
HAL Id: hal-03046893
https://hal.science/hal-03046893

Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Minimization in Time-Constrained Robotic
Tasks via Sequential Quadratic Programming

Marco Faroni, Domenico Gorni, Antonio Visioli

To cite this version:
Marco Faroni, Domenico Gorni, Antonio Visioli. Energy Minimization in Time-Constrained Robotic
Tasks via Sequential Quadratic Programming. IEEE International Conference on Emerging Technolo-
gies for Factory Automation 2018, Dec 2018, Turin, Italy. �hal-03046893�

https://hal.science/hal-03046893
https://hal.archives-ouvertes.fr

Energy Minimization in Time-Constrained Robotic
Tasks via Sequential Quadratic Programming

Marco Faroni
Dipartimento di Ingegneria

Meccanica e Industriale
University of Brescia

Brescia, Italy
Email: m.faroni003@unibs.it

Domenico Gorni
Dipartimento di Ingegneria

Meccanica e Industriale
University of Brescia

Brescia, Italy
Email: domenico.gorni@unibs.it

Antonio Visioli
Dipartimento di Ingegneria

Meccanica e Industriale
University of Brescia

Brescia, Italy
Email: antonio.visioli@unibs.it

Abstract— Reduction of the energy consumption in robotized
processes is a key issue in nowadays manufacturing. In this paper,
we propose a simple approach to energy minimization of robotic
tasks with assigned cycle time based on sequential quadratic
programming. The method aims at re-shaping a given timing law
in the sense of energy saving, without modifying the desired path
and the given cycle time. Thanks to the iterative linearization of
the nonlinear time-constraint, the resulting minimization problem
is solved by only using common quadratic programming solvers,
making the method suitable for a direct implementation in robot
industrial controllers. At first, the method is devised by only
considering the kinematics of the manipulator. The dynamic
model is then straightforwardly included, without significantly
increasing the complexity of the method. Validation in simulation
environment is provided in order to show the effectiveness of the
methodology.

Index Terms—Industrial robotics, energy minimization, trajec-
tory optimization, quadratic programming.

I. INTRODUCTION

Nowadays energy efficiency as well as the conservation of
energy and natural resources are key aspects in the economic
sector. The target of reduction of CO2 emission is strictly
correlated to the reduction of energy waste. In fact, companies
belonging to many different sectors have been stimulated by
the European Energy Management Standard (EN 6001) to
reduce and monitor their energy consumption. Furthermore,
during the last years, the price of energy is continuously
increasing [1], [2]. Companies therefore react moving from the
reduction of production time to the optimal trade-off between
energy consumption and time. Recent statistics show that one
of the major consumers of energy is actually the manufacturing
industry.

During the last decades, the number of robots implemented
in manufacturing has exponentially increased, moving compa-
nies to optimize their energy consumption in order to reduce
the total amount of consumed energy [3]. For example, mea-
surements show that an average 200-kg-payload robot in body
shop yearly consumes around 8 [MWh] and, obviously, the
most part of this energy is spent during the movement [4], [5].
In a typical automotive car body, all the sheet metal parts are
joined together by up to 4000 weld spots. Furthermore, other

joining methods are gluing, arc welding and stud welding. In
this kind of plants hundreds of robots that work unceasingly
are involved [6], [7]. These data point out that, in order to
satisfy economic efficiency criteria, industries are more and
more interested in robot with lower energy consumption for
comparable process time and accuracy.

The problem of computing optimal energy consumption
paths and trajectories has been subject of research since the
late 1960s [8]. In the last years, many researches have been
carried out trying to solve it, however there is still the lack of
a simple methodology that can be easily implemented. First of
all, the energy minimization problem can be addressed from
two different points of view based on the robotic application.
The first approach concerns about finding optimal geometrical
paths which can globally decrease the total energy consump-
tion. For instance, if the robot has to execute a task like pick
and place, the only geometrical constrains are the starting
and the ending positions (and a few intermediate waypoints
at most). Therefore, the geometrical path can be devised in
such a way that the energy consumption is minimized. The
second approach is followed in case of predefined geometrical
paths. In this case, a decrease in the energy consumption
can be obtained by acting on the timing law applied to the
manipulator actuators by means of change in jerk, acceleration
and velocity reference values.

