
T-RECS: A Software Testbed for
Multi-Agent Real-Time Control of Electric Grids

Jagdish Achara, Maaz Mohiuddin, Wajeb Saab, Roman Rudnik, and Jean-Yves Le Boudec
School of Computer Science and Communication Systems

École Polytechnique Fédérale de Lausanne, Switzerland
{firstname.lastname}@epfl.ch

Abstract—Multiple software agents can be used to perform the
real-time control of electrical grids. The control performance of
such solutions is influenced by software non-idealities such as
crashes and delays of the software agents, and message losses
and delays due to the underlying communication network. To
study the effect of these non-idealities on control systems, we
present an open-source software testbed, named T-RECS. It uses
software containers to test existing software without modification.
The communication network among the software containers is
emulated using Mininet framework, which allows for real packets
being exchanged. The electric resources in the grid are simulated
using state-of-the-art models, whereas the grid itself is modeled in
the phasor domain. As control agents are run as is and message
exchanges are emulated, T-RECS accurately captures the real-
world properties of the control framework. We demonstrate
the working of T-RECS with the Commelec control framework
and show the effect of network non-idealities on the control
performance. We make a beta version available.

I. INTRODUCTION

Real-time control systems (RTCSs) for electric grids [1],
[2] use multiple software agents that exchange messages to
perform the control actions. The performance of such multi-
agent RTCSs is affected by delay and crash faults [3] in the
software agents, and by losses and delays due to the underlying
communication network. In [4], a delay fault in the energy
management system resulted in a cascade of events that led to
the failure of the electric grid in Northeast America. As similar
incidents are more likely to happen in agent-based control of
electrical grids, there is a need for extensive testing of control
software under various ideal- and real-world scenarios before
their deployment in the grid.

To this end, we propose T-RECS, a software testbed for
multi-agent real-time control of electric systems. It targets de-
velopers of agent-based real-time control software for electric
grids and is designed to test such control software without
requiring any modification to it. T-RECS uses software con-
tainers to run each software agent in a virtual environment. Not
having to change the control software improves the usability
of T-RECS, compared to existing solutions [5], [6], [7], [8],
[9]. Furthermore, the virtual environment can be used to inject
faults such as crash of a controller or to study effects of
software non-idealities on the control performance.

In T-RECS, the network between the software agents is
emulated using the Mininet framework [10], wherein real

This research was supported by the “SCCER - FURIES” project and the
“SNSF - NRP 70” Energy Turnaround project.

packets are exchanged using TCP/IP networking, as opposed
to simulation of the communication network done by existing
testbeds [6], [9]. This approach enables T-RECS to recreate
a wide-range of real-world scenarios by choosing different
communication bandwidths, losses and delays. Moreover, the
effect of more complex network non-idealities such as network
congestion and router failures on control performance of
software agents can also be studied. T-RECS is light-weight,
compared to running software agents in virtual machines,
because Mininet uses process-based virtualization to run hosts.

T-RECS models the grid using the three-phase nodal-
admittance matrix (Y-matrix) representation. The impact of
switching harmonics is not simulated and the frequency is
imposed by a single resource. The evolution of the grid is
tracked through complex voltage phasors at each bus. These
phasors are obtained by performing a load-flow when there is
a change in the grid state. Electric resources, such as battery,
load, and photo-voltaic (PV) panels, are simulated.

In Section II, we compare T-RECS with existing testbeds,
and we present the detailed design of T-RECS in Section III.
The implementation of T-RECS is currently in progress but we
make available a beta version (https://smartgrid.epfl.ch). Using
this version, in Section IV, we run the Commelec control
framework with the objective of following a dispatch plan. We
show that the dispatch plan is precisely followed in the absence
of communication network losses, whereas in the presence
of losses, the control framework cannot drive the microgrid
to follow the given dispatch plan. T-RECS is currently used
to test and analyze the deployment process of Commelec in
Rolle, Switzerland, among other places. It is co-developed and
used with this control framework.

II. RELATED WORK

Various testbeds or co-simulation frameworks [5], [6], [7],
[8], [9], [11], [12] are proposed for control of electric grids.
We discuss and compare our proposed testbed with the existing
ones, on three different axes: (1) can we easily and accurately
study the effect of communication networks on control sys-
tems, (2) can we run the control software without requiring
the modeling of control systems or modifications to the code,
and (3) are they scalable, portable, and distributable.

