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Abstract—Railway line surveillance is important for providing
safe and smooth travel of trains under effects of environmen-
tal or human-generated damages to the railway. This work
presents a Structure from Motion pipeline specifically designed
with the aim of supporting the monitoring operations of the
railway infrastructure using a monocular camera mounted on
the train’s tractor. Within this work we developed a dynamical
reconstruction instrument based on the mathematics of the
projective geometry for handling the problem of localization,
by triangulation techniques of points, lines, whole objects and of
other known elements. Exploiting the a-priori knowledge of the
scene structure (known track gauge) and the camera intrinsic
parameters it is possible to reconstruct in metric dimension the
trajectory of the train and the position of the detected object. The
approach proposed here combines Computer Vision techniques
to detect the significant elements and to classify a set of features
with Bayesian filtering. Algorithms for this specific purposes have
been developed in order to identify the rail track geometry, and
a line-based approach has been adopted to assess the camera
poses. Starting from these first estimates, a manifold Unscented
Kalman Filter operates on the set of robustly matched features,
fusing heterogeneous cues about the camera orientation and using
RANSAC to find the best solution. Consequently, the detected
objects can be triangulated and localized. An analysis using real
captures is reported to prove the quality of the results obtained.

I. INTRODUCTION

Due to the raising need to enforce the surveillance of the
railroad, a variety of systems have been developed in order to
guarantee the safety of the vehicles and its users. State-of-the-
art technology has been employed such that control systems
may rely on the usage of train on-board sensors (Locomotive-
based systems) as well as on the sensory equipment settled
within the infrastructure, allowing communication with the rail
vehicles (Infrastructure-based system). The use of Unmanned
Rail Vehicles (URV) represents an innovative solution in this
framework, bringing the twofold advantage of being a self
powered base, and allowing for the installation of a larger
number of sensors, thus reducing the disruption of the rail
traffic [1]. In this scenario the environment analysis and
reconstruction is strongly affected by a proper localization of
detected objects and of the sensing vehicle.
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The issue of estimating the location of a vehicle from
the images captured by its sensors has been widely dealt in
literature, under different conditions [2]]. However, only fewer
works address this problem with the usage of a monocular
camera. Lately [3] it is also possible to use inertial data
together with the camera captures for an online mapping as
well as for elaborating precomputed maps.

Among the filtering based approaches, the Extended Kalman
Filter (EKF) represents the most used instrument to assess
camera poses. An example of EKF-based monocular Simul-
taneous Localization And Mapping (SLAM) can be found in
Civera et al. [4] where they present an inverse parametriza-
tion of the image depth for point features and the relative
uncertainty. When the presence of non-linearity becomes con-
siderable, difficult to model, or the gradient is computationally
complex, an Unscented Kalman Filter (UKF) is preferred, like
in the SLAM implemented by Chekhlov [5] to address the
unreliability of feature detection and matching, modeling the
observation as the expected image projection of the features.
Also, the UKF on manifold [6] can be considered to handle
sensor fusion [7]].

In the field of autonomous driving the detection and lo-
calization of static objects in urban environments, e.g. traffic
lights, signs, has seen a continuous evolution. By collecting
a large amount of images to train Convolutional Neural
Networks (CNN), it is possible to accurately recover the 3D
positions of the recognized objects, given the camera poses.
For revisited areas, results can be even enhanced in terms of
hit rate and position accuracy [8].

Song and Manmohan [9] proposed an alternative strategy
for motion detection and dynamic object localization in a
moving car. The algorithm makes use of the large KITTI
dataset [10] to detect common objects in a road scenario
and associate relevant 3D bounding boxes. A subsequent
constrained optimization is applied between the road plane
and to the densely tracked boxes.

Previous contributions to obstacle detection within a less
structured environment such as railways consist in tracking
the area occupied by the railroad in the image [L1], eventually



employing thermal cameras [12].

Wohlfeil [13] presented a vision based approach to assess
an automatic detection of rail switches for determining which
course of the rail track is taken by a train.