This paper deals with this second class of strategies. In
this framework, most of the proposed approaches set up
a nonlinear optimization problem, which minimizes a cost
function proportional to the energy consumption and takes into
account the manipulator limits (e.g., configuration, velocity,
acceleration and torque limits) in the constraints [4], [9], [10],
[11]. However, these methodologies usually require heavy
computational burden and their implementation may often
result to be cumbersome, as also pointed out in [12]. Heuristic
approaches are also often adopted by practitioners [13], [14].
In this case, the timing law is devised by using smooth func-
tions and by using an iterative approach to minimize velocity
or acceleration peaks given the total task time and checking
that the resulting motion satisfies the robot limits. These
approaches are easily implementable, computationally light,

and do not require optimization solvers. However, compliance
with the robot limits can be checked only a posteriori, and the
resulting timing law is suboptimal with respect to the original
problem. There is still the need of easily-implementable and
effective techniques which can attract practitioners and boost
the industrial application of optimization-based methods.

This was also pointed out in [12], where a nonlinear
optimization approach was developed to minimize a simplified
energy index (namely, the squared sum of the joint accel-
erations). Such approach still requires the use of nonlinear
solvers and does not take into account the dynamics of the
manipulator. Nevertheless, it gives very good results, with a
reduction of the energy consumption in the order of 30%.

In this paper, we therefore follow a similar approach, aiming
at tackling the need for nonlinear solvers in the resolution
of the optimization problem and the lack of inclusion of
the dynamics of the robot in the problem. First of all, the
energy minimization problem is set up in a different way with
respect to [12]: the energy consumption index is written as a
quadratic cost function and all the robot limits are written as
linear constraints in the optimization variable, which is given
by the curvilinear abscissa along the nominal path. The only
nonlinear constraint is therefore given by the imposition of the
total execution time of the task. The optimization problem is
then solved by means of a Sequential Quadratic Programming
(SQP) approach [15], which consists in iteratively linearizing
the nonlinear constraint around the solution obtained at the
previous iteration. The proposed method therefore presents
the great advantage of requiring just the implementation of
Quadratic Programming (QP) techniques, which could also be
easily implemented on industrial robot controllers. Moreover,
we address the inclusion of the dynamic model of the manip-
ulator and we show that, by following the approach presented
in [16], this does not significantly increase the computational
complexity of the problem.

The paper is organized as follows. In Section II, the
basic energy-optimal time-constrained path tracking problem
is defined. In Section III, a linearization approach, based on
Taylor expansion, is applied to the presented problem in such
a way that the original problem can be solved as a sequence
of quadratic programs. Section IV extends the kinematic-
based approach presented up to that point by including the
dynamic model of the manipulator. Finally, in Section V,
simulation results are presented to show the effectiveness of
the methodology. Conclusions are given in Section VI.

II. PROBLEM FORMULATION

Consider a given trajectory in the joint space and a set of
kinematic constraints for a robot manipulator. The strategy
proposed in this paper aims at modifying such trajectory
by minimizing the energy consumption, preserving the path
tracking and the given execution time of the task. Therefore,
considering a manipulator composed by n joints, the trajectory

q(t) can be defined by means of the path-velocity decomposi-
tion approach as the composition of the following functions:

s : [0, t f]→ [0,s f], t 7→ s(t),

q : [0,s f]→ Rn, s 7→ q(s),
(1)

where s represents the Euclidean distance from the beginning
of the path, and q is a vector that contains all the joint coor-
dinates respect to time q(t) = [q1(t), . . . ,qn(t)]T . Furthermore
t f is the total traveling time and s f = s(t f) is the total length
of the path. As this paper deals with path tracking problems,
we reasonably assume that ṡ(t)> 0 ∀ t ∈]0, t f [and ṡ(t)≥ 0 in
the extreme points t = 0 and t = t f .

