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Abstract—Software fault injection is a powerful technique
to evaluate the robustness of an application and guide in the
choice of fault-tolerant mechanisms. It however requires a lot of
time and know-how to be properly implemented, which severely
hinders its applicability. We believe software fault injection can be
made more “affordable” by automating it and have it integrated
within a model-driven engineering design flow. We first propose
in this paper a framework supporting these objectives. Then,
illustrating on the domain-specific language CPAL, we present
injection patterns that can be embedded in the application
code and discuss the types of faults each supports, as well as
implementation issues.

Index Terms—Software Fault Injection, Model-Driven Engi-
neering, Software Patterns, Industrial Cyber-Physical Systems,
CPAL.

I. INTRODUCTION

A. Context of the study

If the term Cyber-Physical Systems (CPS) has been a
buzzword over the last 10 years, CPS such as smart grids are
starting to be deployed at large scale and will have a profound
and pervasive impact on human societies. In the current state
of the technologies, the features CPS offer, the time it takes
to bring them to the market and their correctness depend
importantly on our capability to efficiently write software,
which still remains a challenge. In that regard, Model-Driven
Engineering (MDE) and Domain-Specific Languages (DSL)
have been widely acknowledged as two key technologies to
meet the software productivity challenge and develop trust-
worthy systems. Most CPS are, to some extent, subject to
dependability constraints, which implies the use of verification
techniques such as analytic and simulation models, and fault
injection be it on models, prototypes or the deployed systems.
A central challenge today in MDE is to make it possible
to seamlessly integrate the verification activity within the
design flow [1] and to fully, or partially, automate it. In
the development of CPS with dependability constraints, a
key dependability assessment technique is fault injection [2],
which can be implemented both in hardware and software,
the latter being the focus of the paper. In order to speed up
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the occurrence of errors, thus making the assessment more
effective, often the effects of faults are injected, rather than
the faults themselves, using an approach known as error
injection. The software-implemented fault injection (SWIFI)
method discussed in the following belongs to this category.

B. Contribution of the paper

Fault injection is certainly a powerful dependability assess-
ment technique but it is time-consuming and requires extensive
know-how to implement it correctly and to determine the
verification coverage of an experiment. Our objective is to
automate software fault injection as far as possible and have
it integrated within a MDE design flow. This encompasses
to solve several sub-problems such as defining the set of
experiments to perform in order to achieve a certain evaluation
goal (e.g., verification of the effectiveness of error detection
mechanisms) and instrumenting the original code with fault
injection patterns. This work is a contribution in that direction,
we propose here a set of software patterns to implement
fault injection in languages, or language extensions, like
StateFlow®, CPAL [3] or Mbeddr [4] that natively support
Finite State Machines (FSMs). Specifically, our work targets
CPAL which is a representative of DSL for embedded systems
designed for MDE. The software patterns proposed aim to
capture structures, ideas, or “key techniques known to expert
practitioners” (see the seminal paper [5]), and ultimately
solve recurring problems. The code implementing the patterns
discussed in this work is freely available in the samples
of the CPAL distribution available on-line at http://www.
designcps.com. This work takes place in the broader context
of the development of a fault tolerance and fault injection
framework relying on automated code instrumentation which
is our ongoing work (see Section III and [6]).

C. Existing work

There is large body of literature on software fault injection
that has been created over the last 2 decades. The reader
is referred to [7] for a recent and comprehensive survey.
Directly relevant to this study are the works in [8] and [9],
which propose MDE-based software injection frameworks but
targeting each a specific application domain. Other work,
described in [10], aims at the validation of IEC 61131 software
by means of fault injection. In further studies, like [11], the
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Fig. 1. CPAL process scheduling and elementary execution step.

semi-automatic generation of test cases is also foreseen in the
same context, using data taken from the system specification
and extracting control flow information from the software.
However, both works focus on Programmable Logic Controller
(PLC) rather than CPS software, which requires a more
general programming paradigm. Moreover, they envisage fault
injection only at the boundary between the controlled process
and the control software, thus mainly considering hardware
component failures rather than faults internal to the control
software itself.