In the present work we address a Structure-from-Motion
(SfM) and obstacle detection problem aimed at an URV for
railway surveillance. In more detail our system is based on the
visual-input, gathered by a monocular calibrated, undistorted,
camera.

The proposed solution consists of an intelligent vision
system mounted on the train tractor, able to localize itself and
the objects detected in proximity of the rails, while moving
within a rail track environment. The importance of providing
the most complete information as possible on the inspected rail
road is to better contextualize possible detected anomalies.

The recovery of the camera pose is addressed by exploiting
topological information, such as image line-features, and by
applying an algebraic SfM algorithm. This process is based
on the projective geometry mathematics and requires the
conversion of frames into spherical images, following the
approach of Ly et al. [14]. In order to obtain for each frame an
estimate of the camera pose, an UKF on manifold has been
implemented. The filter allows to refine previous estimates,
while directly taking in the input the matched point features.
This behavior is useful especially when the presence of lines
in the environment is difficult to extract from a frame, thus
when the algebraic algorithm may experience failure.

Models trained to recognize specific objects in a frame allow
for the tracking and the localization of known elements of the
infrastructure, whose presence in proximity of the railroad is
nominal. Due to the lack of a dataset for railway’s elements
we extracted our own dataset to classify poles and signs.

In addition, the robustness of reconstruction is further
improved by combining UKF results with other optical flow
analyses, which include the position of the projective Focus
of Expansion (FoE) and the displacement of images above the
horizon line.

The algorithm has been tested by using a video collected
with an on-board camera. The results demonstrated the proper
operation of the UKF in a real scenario, when the features
are collected from a noisy environment and motion innovation
is combined with motion cues computed by the image flow
analysis.

The paper is structured as follows: first we provide a
listing of nomenclature, then we briefly present the overall
architecture. Section IV presents the detection, followed by
pose estimation of Section V. Finally we provide evaluation
in Section VI and conclusions in Section VII.

II. NOMENCLATURE

The manuscript merges concepts from computer vision
with state reconstruction techniques, derived from control
and automation. Wherever it is possible we tried to use the
nomenclature that is common in the respective background,
but, in order to avoid misunderstanding for terms that are
named with the same symbols, some of them have been

renamed. This section clarifies the notation used to represent
each term and describes the associated symbols, chosen in
order to avoid any ambiguity, though the nomenclature may
differ from the convention.

Parameters regarding the camera:

o K:the R3*3 intrinsic camera parameters matrix encoding
the focal distance(s) and the camera (X,Y) centre in
pixel coordinates;

o £(t,R) € SE(3): the extrinsic camera parameters matrix,
describing the camera pose, containing translation ¢ € R3
and orientation R € SO(3);

o II = K&(t, R): the camera matrix;

Quantities involved in reconstruction:

o AT5: the transformation from the reference frame B to
frame A;

o T A;: the 3D location of a point feature in frame . When
F' is not specified the world frame is considered;

o FoE: the image Focus of Expansion expressed in homo-
geneous coordinates;

o 'L;: any line feature detected within an image frame;

o 'm;j: the plane identified by the line ©'L; and the camera
center ¥'Cy;

Quantities involved in the Kalman filtering:

o At: the fixed sample time between frames, corresponding
to 30Hz in this work;

o k: the k-th time step, associated to the image capture;

o x: the Kalman filter state = [£(t, R),w,u,a,a]’: the
system state vector with the following components:

- u€R3:
- a €R%:
- weR:
- a €R%:
o y=[z,A¢]:
- z € R?%: is the (X,Y) image position of a matched
image feature between two frames;
— Av): the yaw angle between two frames estimated
from the horizontal motion of the FoE;

the linear velocity;

the linear acceleration;
the angular velocity;

the angular acceleration;

the system observation variables, where

e w € RS: the process noise acting on a and o with
associated covariance matrix @;

e v € R3: the measurement noise with associated covari-
ance matrix V;

e M: manifold, e.g. Euclidean, Lie Group or combination

o NMa(p, X): multivariate Gaussian defined over the man-
ifold M

¢ X: sigma points used in the Unscented Filter

e Gx: the Kalman Gain

e P: covariance matrix of the state estimation error;

III. APPROACH OVERVIEW

Our interactive SLAM technique is structured into a se-
quence of stages, shown in Fig. [[] Two different pieces of
information are extracted from images. First, the image flow is
processed to detect relevant point and line features. Secondly,
the Focus of Expansion position and the horizon slide are
computed to estimate the yaw rate.



