figure 7. As expected, this
behavior is rather simple: the hardware event takes place,
causing the handler to start, followed by the end of the handler.

IRQs differ from NMIs because they can be temporally
disabled, delaying the delivery of new IRQ requests and the
activation of their handlers. For example, in the Intel CPUs,
IRQs can be disabled by modifying a flag in the EFLAGS
register (a 32-bits register containing a set of status, control,
and system flags, similar to the PSW present in other CPUs).
The IF field of this register can be used to block the handling
of IRQs in a CPU: IF is set, IRQs are delivered, while when
IF is 0, IRQs are delayed until the IF flag is set again. The
value of this flag can be changed by using some Assembly
instructions, and it is automatically reset to 0 when an IRQ
fires. IRQs can be explicitly re-enabled before the end of the
handler.

Although interrupt handlers sometimes re-enable IRQs in
the vanilla version of the Linux kernel, that is not the case
when using PREEMPT RT (where IRQs are not re-enabled
before handlers’ completion).

Since an IRQ can be disabled by itself, by another interrupt
request, or by a thread executing a special CPU instruction,
three different events have used to model IRQ disabling. The
local irq disable hw event is generated when the IRQ itself
causes the IRQs to be disabled, the local irq disable hw n
event is generated when IRQs are disabled because of a
different interrupt, and the local irq disable event is generated
when IRQs are disabled by the execution of an Assembly
instruction. A single event represents IRQs being enabled, the
local irq enable event. Figure 8 describes this behavior.

In addition to being disabled in a CPU, it is possible for a
single IRQ be disabled on all CPUs, using the disable irq()
function of the Linux kernel (the IRQ can be later enabled
again by using the enable irq() function). The model for these
functions is presented in Figure 9.

All the automata described above need to be complemented
by some specifications to correctly model only the possible
sequences of interrupt generation, handler execution, IRQ
disabling/enabling, etc. For example, local IRQs are disabled
during the execution of the handler, and the disabling happens
after the hardware generates the irq event (IRQs are later
re-enabled when the handler finishes its execution). This
specification is modeled in Figure 11.(a).

Figure 10 restricts the software handler to execute after
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nmi

nmi_exit

nmi_entry

Fig. 6. The software handler is activated by the hardware request.
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q1nmi
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nmi_exit

Fig. 7. Final NMI model (hardware and handler) with all the restrictions.

IRQs have been disabled in hardware. This is done by not
enabling the irq entry and irq exit before the occurrence of
the event disabling local IRQs as a side effect of its irq event.

Once IRQs have been disabled by the hardware, they stay
disabled until the end of the handler (irq exit event). This
is an important property because it means that once the
handler is started IRQs will not suffer interference from other
IRQs, resembling non-preemptive tasks. This specification is
modeled in Figure 11.(b).

Once an IRQ starts being handled, at least from the op-
erating system point of view, it will not fire again. So, the
irq event remains blocked until the return of the handler, as
modeled by the specification in Figure 11.(c).

The disable irq event inhibits the hardware starting han-
dling an IRQ (and also has an effect similar to masking local
IRQs). This state will be held until IRQs are enabled again
(enable irq event). The automaton of Figure 11.(h) models the
restrictions imposed by the combination of methods which
may mask an IRQ. After being fired, an IRQ will have its
handler delayed if, for some reason, it is masked, and this can
happen for 3 reasons: the single IRQ is disabled, local IRQs
are disabled, or a different IRQ disabled local IRQs.

In the initial state, neither local nor the specific IRQ is
masked. The methods to mask IRQs can be nested, and this
added complexity to the specification, because it needs to
keep track of which methods are masking the IRQ. If an IRQ
fires while masked, its handling will be delayed until being
unmasked by all methods. Once unmasked, the methods able
to mask an IRQ will be blocked and so the interrupt can be
handled, unless a higher priority interrupt takes place.

The previous specification models the interactions between
IRQs. However, NMIs can also be interfered by the occurrence
of an NMI. From IRQ standing point, the important events are
the entry and the exit of the NMI handler, as previously seen
in the left part of Figure 4. The specification of the interactions
between IRQs and NMIs is shown in Figure 11.(e): the
occurrence of an NMI blocks all the other events, until the
return of the NMI. In order to reduce the number of states,
the next specification (presented in Figure 11.(f)) blocks the
disable irq and enable irq events in contexts in which it is
known that they do not take place. Finally, Figure 11.(g) shows
the composition of all the automata describing NMIs, and
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Fig. 8. Disabling all local IRQs.
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Fig. 9. Disabling a single IRQ.

represents our final model for IRQs.

D. Remarks

As it is possible to observe in Figure 11, the complete
model of a single IRQ can lead to an impressive number of
states. It would be rather complex to formally describe Linux’s
IRQ behavior without the usage of a modular approach. The
modular approach can also help in a future translation from
the automaton specification into a set of rules that describes
Linux’s behavior in the common vocabulary used in real-time
theory. For example, the model in Figure 10 states that IRQ
handlers run with local interrupts disabled, and the model
in Figure 11.(b) states that interrupts are not enabled again
before returning from the IRQ handler. Hence, it is possible to
demonstrate that all others IRQs of a processor will be delayed
by the handling of another IRQ. In other words, it states that
one interrupt cannot preempt another lower priority interrupt.
However, it is not possible to state that interrupts are non-
preemptive. In the presence of an NMI, all the possible IRQs
events are blocked until the return of the NMI handler. As
nothing can block the start of the NMI handler, it is possible to
state that interrupts are preempted by NMIs, during all NMI’s
execution. The joint of these two behaviors clarifies that IRQs
are not preemptive tasks among its class of tasks, but they are
preemptive in the presence of NMI. Finally, the events can be
translated into a set of rules describing Linux’s tasks behavior
in such way to be used in the reference for the development
of real-time schedulers for Linux.