For a given path the joints velocities and accelerations can
be rewritten as a function of the defined scalar path coordinate
trajectory, as follows:

q̇(t) = q′(s(t))ṡ(t),
q̈(t) = q′(s(t))s̈(t)+q′′(s(t))ṡ(t)2,

(2)

where ṡ = ds/dt, s̈ = d2s/dt2, q′(s) = dq/ds, and q′′(s) =
d2q/ds2.
In case the dynamic model of the manipulator is not avail-
able, it is possible to have an approximate measure of the
energy consumption as a weighted sum of squared angular
accelerations for all the joints [17]. Therefore the problem of
minimizing the energy consumption can be written as:

minimize
s

∫ t f

0
q̈(t)T q̈(t)dt

subject to s(0) = 0,
s(t f) = s f

ṡ(0) = ṡ0

ṡ(t f) = ṡ f

ṡ(t)≥ 0

q̇≤ q̇(t)≤ q̇
q̈≤ q̈(t)≤ q̈

(3)

where ṡ0 and ṡ f are the initial and final velocities (typically
equal to zero), while q̇, q̇, q̈, and q̈ are, respectively, the lower
and upper joints velocity constraints and the lower and upper
joints acceleration constraints.

It is clear that the proposed performance index is nonlinear
with respect to the path coordinate s, however it is possible
to reformulate the optimal control problem (3) as an optimal
control problem with linear system dynamics subject to non-
linear state dependent constraints. Indeed, a smart variable
change has been proposed in [16]. Even though this requires
a further set of equality constraints, the nonlinearity is moved
from the performance index to a constraint. Firstly, a change
in the integration variable, from t to s is required, so that the
total time of the trajectory is rewritten as:

t f =
∫ t f

0
1dt =

∫ s(t f)

s(0)

1
ṡ

ds (4)

Secondly, the following change of variables is applied:

a(s) = s̈,

b(s) = ṡ2.
(5)

The relation between the new optimization variables a(s) and
b(s) is given by the following additional equality constraint:

ḃ(s) = b′(s)ṡ = 2a(s)ṡ, (6)

which implies
b′(s) = 2a(s). (7)

It is now possible to rewrite Problem (3) in such a way that
the new optimization variables are a(s) and b(s) instead of s,
that is:

minimize
a,b

∫ s f

0
(q′(s)a(s)+q′′(s)b(s))T (q′(s)a(s)+q′′(s)b(s))ds

subject to b(0) = ṡ2
0,

b(s f) = ṡ2
f ,

b′(s) = 2a(s),
b(s)≥ 0,

(q′(s))2b(s)≤ (q̇)2,

q̈≤ q(s)′a(s)+q(s)′′b(s)≤ q̈.
(8)

The resulting optimization problem is therefore quadratic and
can be easily solved by using conventional QP solvers. Note
that the cost function in (8) is not exactly equivalent to the cost
function in (3). In fact, the new cost function minimizes the
integral of squared acceleration along the curvilinear abscissa
s, while the original problem (3) minimizes the integral of the
squared acceleration along time. However, in this way, the new
cost function results to be quadratic, with significant benefits
from the computational point of view.

Furthermore, Problem (8) is not complete yet, as none of the
stated constraints accounts for the total traveling time. Thus,
a further constraint has to be added, that is,

t f =
∫ s(t f)

s(0)

1√
b(s)

ds. (9)

This equality constraint is nonlinear. The next section ad-
dresses the linearization of this constraint in order to solve
the optimization problem by means of a sequence of quadratic
programs.