The camera pose estimation module employs this data, by
applying first an algebraic algorithm based on line features
detected in a triplet of images and located using multiple
view geometry. The result is refined through UKF on manifold
which combines filter prediction with actual feature detection
and estimated yaw rotation.

Object
Localization

Video Stream

Fig. 1. Pipeline of the proposed approach.

IV. DETECTION

The identification of a suitable detection and matching
algorithm represents a crucial choice to get the most complete
information about the scene. Our detection module is not only
concerned on general point features matched across a sequence
of frames, but includes in the process also the lines, defining
the tri-dimensional geometry of the environment, e.g. rails
and railway sleepers. Furthermore, the railway signs, poles
and small poles, along the railway can be recognized using
dedicated HAAR Cascade models as shown in Fig.

(b)

Fig. 2. HAAR Cascade-based detection of the kilometer signs (a) and of the
poles indicating the turn (b).

A. Objects detection

A dedicated dataset representing the common objects in Ital-
ian Railway network has been generated. Object recognition
has been performed using the Viola-Jones learning algorithm
[13] in place of alternative Deep Learning approaches since
the objects have no significant variation from one to another.
Moreover, there are not sufficient images to train more com-
plex classifiers. Possible isolated false alarms can be easily
recognized as such and can be discarded a-posteriori.

B. Line detection

The extraction of the rail track lines from real images
is done employing a combination of Hough transform and
template matching techniques as explained in Algorithm [T}
The rails are constantly viewed by the camera. Even during
turns, rails have low curvature, and in the lower portion of the
image they can be approximated as straight lines. In order to
locate these lines, each frame has been split into horizontal
strips. And the 15 closer to the image bottom are used to
search for straight lines using the Hough transform. The rest
of the tracks is then searched by operating a template matching
operation between strips, starting from the bottom, and using
the results of previous match as template for the above strip.

The detection of rail sleepers is more unstable since they
are often covered by rocks. To improve the success rate we
introduced an automatic approximation method, which traces
a line passing through a feature in the area between the rail.
Its slope is flat in a condition of straight track and, during
turns, it has a value proportional to the slope of the detected
rail lines and to the y-image coordinate of the feature. Note
that the system is able to discriminate straight from turn, by
considering the displacement of a small frames placed at the
central part of the image.

Algorithm 1 Railway extraction

1: frame < first frame

2: iter < 30

3: loop: extract each frame of the video

4: while frame is not empty do

5: evaluation of the lowest stripe of the image

6: leftX[0] < Hough line search
7: right X [0] < Hough line search
3
9

iterative evaluation of the upper stripes of image
: for i < 1 to iter do
10: template matching technique

11: leftX[i] < Find position of the template
closer to leftX|[i — 1]
12: right X [i] +Find position of the template

closer to rightX[i — 1]

C. Focus of Expansion tracking

The Focus of Expansion represents the epipole of all the
images. When a camera z-axis is aligned with the frontal
direction of motion, its position corresponds to the projection
of the optical centre onto the image sensor, i.e. the last column



of K. If the camera has an offset rotation w.r.t. this axis
(said R.), we may estimate the new position of the focus of
expansion as:

Cy 0
FoE(R.) = |¢cy| +R:. | O (1)
0 facy

where c;, ¢, represent the optical center of the camera, and
fxy the focal distance of the lens measured in pixels.

Since this position only depends on constant information,
such as the camera intrinsic parameters and the camera-train
orientation when the initial orientation is not known, the FoE
can be estimated by locating the track convergence point
during a straight motion (e.g. when the tracks are fully linear).

From perspective geometry we know that the FoE does
not change during linear motion. However its position can
be altered when an angular velocity is over-imposed during
the motion. During the train motion an online localization of
FoE point is achieved by computing the intersection point of
rails and, when possible, using the optical flow of recognized
objects (signs or poles).