To study the effect of communication network on con-
trol systems, [9] simulates the communication network with
OPNET Modeler, whereas in [6], the authors model the



low-level network contingencies, e.g., delayed, disordered,
dropped, and distorted information flows. T-RECS, on the
contrary, emulates the communication network using Mininet.
As message exchanges are emulated in T-RECS, it accurately
captures the real-time properties of the control protocol. In [7],
[8], communication network is neither modeled/simulated nor
emulated. In these works, agents talk to each other via inter-
process communication and hence, it is not possible to study
the effect of network parameters on the control systems.
Communication network is a main source of non-idealities in
real-time multi-agent control systems, and not being able to
study its effect is considered a major limitation.

T-RECS provides software containers to run the real control
agents without requiring any modifications to them, whereas
other testbeds require either modeling of agents [5], [6],
[7], [8] or the development of agent software with specific
frameworks such as JADE [9]. Testbeds in [5], [11], [12]
use physical computing and/or communication infrastructure.
This makes these testbeds non-scalable, non-distributable, and
non-portable. Moreover, users of such testbeds incur monetary
costs. In case of physical communication infrastructure, users
can only test the robustness/correctness of their control proto-
col with a given hardware configuration. As the authors of [11]
also admit, these limitations can be removed if the computation
platforms can somehow be virtualized or be placed in software
containers and if the communications infrastructure can be
emulated in the software. In fact, our testbed does exactly
what the authors in [11] ask for: We emulate the network
infrastructure and run different agents in multiple software
containers separated by an emulated communication network.
As a result, our testbed does not suffer from these limitations.

Apart from the testbeds designed for control of electric
systems, there exists a vast amount of literature on modeling
or simulating the electric resources and grid. Authors in [13],
[14], [15] propose models for the most common resources
such as loads, converters, batteries, solar panels, and electric
vehicles, whereas the grid is simulated in phasor domain
in [13], [14], [16]. With regard to modeling electric resources,
we use existing state-of-the-art models and we enable T-RECS
users to plug in new models if needed. To simulate the electric
grid in the phasor domain, we cannot use PyPower [16] as it
supports only single-phase load flow. Also, the grid model
provided by GridLAB-D [13] is not appropriate because (1)
it neglects phase-to-ground coupling capacitance, (2) it cannot
take as input the new power setpoint at sub-second level on a
given node, and (3) the input to the grid model are physical
parameters of lines such as type and length of wires instead
of a Y-matrix. In T-RECS, to simulate the grid, we use the
three-phase load flow algorithm proposed in [17].

III. T-RECS DESIGN

As shown in Fig. 1, an RTCS for electric grids can be
categorized into layers as follows:

1) Physical layer — consists of the electric grid and re-
sources that are being controlled by upper layers.

Software
executables

Network	
topology

Grid	topology	
Resource	types Physical	layer

Network	layer

Sensing	and	
Actuator	layer

Sensors	&	actuators	
configurations

Real

Software	Agents

T-RECS

setpoints

setpoints

setpoints

measurements control
messages

REAL	WORLD

Emulated Simulated

Lo
gg
in
g	
an
d	
Vi
su
al
iza

tio
n

Control	layer

Mininet	Emulation

Sensor	&	actuator	modules
(providing	resAPI & gridAPI)

Grid	&	Resource	models

Software	Agents

measurements

measurements

Resources Grid

Sensors Actuators

User	Input

Fig. 1: Design and Architecture of T-RECS. RTCSs typically consists of four
layers and the figure shows how these four layers are managed in T-RECS.

2) Sensing and actuation layer — consists of sensors that
read the state of the physical layer and of actuators that
alter the state of the physical layer.

3) Network layer — represents the communication infras-
tructure among software agents, sensors, and actuators.

4) Control layer — comprises the software controllers
that use the measurements from sensors to perform
computations and output setpoints for the actuators.