III. LINEARIZATION OF THE PROBLEM AND TERMINAL
CONDITIONS

The longitudinal path length s ∈ [0,s f] is discretized by
means of a gridpoint {sk},k = 0, . . . ,K, and a(s) and b(s)
are considered to be constant along the discretized intervals.
Therefore, define a = [a0, . . . ,aK] and b = [b0, . . . ,bK] where
ak = a

(sk−sk−1
2

)
and bk = b

(sk−sk−1
2

)
.

The constraint expressing the total traveling time in (9) can
be rewritten as:

t f =
∫ s(t f)

s(0)

1√
b(s)

ds =
K

∑
k=1

1√
bk

∆sk, (10)

where ∆sk = sk− sk−1. Therefore, a single sample of time ∆tk,
at each generic instant k, can be rewritten as a function of ∆sk
and bk, as follows:

∆tk(bk) =
1√
bk

∆sk. (11)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

bk

∆
t
k

Fig. 1: Pseudo-hyperbole representing the nonlinear relation
between ∆tk and bk(s).

Figure 1 shows the function that represents the nonlinear
relation between ∆tk and bk(s). To overcome this nonlinearity,
a linearization approach based on Taylor series expansion is
applied. First of all, it is important to stress that this approach
is based on the knowledge of the nominal timing law that has
to be optimized. Therefore, the initial values of ak and bk on
the whole path [0,s f] are assumed to be known and they are
denoted by a0 and b0.

By applying a first-order Taylor series approximation to
(11), we obtain:

∆t̂k(bk) =
∆sk√

b0
k

− 1
2

∆sk

b0
k

√
b0

k

(bk−b0
k) (12)

where b0
k is the kth element of the set of known initial values of

the optimization variable bk and ∆t̂k(bk) is the approximated
value of ∆tk(bk) in the sense of Taylor expansion. Such a
linearization is, obviously, an approximation of the pseudo-
hyperbole around each initial value of the optimization vari-
able bk. However, it has to be pointed out that in many cases
b0 and bK are equal to zero, therefore (12) results impossible
to be applied. To overcome this issue, the first and the last time
intervals are approximated by making use of the acceleration
variables, that is:

∆tk(ak) =

√
2∆sk

ak
, for k = 0∧ k = K. (13)

Equation (13) is then linearized in the same way as (11) by
means of its first-order Taylor expansion.

It is clear that each bk is now constrained to move on a line
instead of on the pseudo-hyperbole. Thus, to obtain a reliable
solution, it is important to limit the admissible variation around
the linearization point. This can be implemented by imposing a
maximum admissible deviation between the pseudo-hyperbole
and the line. This result in an additional constraint such that:

bk ≤ bk ≤ bk ∀ k = 1, . . . ,K (14)

0.3 0.35 0.4 0.45 0.5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

bk

∆
t
k

Fig. 2: Linearization of the pseudo-hyperbole. The red dot
represent the starting point given by a generic b0

k ; the blue
line is the pseudo-hyperbole that has to be approximated; the
green line is the Taylor linearizing function, while the black
dots represent the maximum admissible variation b0

k and b0
k .

where bk and bk are calculated by imposing that the relative
deviation between the pseudo-hyperbole and the line is smaller
than a maximum value δ , i.e.:∣∣∣∣∣∆tk(bk)−∆t̂k(bk)

∆tk(bk)

∣∣∣∣∣≤ δ∣∣∣∣∣∆tk(bk)−∆t̂k(bk)

∆tk(bk)

∣∣∣∣∣≤ δ

(15)

The considered linearized optimal problem therefore results:

minimize
a, b

(q′(sk)ak +q′′(sk)bk)
T (q′(sk)ak +q′′(sk)bk)

subject to b0 = ṡ2
0,

bK = ṡ2
f ,

b′ = 2a
b≥ 0

(q′(sk))
2bk ≤ (q̇(sk))

2

q̈≤ q(sk)
′ak +q(sk)

′′bk ≤ q̈∣∣∣∣∣∆tk(bk)−∆t̂k(bk)