By tracking the dynamic location of FoE, additional motion
information can be extracted to evaluate the consistency of the
matched features, to estimate the yaw rate between frames, and
to improve the self localization task. Since the motion of the
train is mainly planar, the distance of the FoE w.r.t. its ideal
position provides information about the yaw rate.

D. Points Detection

Video frames are searched to detect relevant features which
can be used for SLAM operation. Each feature is identified
with an associated image point (" A;). Image points tracking is
based on the ORB detection algorithm [[16] and the brute-force
matcher as provided by OpenCV. In addition, the optical flow
helps assessing the quality of matched features. Feature motion
is ideally radial from the FoE. Let JA; be the displacement
variation of features " A; w.r.t the previous frame (F~1A4;),
we expect relative angle (64,) being small:

(5141‘ X (FAZ — FOE) -

H ~0 [04,] <thresh (2)

0a, =

16 A II(FAs — Fok)

This constraint has been relaxed setting thresh = 0.02, to

preserve feature matches in case of image discretization noise.

Points that do not comply with equation (2)) check are rejected
before SLAM operation.

V. POSE ESTIMATION

After obtaining the different features and the yaw rate we
proceed with pose estimation as follows.

A. Localization using line features

The recovery of relative poses for calibrated cameras with
(partially) overlapping fields of view is addressed as a line-
based SfM expressed in a unitary spherical space [[14]: inside
the 3D scene we consider a set of unitary spheres centered
at the optical centers of each camera as shown in Fig. []

Fig. 3. Tracking of the rails and railroad ties in order to achieve their line
fitting. Small rail elements within a frame have been subsequently detected
using a template matching algorithm to obtain the whole rail profile. For each
template the blue markers indicate the position of lower left corner. The lines
approximating the rails are gathered by a polynomial fitting of the lowest 15
templates.

Relevant environment features will then be projected onto
these spheres. According to this mapping, each line feature
(L;) generates a diametrical circle identified by the intersection
of the sphere with a plane (m;;) passing through the camera
optical center C; and the 3D line itself. All lines having the
same vanishing direction intersect in two antipodal points,
thus either of the two points can be used to represent the
corresponding vanishing point.

L
Fig. 4. Line projection to spherical images. The 3D line L; is projected to
diametrical circles with corresponding unit normals 7;;.

The projection of distant points from the camera onto the
image plane is only due to the camera orientation. This assert
still holds after the projection from a frame to a sphere and
can be exploited to map the geometry of the environment
to the local camera frame. The vanishing frontal, vertical
and transversal directions in a railway infrastructure can be
estimated from the rails, the poles and the railway sleepers.
These directions define three vectors on the unit sphere, and
can be used to identify the rotation of each camera: for each j-
th camera, the rotation matrix M; maps the coordinate system
defined by vanishing points to the camera frame.

Fig. [ also shows that the location of camera centers changes
the diametrical circle projected onto the unit spheres. Using
such property it is possible to recover relative displacement
associated to different frames. In particular we proceed by



computing the n;; vectors orthogonal to ;;. Choosing one
of the cameras as the origin of the global coordinate system
{W}, e. g. the a-th camera, the translation directions can be
computed for a triplet of cameras viewing the same set of
lines.

Let M, the rotation matrix associated to the camera placed
at the origin of the global frame, then the rotation matrix from
j-th local camera frame to global Wch , can be computed for
each camera as:

"Re, = Mg My, {W}={C.}

This leads to the following definition for the extrinsic camera
parameters:
[I |0]7 Jj=a
[WRC]’ ‘Wtj] =
[Rj ‘tj ]7 J#a

Having obtained the relative rotations R; for all cameras,
for each pair of cameras, e.g. (b, c), we can express and use
the line constraint as in equation (3). The equation embeds
the two unknown translations directions t; and . in a 6-by-1
matrix, which can be obtained computing the null space of the
following:

[Nialx RE mipnite — Mia)x REnieniyty, = 0 3)

Equation (3) allows us to fully reconstruct the relative
position of each camera with the exception of one parameter
that matches to the global (image to world) scaling factor that
cannot be recovered with only monocular-based information.
To recover this quantity we used prior knowledge: the rails
distance computed with the intersection points lying on the
edges of a railway sleeper line, can be locally reconstructed
imposing their known distance to 1.435 m.