Fig. 1 also shows how the different layers of the RTCS
are realized in T-RECS. The physical layer is simulated
using state-of-the-art models of grid and electric resources,
as described in Section III-A. The sensing and actuation layer
is simulated through two APIs, namely gridAPI and resAPI.
These APIs provide an interface for reading and altering
the state of the grid and resources, as described in Section
III-B. The network layer is emulated using Mininet, with an
exchange of real packets, as described in Section III-C. The
control layer is realized in T-RECS without any modification
to the software agents, as described in Section III-D. Using
the unmodified software agents along with powerful network
emulation, enables T-RECS to study the effects of software
and network non-idealities on the control mechanism.

A. Physical Layer

To simulate the physical layer, T-RECS takes as an input
the three-phase nodal-admittance matrix of the grid along with
the location and types of resources. The frequency of the grid
is either configured statically or received as an input from one
of the resources. Currently, T-RECS provides three resource
models: battery, variable load, and PV source. The battery is
modeled using the two-time constant model [18]. The variable
load and PV source are simulated by replaying a time-stamped
trace of the power injections. A change in resource-state is
reflected as a change in the state of the bus on which the
resource is placed. When the state at any bus changes, the grid
model performs a three-phase load flow by using the method
in [17] to compute the voltage at each bus in the grid and the
current in each line. In this way, the evolution of the grid is
tracked throughout the execution.

B. Sensing and Actuation Layer

This layer consists of two APIs, the gridAPI and the resAPI.
The gridAPI provides functions to get and set the voltage and



power at each bus in the grid. The resAPI provides functions
for reading and changing the state of the resource model, such
as power injection by a battery. These APIs can be used to
create specific sensors and actuators as required by the user’s
configuration. Currently, as a sensor model, T-RECS provides
a phasor measurement unit (PMU) that periodically (every 20
ms in a 50 Hz grid) reads the voltage and current of the bus it
is attached to and then, streams them as phasors by using the
IEEE C37.118.2 format for synchrophasors [19]. The streamed
messages are sent as real packets via the network layer.

C. Network Layer

The network layer consists of the communication infras-
tructure such as switches, routers, links, etc., that connect
the sensors, actuators and control agents. T-RECS takes the
topology of the network as input and reproduces it in a
virtual environment by using the Mininet framework. This
includes the interconnections between the agents, bandwidth
and delay of the links, queuing discipline of the routers, etc.
This network is used to send real messages between the agents
where we can introduce packet drop, delay, or reordering
depending on the desired network configuration.

D. Control Layer

The control layer is the same as in the real world. T-RECS
takes the executables of the software agents as input and
integrates them with the network topology by using software
containers provided by Mininet. Just as in a real deployment,
the unmodified executables receive messages from sensors,
perform computations, and send setpoints to actuators. Thus,
T-RECS recreates an environment in which the software agents
can be executed and tested without modifying their code.

IV. USE CASE SCENARIO

A. Setup

We have run Commelec [1], an RTCS for active distribution
networks, using the publicly provided implementation of T-
RECS. Commelec uses two types of software agents: grid
agent (GA) is used to control an entire grid whereas resource
agent (RA) is responsible for an electric resource. The GA
receives measurements of the grid state from sensors every 20
ms. It communicates with RAs every 100 ms to send setpoints
and to receive state of their respective resources.

To start the experiment, T-RECS requires as input the
software agents, the resource types, the Y-matrix of the grid,
and the network topology. Our setup consist of the CIGRÉ
benchmark low-voltage microgrid with a battery and a PV
resource. As software agents, it has one GA and two RAs.
The network topology is such that all agents are in a different
local area networks connected through a router.

The resources, namely battery and PV, are simulated using
the resource models as described in Section III-A. The PV
resource is uncontrollable and characterized by a rated power
of 20 kW. We use a power trace from a real PV installation.
The battery resource is controllable and its rated power is 20
kW. Additionally, there are five PMUs that send the state of

0 50 100 150 200 250 300
Elapsed time (sec)

12.5
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

A
ct

iv
e
 P

o
w

e
r 

(k
W

)

Dispatch plan

Measured at slack

Battery

PV

Fig. 2: Tracking the given dispatch plan in the presence of variable PV
generation with Commelec. Positive power represents production.