∆tk(bk)

∣∣∣∣∣≤ δ∣∣∣∣∣∆tk(bk)−∆t̂k(bk)

∆tk(bk)

∣∣∣∣∣≤ δ

∆t̂k(bk) =
∆sk√

b0
k

− 1
2

∆sk

b0
k

√
b0

k

(bk−b0
k) k = 2, ...,K–1

∆t̂k(ak) =

√
2∆sk
a0

k
− 1

2

√
2∆sk

a0
k

√
a0

k

(ak−a0
k) k = {1,K}

(16)
Problem (16) is based on the linearization of (11) and (13).

The error introduced by the linearization is smaller when the

approximated solution is close to the initial conditions. For
this reason, we adopt a sequential programming approach, by
solving (16) iteratively, and using the last solutions as new
initial timing law for the next optimization, until the difference
between successive solutions is smaller than a given threshold
ε . This procedure is summarized in Algorithm 1.

Algorithm 1 Computation of the optimal motion law

Input: a0,b0

Output: a,b
repeat

∆t̂1←
√

2∆s1
a0

1
− 1

2

√
2∆s1

a0
1

√
a0

1
(a1−a0

1)

∆t̂K ←
√

2∆sK
a0

K
− 1

2

√
2∆sK

a0
K

√
a0

K
(aK−a0

K)

for i = 2 to K−1 do
∆t̂k← ∆sk√

b0
k

− 1
2

∆sk

b0
k

√
b0

k

(bk−b0
k)

end for[a
b
]
← argmin Problem (16)

max value←max

∣∣∣∣∣[ab]−
[

a0

b0

]∣∣∣∣∣
a0← a
b0← b

until max value≤ ε

Depending on the value of δ and ε , it is possible to obtain
a faster or slower convergence of the recursive algorithm and
of course, a bigger or a lower proximity to the global optimal
minimum of the nonlinear problem.

IV. REFORMULATION OF THE PROBLEM GIVEN THE
DYNAMIC MODEL

Consider the dynamic model of the manipulator in the form:

τ(t) = M(q(t))q̈(t)+C(q(t), q̇(t))q̇(t)+ f(q(t))sgn(q̇(t))+g(q(t))
(17)

where M(q(t)) is a positive definite inertia matrix and
C(q(t),q̇(t)) is a matrix accounting for Coriolis effects. Then,
f(q(t)) is a vector that describes the Coulomb friction forces
while g(q(t)) denotes the vector accounting for gravity.

By applying (2) into (17) we obtain:

τ(s(t)) = Ms(s(t))s̈(t)+Cs(s)ṡ(t)2 +gs(s) (18)

where

Ms(s(t)) = M(q(s(t)))q′(s(t))
Cs(s(t)) = M(q(s(t)))q′′(s(t))+C(q(s(t)),q′(s(t)))q′(s(t))
gs(s(t)) = f(q(s(t)))sgn(q′(s(t)))+G(q(s(t)))

(19)

By using the change of variable described in (5), the torque
τ(s) results to be linear in the optimization variables a(s)
and b(s). This means that a quadratic cost function can be
easily set up to minimize the energy consumption in terms of

integral of the squared torques. Similarly to (8), the following
optimization problem results:

minimize
a, b

∫ s f

0
(τ(s(t)))T (τ(s(t)))ds

subject to b(0) = ṡ2
0,

b(s f) = ṡ2
f

b′(s) = 2a(s)

b(s)≥ 0

(q′(s))2b(s)≤ (q̇)2

q̈≤ q(s)′a(s)+q(s)′′b(s)≤ q̈
τ ≤Ms(s(t))a(s)+Cs(s(t))b(s)+gs(s(t))≤ τ

(20)
where τ(s) and τ(s) are the torque lower and upper bounds.
The solution of such problem is analogous to the above
mentioned kinematic case as described in Section III.