The paper is organized as follows. After giving a short
introduction about CPAL and its role for embedded software
engineering in Section II, the proposed framework and its
fault injection patterns are discussed in Sections III and IV.
Section V concludes the paper.

II. CPAL FOR EMBEDDED SOFTWARE ENGINEERING

The Cyber-Physical Action Language (CPAL, see [3], [12])
is a new domain-specific language that provides high-level
abstractions to express domain-specific properties or patterns
of behaviors well suited to embedded systems with timing
and dependability constraints, and for CPS at large. CPAL
is a modelling and design language but it is also an imple-
mentation language as CPAL models can be interpreted on
a real-time execution engine. In CPAL verification can be
done by schedulability analysis, timing-accurate simulation
and runtime observation. In particular, CPAL offers a number
of introspection mechanisms [3] to implement error-detection
(e.g., overload) and adaptive behaviours (e.g., control laws).

A. Processes as recurrent FSMs

In CPAL, processes can be seen as functions that can be
activated with a user-defined period and offset relationships, or
upon the occurrence of some external events. Active processes
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Fig. 2. Software fault injection framework based on code instrumentation.

are scheduled according to a chosen scheduling policy that is
specified in a timing annotation. The logic of a process is
defined as a Finite State Machine (FSM), possibly organized
in a hierarchical manner, where code can be executed in
the states, or upon the firing of transitions. The snippet of
code below illustrates the definition of a process type and the
declaration of an instance of that type.

processdef P(params) {
common {
code

}

state Warning {
code

}
on (cond) {code} to Alarm_Mode;
after (time) if (cond) to Normal_Mode;

finally {
code

}
}

process P: inst[period,offset][cond](args);

@cpal:time:inst{
annotation code

}

B. Process elementary execution step

When activated by the scheduler a process resumes in the
state in which it was at the end of the previous execution. It is
then first checked whether a transition can be triggered or not
(see Fig. 1). Next, optionally, a block of code common to all
states is executed (common code), then comes the execution of
the code of the current state and, finally, another optional block
of code common to all states is executed (finally code).
The process can continue its execution (if self.continue is
set to true) or relinquish the CPU. These steps executed in
sequence, as illustrated in Fig. 1, form an elementary execution
step of the process.

III. A FRAMEWORK FOR AUTOMATING
FAULT-TOLERANCE AND FAULT INJECTION

Fig. 2 depicts the framework we propose to enhance the
dependability of CPS. Most importantly, the proposed work-
flow will be as much as possible automated and “invisible” to
the user by keeping a clear separation between the application
code and the fault-injection / fault-tolerance code. It includes
the following modules:

1) the original program written by the programmer,
2) an optional component that adds fault-tolerance mecha-

nisms,
3) a separate module that carries out software fault injec-

tion,



4) a last module that performs dependability assessment of
the system under test. If requirements are not met, new
choices will be made for the implemented fault-tolerance
mechanisms.

Automated code instrumenting, a technique already supported
by the CPAL development flow for test coverage estimation
through the cpal2x utility, will be adopted to automate steps
2) and 3). Moreover, as commonly done [2], a supervisor will
also be implemented to orchestrate and automate the overall
process.

For what concerns fault-tolerance enhancement, we will
provide a library of the most important fault-tolerance mech-
anisms, such as N-version programming (NVP) and Triple
Module Redundancy (TMR) for fault masking, and control-
flow check and CRC check for error detection. Each individual
mechanism can be enabled through a code annotation mech-
anism defining a small internal DSL, similar to what already
exists in CPAL for the timing dimension. The feasibility of
this approach has been verified in [6] for the NVP pattern.
The types of faults that can occur (e.g., fuzzing, bit-flipping,
stuck-at, timing faults, etc), their location and when they
occur (e.g., occurrence of an event, randomly, etc) will be
an input provided by the users. Either users will provide an
application-specific fault model, or they will instantiate generic
models available in the framework, for instance, based on data
collected at run-time. Typically, bit-flipping faults affecting
global data with a probability function of the data size belong
to the latter category of models.