0 50 100 150 200 250 300
Elapsed time (sec)

5.0

2.5

0.0

2.5

5.0

7.5

A
ct

iv
e
 P

o
w

e
r 

(k
W

)

Dispatch plan

No packet loss 

1% packet losses

10% packet losses

Fig. 3: Effect of network losses on Commelec’s ability to track a given
dispatch plan. Positive power represents production.

the grid to the GA every 20 ms, as described in Section III-B.
T-RECS creates four Mininet hosts (software containers) that
run: (1) the GA, (2) the battery RA and the battery model, (3)
the PV RA and the PV model, (4) the grid model and sensors.
The inter-host communication happens through the network
layer (Section III-C). The intra-host communication between
the RAs and the resources, the grid and the PMUs happens
through the resAPI and the gridAPI, respectively.

B. Goal

We illustrate the use of T-RECS on the scenario of microgrid
dispatchability, by which a microgrid operator has to follow
a dispatch plan computed day-ahead that specifies the grid
prosumption by intervals of, say, five minutes. The goal of
Commelec is to follow the said plan as accurately as possible
in the presence of intermittent PV generation and to maintain
the grid in a feasible state. The maximum tolerable energy
mismatch is taken as 50 kWh in a day, which amounts to 0.17
kWh in five minutes, where energy mismatch is defined as the
cumulative absolute difference between the dispatch plan and
the power prosumed by the grid.

We test how communication network non-idealities between
the GA and RAs influence the ability of software agents to
follow the dispatch plan. Specifically, we are interested in the
percentage of packet loss Commelec can bear while satisfying
the 0.17 kWh limit for a duration of five minutes.

C. Results

Fig. 2 shows the dispatch plan and the actual power mea-
sured at the slack bus for a duration of five minutes. To track



0 0.1 0.5 1 2 5 7 10 12 15
Network loss rate (%)

0.00

0.10

0.17
0.20

0.30
E
n
e
rg

y
 M

is
m

a
tc

h
 (

kW
h
)

Maximum Tolerable Energy Mismatch in 5 min

Fig. 4: Energy mismatch between the dispatch plan and the that provided by
Commelec during a period of five minutes, as a function of network losses.

0 5 10 15 20 25 30
Number of software agents

0

20

40

60

80

100

C
P
U

 U
sa

g
e
 (

%
) CPU Usage

500

540

580

620

660

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

Memory Usage

Fig. 5: CPU and memory usage of T-RECS, on a virtual machine with 2 GHz
single-core CPU and 1 GB RAM, as a function of number of software agents.

this dispatch plan, the GA accommodates the variations in PV
production by changing the power injected by the battery.

Fig. 3 shows the effect of packet losses in the communica-
tion between the GA and RAs on the tracking performance.
While the requested power is tracked with high accuracy in
the absence of packet losses, we see a slight deviation from
the dispatch plan with 1% packet loss. This deviation is more
profound with a higher loss rate of 10%.

To find the network loss rate at which the constraint of
maximum tolerable energy mismatch of 0.17 kWh (Section
IV-B) is violated, we vary the network loss rate and measure
the energy mismatch. We find that Commelec can follow the
dispatch plan with acceptable mismatch up to a packet loss of
7% between the GA and the RAs.

D. Performance Evaluation

T-RECS enables testing of wide-range of RTCSs for electric
grids without the need for special hardware. In order to
demonstrate its usability with large RTCSs, we evaluate the
CPU and memory usage of T-RECS with varying number
of software agents. For this, we run it in an Lubuntu virtual
machine with a single-core 2 GHz CPU and 1 GB RAM, and
increase the number of software agents in batches of three
(one GA and two RAs).

Fig. 5 shows how the usage scales with the software agents.
We find that the memory footprint of T-RECS increases at
a rate of 5 MB per software agent, whereas the CPU usage
increases at a rate of 2% per software agent. We see that, while
running in a modest virtual machine, T-RECS can support up
to 30 software agents, including 10 GAs and 20 RAs, without
any performance penalty. To put this in perspective, a typical
microgrid is controlled with one GA and about five RAs.
Hence, we conclude that a control-software developer can use
T-RECS to simulate large grids on a single computer.

V. CONCLUSION AND FUTURE WORK

We presented T-RECS, a software testbed designed for
testing and validating multi-agent real-time control software
for electric grids. It supports use of the control software
without any modification and emulates the communication net-
work that enables real packets being exchanged. These design
choices make it suitable for studying the effect of software
and network non-idealities on the control performance.