Taking one of these points A, matched between two frames
7 and k, imposing their equality in global frame accordingly
to the parameters previously computed [R;,%;], [Ry,x], the
unknown projective scale S € R can be recovered using the
following equation:

R;(Y1A) — St; — [Re(CFA) — Sty] = 0 4)

B. UKF for camera poses improvement

When the number of lines viewed by a triplet of cameras
is not sufficient or if the displacement of the matched lines is
too small, the previously introduced algebraic algorithm may
not find a solution for obtaining the camera poses. To handle
these cases, an additional module for the camera orientation
and location assessment has been developed as an UKF-based
refinement.

We defined a camera state-vector as ¢ = [€,w,u,a,a
where all terms have been defined in the Nomenclature section.
User input and rail shapes were modeled as process additive-
noise w acting on the rotational and translational acceleration
« and a. The diagram in Fig. [5] and the Algorithm [2] present
an overview of our filtering process.

17,
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Fig. 5. The manifold UKF allows integrating 2D matched points with

other motion cues obtained by the visual analysis. The diagram presents the
information flow originating from the image point at time k and the state
and previous step. Multiple matches are fused using RANSAC obtaining a
weighted fusion among contributions.

The transformation £(k — 1) — &(k), computed with
the algebraic algorithm for two consecutive frames, is used
to initialize the state estimates Z(1) and Z(2)~. with the
assumption that the first camera position is the global origin.

The UKEF state prediction provides two camera poses & (k —
1), £(k) that combined with camera intrinsic parameters allow
triangulating the 3D position of any point-feature (z) identified
in the associated frames.

The backward projection of ¥ A; to the frame at time instant
k produces an estimate for the 2D inhomogeneous position
2(k). The difference of 2(k) with the actual inhomogeneous
coordinates z(k) gives the innovation of the filtering process,
which is employed to correct the state estimate.

After iterating this process for each matched point-feature
between a couple of frames, a set of possible values for the
state at time instant k is available and a RANSAC algorithm
has been implemented to filter outliers. The fusion of the inlier
estimates gives the corrected estimate of the state Z(k).

C. Algebra for Kalman filter over manifold

The state of our Kalman filter contains different variables
among which the transformation of the camera £(k) that
belongs to the special Lie Group SE(3). For dealing with
Kalman filter with variables belonging to a manifold that is
locally homeomorphic to the Euclidean space we chose to use
a manifold formulation [7]. In particular the structure of the
manifold is encapsulated using two operators boxplus H and
boxminus H as follows:

H: MxR"—> M (5
H:MxM-—-R" 6)



Algorithm 2 Vision-based UKF
1: for k < 2 to number of frames do

Er1 + T

for i < 1 to number of matched points do
A  Triangulation(E,—1, &k, K, 2i k-1, Zi k)
Z <+ K& (A —tg)
Reprojected point A onto k-th frame:
Zik < Z/%(3)
Innovation:

10: I+ Zik — ZA’Z"]C

UKF CORRECTION, obtaining &,

12: inlier estimates < RANSAC(Zy,)

13: 2y, P, < FUSION of the inlier estimates

14: %), 1, Py, < UKF PREDICTION

R A Al o

—_

The former operation performs a motion over the manifold
from the given point along the direction specified in tangent
space. The latter computes the motion in the tangent space
that brings one point in the manifold to another. In the
euclidean case these operations map directly to plus and minus
respectively, while in the Lie Group case H is the composition
of transformation expressed by the algebra, and B is the
distance between two elements in the group expressed in the
algebra:

B(X,v) = exp(v)X @)
B(X,Y) = log(XY™ 1) (8)

Given these two operations it is possible to introduce a con-
centrated parameters Gaussian distribution over the manifold
Nam(p, X) in which the Gaussian has a mean belonging to
an element of the group, and the covariance is expressed in
the tangent space. Sampling an element from the manifold
Gaussian corresponds to sampling the tangent space with the
given covariance X and then applying the B operator with the
mean fi.