V. RESULTS

In order to verify the performance of the proposed method-
ology, the algorithm has been used to plan the trajectory on a
6-DOF manipulator. In particular, we consider a six-axis Efort
ER3A industrial manipulator that has to perform a trajectory
defined in the joint space. The target is, as mentioned before,
to complete a task preserving the time and the path tracking
by consuming as less energy as possible.

The methodology described in this work is implemented off-
line, in the sense that the algorithm is completely executed
before the start of the motion. Differently from many other
nonlinear algorithms developed to solve the same problem, this
methodology requires only a standard quadratic programming
solver. This kind of solvers are simple and fast enough to
be easily included directly in the robotic controller [18],
[19]. This experimental case study aims at demonstrating
some of the features presented in the previous sections. No
dynamic model is used in order to show the effectiveness
of the methodologies in usual industrial case, where the
dynamic model is often unknown or unreliable. For the sake
of simplicity the trajectory is defined in the joint space. In fact,
even though the tasks in industrial robotics are mainly defined
in the operational space, from a practical point of view the
motion is controlled acting directly on each single joint.

First of all, in order to improve the performance of the
algorithm, an additional assumption has to be done. During
the motion planned by a standard industrial controller, the
most used motion laws (for instance, the seven-segments or
the cycloidal ones) present the maximum velocity in the
central part of the movement. The maximum accelerations
and decelerations are usually mainly concentrated at the be-
ginning and at the end of the trajectory. Due to this fact,
it is recommended, in order to obtain a better convergence
of the algorithm, to have a thicker path sampling in these
parts of the trajectory. In case of dense sampling, the number
of optimization variables increases significantly, causing an
increment of the required computational time. We therefore

0 2 4 6 8 10 12
0

5

10

s[
m
]

t[s]

0 2 4 6 8 10 12
0

0.5

1

ṡ[
m
/s
]

t[s]

0 2 4 6 8 10 12
−0.5

0

0.5

s̈[
m
/s

2
]

t[s]

Fig. 3: Position s, velocity ṡ and acceleration s̈ of the applied
law of motion before the optimization is run.

choose an irregular sampling of the path length {sk} by making
use the well-known Chebyshev nodes, which gives:

sk =
1
2

s f +
1
2

s f cos

(
2k−1

2k
π

)
, k = 1, . . . ,K. (21)

Here we consider a trajectory defined in the path coordinates
s(t) and its time derivatives. The timing law applied to the
manipulator is a seven-segments one (see Figure 3), which
has been generated based on the following values:
• s f = 10 [rad];
• s0 = 0 [rad];
• ṡ0 = 0 [rad/s];
• ṡ f = 0 [rad/s];
• ṡmax = 1 [rad/s];
• s̈max = 0.5 [rad/s2];
•

...
s max = 0.5 [rad/s3];

The total execution time of the trajectory therefore results to
be t f = 12.5 [s]

The path length has been discretized by using a number of
gridpoints K = 200. Furthermore, the tolerance values δ and
ε have been chosen respectively equal to 2% and 1.5%. The
choice of these two values is very important as the convergence
of the algorithm and the proximity of the linearized solution
with respect to the global optimum one depends mainly on
these ones. First of all, it is important to stress that the
output tolerance is based on the maximum displacement value
between the set of solution at the iteration i and those at
the iteration i− 1. Therefore, in order not to obtain a fake
convergence it is recommended to choose the δ value bigger
than the ε one. The optimization variables have to be free to
move more than the output tolerance in order to be sure that
the resulting set of optimal values has actually converged to
the global optimal solution. Obviously, in order to have a better
precision, the values of these two parameters have to be small.
Furthermore, increasing too much these two values will cause
a bad convergence due to the lost of the good approximation

0 2 4 6 8 10 12
−1

−0.5
0

0.5

Acceleration

t[s]

s̈[
ra
d
/
s2
]

0 2 4 6 8 10 12
0

0.5

1

Velocity

t[s]

ṡ[
ra
d
/
s]

0 2 4 6 8 10 12
0

5

10

Position

t[s]

s[
ra
d
]

Fig. 4: Red: timing law obtained by the proposed method.
Blue: original timing law.