Using a beta version of T-RECS, which we made available,
we study the effect of network losses on the performance of
the Commelec control protocol. In the future, we will validate
T-RECS by comparing the results of the control performance
against those of a real-world control in our on-campus micro-
grid. T-RECS is open-source and can be extended to include a
wide-range of electric resource models. Currently, it is being
used in co-development of Commelec, and will be used for
testing and analysis of real-world deployment of Commelec.

REFERENCES

[1] A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec, and M. Paolone,
“A Composable Method for Real-Time Control of Active Distribution
Networks with Explicit Power Setpoints. Part I: Framework,” Electric
Power Systems Research, vol. 125, pp. 254–264, 2015.

[2] Z. Xiao, T. Li, M. Huang, J. Shi, J. Yang, J. Yu, and W. Wu,
“Hierarchical MAS Based Control Strategy for Microgrid,” Energies,
vol. 3, no. 9, pp. 1622–1638, 2010.

[3] M. Mohiuddin, W. Saab, S. Bliudze, and J.-Y. Le Boudec, “Axo:
Masking Delay Faults in Real-Time Control Systems,” in Industrial
Electronics Society, IECON 2016 - 42nd Annual IEEE Conference, 2016.

[4] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou et al., “Causes
of the 2003 Major Grid Blackouts in North America and Europe and
Recommended Means to Improve System Dynamic Performance,” IEEE
Transactions on Power Systems, vol. 20, no. 4, pp. 1922–1928, 2005.

[5] F. Maturana, R. Staron, K. Loparo, and D. Carnahan, “Agent-Based
Testbed Simulator for Power Grid Modeling and Control,” in Energytech,
2012 IEEE. IEEE, 2012, pp. 1–6.

[6] Y. Cao, X. Shi, and Y. Li, “A simplified co-simulation model for
investigating impacts of cyber-contingency on power system operations,”
IEEE Transactions on Smart Grid, 2017.

[7] A. Ravichandran, “Software-Defined MicroGrid Testbed for Energy
Management,” Master Thesis, 2011.

[8] “Mosaik,” https://mosaik.offis.de/, [Accessed 04-May-2017].
[9] A. Saleem, N. Honeth, Y. Wu, and L. Nordstrom, “Integrated Multi-

Agent Testbed for Decentralized Control of Active Distribution Net-
works,” in Power and Energy Society General Meeting (PES), 2013
IEEE. IEEE, 2013, pp. 1–5.

[10] “Mininet,” http://mininet.org/, [Accessed 04-May-2017].
[11] M. J. Stanovich, S. K. Srivastava, D. A. Cartes, and T. L. Bevis, “Multi-

Agent Testbed for Emerging Power Systems,” in Power and Energy
Society General Meeting (PES), 2013 IEEE. IEEE, 2013, pp. 1–5.

[12] R. M. Reddi and A. K. Srivastava, “Real Time Test Bed Development
for Power System Operation, Control and Cyber Security,” in North
American Power Symposium (NAPS), 2010. IEEE, 2010, pp. 1–6.

[13] “GridLAB-D,” http://www.gridlabd.org/, [Accessed 04-May-2017].
[14] “Modelica,” https://www.modelica.org/, [Accessed 04-May-2017].
[15] “OpenDSS,” http://smartgrid.epri.com/SimulationTool.aspx.
[16] “PyPower,” https://pypi.python.org/pypi/PYPOWER.
[17] C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Explicit

Conditions on Existence and Uniqueness of Load-Flow Solutions in
Distribution Networks,” IEEE Transactions on Smart Grid, 2016.

[18] M. Bahramipanah, D. Torregrossa, R. Cherkaoui, and M. Paolone,
“Enhanced Electrical Model of Lithium-Based Batteries Accounting the
Charge Redistribution Effect,” in Power Systems Computation Confer-
ence (PSCC), 2014. IEEE, 2014, pp. 1–8.

[19] K. E. Martin, G. Benmouyal, M. Adamiak, M. Begovic, R. Burnett,
K. Carr, A. Cobb, J. Kusters, S. Horowitz, G. Jensen et al., “IEEE
Standard for Synchrophasors for Power Systems,” IEEE Transactions
on Power Delivery, vol. 13, no. 1, pp. 73–77, 1998.