The dependability objective can be stated in various ways
such as how robust the system is to faults (e.g., probability
that an error is detected and that the system is able to recover
from it), or with more specific criteria, like a threshold on
the probability that the system exhibits a specific failure
mode (e.g., “fail-safe”, “crash”). The process depicted in
Fig. 2 will be iterated until the system reaches the desired
dependability objective. The final outcome, that is the code
patched with appropriate fault tolerance technique(s), can be
used for further model-based evaluation such as performability
(i.e., joint evaluation of performance and availability) or for
direct use in the deployed system.

IV. PATTERNS FOR FAULT INJECTION

This section provides information on the fault injection
block shown in Fig. 2, presenting the categories of fault that
can be injected and discussing which code patterns can be used
to this purpose. Since, as described in Section II, processes
and their elementary execution steps are a key concept in
CPAL concurrency, stipulating that fault injection operates at
the elementary execution step level comes naturally. Moreover,
the beginning and end of an execution step are also the points
at which a CPAL process imports information from other
processes and its execution environment, and makes its results
observable.

Another important assumption is that fault injection code
patterns lie at the same conceptual level as the code they
are applied to, and hence, are written in CPAL itself without

altering language semantics. This approach has the advantage
of making the system model completely self-contained for
what concerns the language, including any aspects related to
fault tolerance, and also simplifies automatic code generation.
At the same time, it does not preclude optimized (but seman-
tically equivalent) implementations from being carried out, for
instance, within the CPAL execution engine.

A. Fault categories

From the point of view of injection patterns, the quality that
distinguishes one type of fault from another is mostly the entity
it affects rather than other attributes—for instance, the fault
being transient or permanent. According to this reasoning,
the patterns devised so far are able to support four different
categories of fault.

1) Global state: CPAL processes typically hold shared state
information in a set of global variables that, from the low-
level implementation point of view, reside in a pool of RAM
allocated at link time. Hence, corrupting those variables can
effectively model various kinds of memory cell failure. Since
memory-mapped I/O ports and inter-process communication
channels are often represented as global CPAL objects, tam-
pering with them can model spontaneous output actuations and
communication failures, too. On the other hand, granularity is
coarse because faults affect all process instances activated after
the fault has been injected, as long as the fault persists.

2) Activation arguments: To improve modularity and ad-
here to sound engineering practice, CPAL processes rarely
refer to global variables directly. Instead, they get access to
them through in and out arguments. Arguments are passed
by value or by reference, respectively, upon process instance
activation, that is, when the activation condition shown in
Fig. 1 is met. On the implementation side this typically
corresponds to copying the global variables or their address,
respectively, onto the process instance stack or private local
storage. Therefore, injecting faults on in arguments rather than
the corresponding global variables conveniently supports the
distinction between how different kinds of memory fail (often,
off-chip DRAM is used for global variables, whereas on-
chip, faster SRAM holds stacks). Furthermore, faults injected
into activation arguments affect execution locally, at process
instance activation granularity, rather than globally.

3) Local instance variables: Process instances usually
make use of local storage that can be volatile, with a per-
activation lifespan, or persistent across activations. As for
activation arguments, injecting faults in these variables affects
only a specific process instance activation with fine granularity.

4) Control flow disruption: This fault category is much
harder to model with respect to the previous ones because
CPAL, as virtually all high-level programming languages
do, keeps all control flow details hidden from programmers.
Hence, for instance, there is no way to alter the program
counter by means of a language statement. However, the
fact that CPAL enforces a rigorous, well-defined structure
onto processes—the recurrent, hierarchical FSM organization
outlined in Section II—provides a useful surrogate. More



processdef A_Proc(in uint32: x)
{
state First {

/* Body of the state */
}
on (true) to Second;

state Second {
/* Body of the state */

}
on (true) to First;
/* Other states and transitions */

}

processdef Injector_A_Proc(
out uint32: x,
in Process_Instance: p)

{
state A_State {

/* State-specific fault injection */
if (p.process_state == Process_State.First) {

x = 2;
} else
if (p.process_state == Process_State.Second) {

x = 3;
}

}
/* Other states and transitions */

}

var uint32: global_variable = 1;

process A_Proc:p1[100ms](global_variable);
process Injector_A_Proc: p1_Injector[100ms](

global_variable,
p1);