D. Unscented Transformation

A fundamental element of Kalman filter over manifold is the
Unscented Transformation (UT) that allows to apply a function
from one manifold to another when the input is a multivariate
Gaussian Ny,. The UT follows a quadrature approach, that
evaluates the function in a set of points around the mean that
depends on the covariance of the variable, called sigma points.
In this formulation 2M 4 1 sigma points are used, where M
is the dimension of the tangent space, that is the dimension
of the covariance matrix. The UT comprises three steps: (1)
computation of sigma points, (2) evaluation of each point with
the function, (3) reconstruction of the output Gaussian in the
output manifold. The adaptation of the UT from Euclidean
space to manifolds requires to replace the plus operator with
the H one in the first stage.

The extraction of 2M + 1 sigma points is guided by the
covariance of the state estimation error P:

x =28 (VIM+NP) , i=1,....2M XeR O

where (1/()); is the i-th column of the square root of the
covariance matrix typically obtained by Cholesky decompo-
sition and A\ is a weight that controls the importance of the
mean with respect to the surrounding sigma points. Given the
function f : M — S we transform the sigma points Xg? eM
into Xgﬁ) eS.

The reconstructed Gaussian has a mean py € S computed
as the weighted average of each transformed sigma point
xﬁ?- Due to the nature of the manifold this operation cannot
be computed in closed form but only in iterative form. The
covariance of the Gaussian is straightforward and uses H:

2M
Pry => W0 B Bu)T (10
1=0

Finally, it will be useful to compute the covariance between
the input an the output of the function as a matrix M by S:

2M
Py => WL B 8m)” A
=0

The weights Wi(m) and Wi(c) have been computed as Wan
et al. [[17]].

Thanks to the Unscented Transformation over the manifold
it is possible to express both the Prediction and the Correction
steps of the filter.

E. UKF Prediction

In the prediction step the state X = [SE(3),R3 R? RO]T
is transformed by the nonlinear function f(-), which regulates
the state dynamics

Ek+1)=Ek)B [w(k)At,u(k)At}T

u(k +1) = u(k) + a(k)At

wk+1) =wlk)+ alk)At
In the manifold formulation the process noise is not additive
meaning that we need to employ state augmentation, that is to

evaluate the prediction over x* that contains both the original
state « and the noise.

12)

F. UKF Correction

The Kalman gain Gy uses the variance of the estimated
observation P.,, and the covariance between the predicted
state and the observation P, ,:

glC =P z*zP z_zl
Then the new state is obtained by using the B and B operators:

x(k) =2~ B Gk (28 zx) (13)
P(k) =P~ — GcP..Gx (14)

Where zx* is the observation.



G. Fusion

Each matched feature provides a separate correction contri-
bution to the state. We fuse these contributions using RANSAC
to remove outliers and select a center of mass (Z,,(k)) as
the vector with the lowest error, among the inlier estimates.
A weighted mean is operated on the rest of the elements,
according to their covariance in order to determine their
contribute of pose AZ.

The final state estimate, only based on the features informa-
tion, is given as a combination of the center of mass &, (k)
and the contribute AZ.

The information of angular asset given from the FoE po-
sition is reliable, thanks to its redundant tracking (rail lines
intersection, optical flow in detected objects boxes) and it is
worth integrating in the filtering process. Therefore, taking into
account the yaw angle cues derived by the FoE sliding along
the image x-axis, an additional state estimate can be obtained.

The raw data of A gathered in this fashion have been
filtered from outliers and smoothed. The estimated angular
velocity Wp,g (k) has been computed as follows:

_ AY(kk—1)
B At

The final state estimate is computed as a weighted fusion
of Zrop(k) with the one given by the matched features
displacement Z(k):

Wy, For (k) 5)

- (16)

Pr(k) = (P~'(k) + P, (k))
iy (k) = (2o (k) Ppop (k) + 2(k)P~" (k)) Pr(k)

VI. EVALUATION AND RESULTS

a7

In order to evaluate the proposed method we consider a
recording obtained on board a train tractor and compare the
estimated trajectory first to the information obtained by the
satellite image of the railway, and then to the results provided
by the OpenSfM software. The recording has been made on a
single track railway and it lasts for 8min and 20 seconds for
9 km at about 72 km/h.