0 2 4 6 8 10 12
−0.4
−0.2

0
0.2
0.4

Joint 1

t[s]

q̈[
ra
d
/s

2
]

0 2 4 6 8 10 12

−0.5
0

0.5

Joint 2

t[s]

q̈[
ra
d
/s

2
]

0 2 4 6 8 10 12
−0.2

0

0.2

Joint 3

t[s]

q̈[
ra
d
/s

2
]

Fig. 5: Blue: joint accelerations calculated by the proposed
method. Green: original joint accelerations. The three plots
are related to joint 1, 2, and 3 starting from the top to the
bottom.

hypothesis. In practice, the values are moving on a straight
line that is actually approximating, with a good precision, the
pseudo-hyperbole only when it is close to the tangent point
(see Figure 2).
The nominal trajectory is defined as:

q =

0.4(1− cos(s(t)))

0.8sin(s(t))
0.2cos(s(t))

1.1(1− sin(s(t)))
0.3(1− cos(s(t)))

1.4sin(s(t))

 (22)

where s(t) is given by the seven-segment timing law described
in Figure 3. The new timing law obtained by means of the
proposed method is shown in Figure 4.

0 2 4 6 8 10 12
−1

0

1

Joint 4

t[s]

q̈[
ra
d
/
s2
]

0 2 4 6 8 10 12

−0.2
0

0.2

Joint 5

t[s]

q̈[
ra
d
/
s2
]

0 2 4 6 8 10 12

−1

0

1

Joint 6

t[s]

q̈[
ra
d
/
s2
]

Fig. 6: Blue: acceleration calculated by the proposed method.
Green: original acceleration profile. The three plots are related
to joint 4, 5, and 6 starting from the top to the bottom.

TABLE I: Comparison of the energy consumption (com-
puted as in (23)) for the original and the optimized
timing law.

Joint Original timing law Optimized timing law %saving

1 0.72 0.51 29
2 3.18 2.40 24.5
3 0.181 0.13 29
4 6.01 4.54 24.4
5 0.41 0.29 29
6 9.73 7.35 24.5

TOT 20.23 15.21 24.8

Furthermore, in Figures 5 and 6, the resulting joint accel-
erations of the 6-DOF manipulator are presented.

Table I shows the energy consumption of each joint in
case of the original and the optimized timing law. The energy
consumption is calculated as:

K

∑
k=1

q̈(k)T q̈(k)∆t̂k. (23)

It is possible to notice that the optimized trajectory allows a
reduction of the energy consumption of about 25%, which is
indeed a significant improvement.

As regards the computational time required by the algo-
rithm, the convergence time for the proposed example resulted
to be equal to 29 seconds, taking 19 iteration to satisfy the
exit tolerance (the simulations have been executed in Matlab,
on a standard laptop mounting an i7-4500U processor).

VI. CONCLUSIONS

In this paper we have presented a very simple and linear
methodology that can be used to solve an energy minimization
in time constrained robotic tasks. This kind of problem is very
popular in industries where the energy minimization problem
is, at the present day, an important topic. This algorithm has
many advantages, for example it can be used both with or with-
out the knowledge of the dynamic model of the manipulator.

Furthermore, it preserves the path tracking and it is constrained
to re-shape the motion law without changing the total time of
the task. The linearization and, therefore, the possibility to use
simple linear quadratic programming solvers makes it suitable
for a direct implementation in the robot motion controller.
However, the linearization also introduces the disadvantage
of tuning the values of two tolerance parameters, which can
affect the convergence performance.

Energy is actually saved by modifying the original timing
law by minimizing the sum of the squared acceleration values
subject to many different equality and inequality constraints.
A simple case study has shown that the application of the
proposed methodology allows a significant reduction of the
energy consumption.