V. RELATED WORK

Software verification is an active and bustling area of
research, with many techniques involving the use of au-
tomata [14] or other state-based modeling methodologies,
temporal logics and/or techniques similar to process calculus.
These are aimed at either ensuring that a given safety/cor-
rectness predicate on the system state can never be violated,
or, in case a violation is possible, these techniques aim at
finding an execution trace/scenario leading to the faulty state,
useful to debug the system (or sometimes its abstract model).
Classical examples involve modeling and analysis of locking
schemes and distributed application protocols, e.g., by using
well-known tools such as SPIN [15], TLC+ using TLA+ [16]
and/or PlusCal models [17]. These formalisms can also handle
verification of timing properties for real-time systems [18]. It

S0

local_irq_enable

S2
local_irq_disable_hw

local_irq_enable

irq_entry
irq_exit

Fig. 10. IRQ handler starts after IRQs being disabled by the hardware.

is particularly challenging to apply these techniques on code
written in general-purpose programming languages, such as
C/C++ or Java: either the software is so simple to allow
for a complete enumeration of all the possible states, or –
the majority of the times – one ends up with the inherently
undecidable problem of checking whether or not a predicate
can ever be violated. Also, for complex software, the model is
usually built as an abstraction of the actual software behavior,
introducing a risky semantic gap between the model and the
actual software behavior. Such a gap may be reduced by
approaches proposing automatic model generation from C
code [19], which have the inherent drawback of producing
overly big and complex models. However, many techniques
have been developed that allow for huge reductions of the
search space, allowing these techniques to be usable with a
reasonable processing time in various cases of real industrial
software. A remarkable example is the use of TLA+ and
PlusCal within Amazon Web Services [20], leading to the
discovery of various design bugs in DynamoDB, S3, EBS,
EC2 and other software components.

In this context, an area that is particularly challenging
is the one of verification of an operating system kernel
and its various components. Some works that addressed this
problem include the one by Henzinger and others [21], who
used control flow automata, combining existing techniques
for state-space reduction based on abstraction, verification
and counterexample-driven refinement, with lazy abstraction.
This allows for an on-demand refinement of parts of the
specification by choosing more specific predicates to add to the
model while the model checker is running, without any need
for revisiting parts of the state space that are not affected by
the refinements. Interestingly, authors applied the technique,
implemented within the BLAST tool, to the verification of
safety properties of OS drivers for the Linux and Microsoft
Windows NT kernels. The technique required instrumentation
of the original drivers, to insert a conditional jump to an error
handling piece of code, and a model of the surrounding kernel
behavior, in order to allow the model checker to verify whether
or not the faulty code could ever be reached.

The static code analyzer SLAM [22] shares major objectives
with BLAST, in that it allows for analyzing C programs to
detect violation of certain conditions. It has been used also to
detect improper usage of the Microsoft Windows XP kernel
API by some device drivers. More recently, Witkowski et
al. [23] proposed the DDVerify tool, extending on the capabil-
ities of BLAST and SLAM, e.g., supporting synchronization
constructs, interrupts and deferred tasks.

Another remarkable work is the lockdep mechanism [24]
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built into the Linux kernel, capable of identifying errors in
using locking primitives that might eventually lead to dead-
locks. The mechanism includes detection of mistaken order
of acquisition of multiple (nested) locks throughout multiple
kernel code paths, and detection of common mistakes in
handling spinlocks across IRQ handler vs process context, e.g.,
acquiring a spinlock from process context with IRQs enabled
as well as from a IRQ handler. Interestingly, the number of
different spinlock states that has to be kept by the kernel is
reduced by applying the technique based on individual locking
classes, rather than individual locks.

There have also been other remarkable works assessing
formal correctness of a whole micro-kernel such as seL4 [25],
i.e., adherence of the compiled code to its expected behavior,
stated in formal mathematical terms. seL4 has also been
accompanied by precise WCET analysis [26]. These findings
were possible thanks to the simplicity of the seL4 micro-kernel
features, e.g., semi-preemptability.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes our starting point for building an
accurate automata-based behavioral model of IRQs, NMI and
threads on Linux, for the purpose of enabling a more accurate
analysis of the performance of the kernel and hosted real-
time workloads than what traditionally done by practitioners.
These use to rely exclusively on empirical data, which rarely
represents worst-case conditions, whose timing is of great
interest in using Linux in real-time use-cases.

The next step in this direction is the inclusion of events and
states due to synchronization mechanisms used in IRQ and
NMI handlers, still neglected in this preliminary work.

The ultimate goal of this research is allowing system
engineers to build comprehensive timing models of embedded
real-time applications running on Linux, capable of accounting
for the interference across all Linux tasks types [6], from
user-space threads up to IRQ and NMI handlers. Therefore,
threads are planned to be modeled using the same approach,
which is possible thanks to the composability of automata-
based models, as described above. However, this will need
a deeper investigation of kernel abstractions, to analyze the
whole set of additional thread-specific events and transitions,
and their interactions with the already identified ones.

Finally, a rigorous description of the Linux timing behavior
using automata will hopefully help in an easier integration of
theoretical results from real-time researchers with the needs
of real-time Linux developers [27], [28].
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