@cpal:time {
system.sched_policy = Scheduling_Policy.NPFP;
p1_Injector.priority = 1;
p1.priority = 0; /* Lower priority */

}

Fig. 3. Fault injection in external fault-injector that is specific to each instance
of the process. The scheduling parameters are set so as to ensure the injector
always runs before the process instance whose inputs will be corrupted.

specifically, since state transition conditions are honored prior
to executing any state code (see Fig. 1), a fault injected
before their evaluation may lead the affected process instance
to immediately reach a faulty state upon activation. Other
kinds of control flow disruption, like function return address
corruption, cannot be modeled with this approach and most
likely require support at a lower level of abstraction, typically
within the execution environment.

B. Injection patterns

The sheer sophistication of the CPAL execution model
supports three distinct approaches to fault injection as a
minimum. All of them are suitable for automation and can
be used in combination. Overall, they provide different trade-
offs between overhead and ability to support the kinds of fault
described in Section IV-A. Besides using one or more exter-
nal, dedicated processes, the CPAL execution logic provides
several additional locations suitable for hosting fault injection
code, highlighted in Fig. 1.

1) External fault injectors: When using this approach, one
or more processes are dedicated to fault injection, with the
advantage of keeping a clean boundary between the normal

behavior of a system and its fault profile. Moreover, this way
of modeling corresponds to a centralized fault injection mech-
anism, even when modeling a distributed system, which is
close to practice. However, it could hamper flexibility because
it offers limited access to process state and exhibit coarse
injection granularity. The ability of fault injection processes to
affect individual process instances when multiple instances are
released in parallel is also possible with the Non-Preemptive
Fixed Priority (NPFP) policy, extending the approach shown
in Fig. 3.

However, there may be significant overheads, especially
when considering a single periodic injector process, because
it should be executed before the activation of every possible
process instance. Even when focusing only on in-phase, peri-
odic processes, the injector activation frequency may therefore
become very high unless process periods are harmonic.

Considering activation offsets and event-triggered processes
further increases overheads and, in the second case, may make
the approach unfeasible. Adopting a separate injector process
for each target process alleviates this issue, because individual
injector’s activation conditions can be optimized, at the cost of
doubling the number of processes in the system. An example
illustrating this way of injecting faults is shown in Fig. 3.

It is worth remarking that, besides normal data types, CPAL
also supports a data type named Process_Instance, which
keeps record of all the characteristics of a process instance that
can be queried at run-time, including its current state indicated
by the process_state field.

2) Fault injection as pre/post conditions: CPAL supports
per-process, state-independent code blocks (called common

and finally blocks in Fig. 1) that are executed before and
after state-specific code upon process activation. Since they
are subject to the same scoping rules as state-specific code,
they can access not only global variables, but also activation
arguments and local variables. Instance-specific fault injection
can be modeled, too, because they can query the unique in-
stance identifier self.pid. With respect to external injectors,
overheads are more limited because fault injection code runs
“on-demand”, only as often as processes are activated.

On the other hand, fault injection code is internal to
processes in this case. Since common and finally blocks
are user-accessible, this approach brings the disadvantage
of mixing regular and fault injection code within the same
syntactic elements, although the use of named blocks as done
in Fig. 4 alleviates this drawback to some extent. It should
also be noted that shadowing may somewhat impair access to
global variables (when a local variable with the same name
exists). More importantly, this method cannot directly affect
state transitions, and hence, alter control flow. This is because,
as also shown in Fig. 1, fault injection code is executed after
transition conditions are evaluated.

The code snippet shown in Fig. 4 demonstrates an ex-
ample of fault injection in terms of pre/post-condition. In-
put arguments are corrupted before they are used (in the
common block), while faults are injected into output argu-
ments after they have been updated (in the finally block).



processdef A_Proc(in uint32: x, out uint32: y)
{
var uint32: x_corrupted = x;

common {
fault_injection: {

if (self.process_state == Process_State.First){
corrupt_uint32_fault_type_A(x_corrupted, 4);

}
}

/* Regular code */
}

state First {
/* Replace x by x_corrupted */

}
on (true) to Second;

state Second {
/* Replace x by x_corrupted */

}
on (true) to First;
/* Other states and transitions */

finally {
/* Regular code */

fault_injection: {
corrupt_uint32_fault_type_B(y, 4, 7);