REFERENCES

[1] F. Unander, “Decomposition of manufacturign energy use in iea coun-
tries, how do recent development compare with historical long-term
trandes,” Applied Energy, vol. 84, 2007.

[2] Paryanto, M. Brossog, M. Bornschlegl, and J. Franke, “Reducing the
energy consumption of industrial robots in manifacturing systems,” The
International Journal of Advanced Manifacturing Technology, pp. 1–14,
2015.

[3] I. F. R., “https://ifr.org/news/world-robotics-report-2016,” 2016.
[4] D. Meike and L. Ribickis, “Energy efficient use of robotics in the au-

tomobile industry,” in Proceedings of the 15th International Conference
on Advanced Robotics, Tallin (Estonia), 2011, pp. 507–511.

[5] O. Maimon, E. Profeta, and S.Singer, “Energy analysis of robot task
motions,” Journal of Intelligent and Robotic System, vol. 4, pp. 175–
198, 1991.

[6] S. Björkenstam, D. Gleeson, and R. Bohlin, “Energy efficient and
collision free motion of industrial robots using optimal control,” in
Proceedings of the 9th IEEE International Conference on Automation
Science and Engineering, Madison (USA), 2013.

[7] D. Meike, M. Pellicciari, and G. Berselli, “Energy efficient use of
multirobot production line in the automotive industry: Detailed system
modeling and optimization,” IEEE Transactions On Automation Science
and Engineering, vol. 11, pp. 798–809, 2014.

[8] G. Field and Y. Stepanenko, “Iterative dynamic programming: An ap-
proach to minimum energy trajectory planning for robotic manipulators,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, Minneapolis (USA), 1996, pp. 2755–2760.

[9] O. Wigström, B. Lennartson, A. Vegano, and C. Breitholdtz, “High-
level scheduling od energy optimal trajectories,” IEEE Transactions on
Automation Science and Engineering, vol. 10, pp. 57–64, 2013.

[10] K. G. Shin and N. D. Mckay, “A dynamic programming approach
to trajectory planning of robotic manipulators,” IEEE Transactions on
Automatic Control, vol. 6, pp. 491–500, 1986.

[11] Z. Shiller, “Time-energy optimal control of articulated system with
geometric path constraints,” Robotics and Automation, vol. 4, pp. 2680–
2685, 1994.

[12] S. Riazi, K. Bengtsson, O. Wingström, E. Vidarsson, and B. Lennartson,
“Energy optimization of multi-robot systems,” in Proceedings of the
2015 International Conference on Automation Science and Engineering,
Gothenburg (Sweden), 2015, pp. 1345–1350.

[13] K. K. Ayten, P. Iravani, and M. N. Sahinkaya, “Optimum trajectory plan-
ning for industrial robots through inverse dynamics,” in Proceedings of
the 8th International Conference on Informatics in Control, Automation
and Robotics, Setubal (Portugal), 2011, pp. 105–110.

[14] B. Martin and J. Bobrow, “Minimum effort motions for open chain
manipulators with task-dependent end-effector constraints,” Robotics
and Automation, vol. 3, pp. 2044–2049, 1997.

[15] Z. Zhu, “An efficient sequential quadratic programming algorithm for
nonlinear programming,” Journal of Computational and Applied Math-
ematics, vol. 175, pp. 447–464, 2005.

[16] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Transactions on Automatic Control, vol. 54, pp. 2318–
2327, 2009.

[17] S. Riazi, O. Wigström, K. Bengtsson, and B. Lennartson, “Energy
and peak power optimization of time-bounded robot trajectories,” IEEE
Transactions on Automation Science and Engineering, vol. 14, pp. 646–
657, 2017.

[18] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[19] C. Hildreth, “A quadratic programming procedure,” Michigan Agricul-
tural Experiment Station, vol. 2001, pp. 79–95, 1957.