0.5

y [m]

x [m] 0 1 2 3 4 5 6 7 8 9
z[m]

Fig. 6. Fifteen consecutive camera poses recovered from the lines matching
across triplets of images during straight motion of the train. The estimated
linear velocity is realistic (about 15.85 m/s).

The application of the algebraic algorithm alone hardly
provides a solution for a long sequence of consecutive frames,
especially during turns. Anyway, in case of a straight motion
of the train a good result can be obtained with a sufficient
number of matched lines (Fig. [6). For this reason, a filtering
process is needed for a complete reconstruction of the camera
motion.

The HAAR cascade classifier for recognizing kilometer
signs, trained on a set of 60 images, reported a minimum
hit rate of 0.995 and a maximum false alarm rate of 0.05.
The detection of the poles, marking a curve, experienced
lower performances being less textured elements. The latter
classifier, trained on a dataset of 248 images, has a minimum
hit rate of 0.95 and a maximum false alarm rate of 0.2.
Inter frame coherence analyses can additionally improve the
associated accuracy.

In order to prove the accuracy of the trajectory reconstruc-
tion and object localization, a comparison is made with a
satellite picture of area. The image acquisition starts with the
view shown in Fig. [/| The distance traveled by the train fits
with the scale of the map. Moreover the kilometer signs along
the railway have been detected and the resulting location, trian-
gulated with the estimated camera poses, is close to its actual
position. This result suggests that the linear velocity (66.74
km/h) has been successfully estimated using our pipeline.
Nonetheless the performances in camera asset and angular
velocity estimation was not good enough to fully reproduce the
turn. Excluding outliers, the mean position w.r.t. the start cam-
era frame is at (X, Y, Z) = (0.7677, —6.9634, 234.7150), with
standard deviations (s, sy, s,) = (0.1398,0.1657,0.8809).

Among the SfM techniques at the state of the art, the same
dataset of pictures has been processed through OpenSfM, an
Open Source project for S for a further verification of
the results obtained. Using OpenSfM the shape of the track
was correctly reproduced, with a sampled set of frames as
shown in Fig. [8] (a). According to the reconstruction obtained
in this framework, the train traveled for 110.72 m in 10.56 s,
(37.56 km/h) which is significantly slower than expected. This
points out the importance of computing the right projective
scale factor to recover the metric dimension together with
the topology of the environment. The comparison of the
3D reconstructions for camera displacement in Fig. [§| (b)
validates the geometric results, since the behaviors are similar,
especially along the y and z directions.

VII. CONCLUSIONS

The proposed approach represents a vision-based instrument
which is able to reconstruct the trajectory of a railway vehicle,
equipped with a monocular camera. Our method can find
application in the inspection systems of railway environments,
since it successfully estimates the linear velocity of a train and
provides a metrical localization of the recognized object. The
ability to recover both the distance traveled and the position
of relevant element along the railway, such as kilometers

Uhttps://github.com/mapillary/OpenSfM
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Fig. 7. Satellite picture of the rail track (Volterra, 43.3572, 10.7890). The
number of pixels contained in the map resolution allowed for the definition of
the scale factor of 0.0862 m/pixels. According to our reconstruction (in blue),
the train traveled for 248.89 m along global z axis. The colored markers
indicate the positions of the features lying within the bounding boxes of the
detected kilometer sign w.r.t. the first camera pose, obtained by triangulation
with the camera poses estimates. Each color stands for a different view of the
sign. The actual position of this sign appears to be few meters further.

signs and turn markings, gives an important contextualization
for possible anomalies detected. Exploiting prior information
such as the rail gauge and a small set of images to train the
objects classifiers, the proposed technique offers a promising
contribution to the obstacle detection process within the rail
infrastructure.
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