}
}

}

Fig. 4. Fault injection in pre/post-conditions within named block to keep a
clean boundary with respect to regular code. Inputs are corrupted in a state-
dependent manner and before being used, while outputs are corrupted after
being updated.

processdef A_Proc(in uint32: x, out uint32: y)
{
state A_State {

/* Value of y is a function of x */
}
/* Other states and transitions */

}

var uint32: global_variable = 1;

process A_Proc:p1[100ms](global_variable);

/* The annotation is executed each time before p1 */
@cpal:time:p1 {
/* Here the fault occurs within a given interval */
if (1s500ms <= time64.time() <= 1s750ms) {

global_variable = 2;
}

}

Fig. 5. Fault injection in an annotation. Here we know the global variable
will be updated after the perturbation interval, for instance as it is mapped to
an I/O, if not we should restore the original value.

Moreover, fault-injection can be performed at a fine granu-
larity, for instance, in a state-specific way. Named block, e.g.
fault_injection shown in Fig. 4, is the syntactic sugar
that can be adopted to group fault injection code and keep a
well-defined boundary with respect to regular code.

As the input arguments of CPAL processes are read-only,
local copy (or copies) that represents the corrupted input(s)
have to be created, and any reference to the original input
argument(s) within the process are replaced by the copy
(or copies). Besides, dedicated functions can be defined for

different types of fault injection, depending on the data type
of the variable(s) to be corrupted. For instance, as shown in
the illustrative example of Fig. 4, the input argument is set to
a fixed faulty value, whereas the output argument is corrupted
by a random error in a pre-defined range, here 4 to 7.

3) Annotation-based fault injection: The standard CPAL
language natively supports annotations to express non-
functional properties of a program and cleanly isolate them
from functional properties. The same mechanism can be lever-
aged for fault injection, by envisaging an annotation whose
code runs between process instance activation and transition
condition evaluation, as illustrated by the annotation code
block in Fig. 1.

Like for external injectors, this approach has access to
global state and can directly affect flow control with even
finer granularity because CPAL supports instance-specific,
besides process-specific, annotations. Moreover, as for pre/post
conditions, fault injection code runs on demand and introduces
limited overhead. However, the fact that annotations are cur-
rently defined at the same hierarchical level as the process they
refer to precludes them from accessing activation arguments
and local variables.

In the current version of CPAL, the proposed approach
should be implemented through a timing annotation as shown
in Fig. 5. However, to enable a better separation of concerns,
the language should be extended to support a dedicated
annotation such as @cpal:dependability.

Table I summarizes the discussion by showing which fault
categories the injection patterns just described can support.

TABLE I
MAPPING OF FAULT CATEGORIES ONTO INJECTION MECHANISMS

Mechanism

Fault
category

Global
state

Act.
args.

Local
vars.

Control
flow

External process(es) X X
Pre/post conditions X X X
Annotation-based X X

V. CONCLUSION

This paper has shown how software-implemented fault
injection can profitably be implemented solely at the DSL
level and soundly assist CPS development, without breaking
the continuity between the verification activity and the design
flow. More specifically, using CPAL as a case study, several
different injection patterns have been presented and discussed,
showing how they can effectively introduce data errors, as
defined in [7], at different locations. Up to a more limited
extent, some of the patterns can also mimick code changes
by affecting state transitions of CPAL processes. Even more
importantly, all patterns can be applied by means of automatic
code generation. In this way, low-level pattern-related details
can be kept hidden from end-users, who will instead work at
a higher level of abstraction and focus on specifying the types
of faults that are relevant for their systems.

Besides data error, another type of faults that jeopardizes
the system correctness are timing faults such as abnormal



execution times, priority inversions or jitters. The patterns
described in this study can be extended to handle timing faults,
which can be done trough timing annotations at the global
level or locally within a process. Although the extent of the
work has mainly considered fault injection patterns so far,
preliminary results look promising and lead us to consider
the implementation of the complete fault-tolerance and fault
injection framework outlined in this paper as a future work.
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