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Abstract— Camera trajectory estimation has generated a
lot of interest during the last decades, especially for robotic
positioning. It is well-known that outdoors positioning mainly
relies on GPS, whereas one of the main used methods in indoor
positioning is visual odometry. As it is well known, visual
odometers get typically in trouble when the environment is
weakly textured. Facing this situation, this paper develops and
tests a novel visual odometer that combines image edges and
planar information to estimate the trajectory of an RGB-D
camera in environments that lack texture. We also present a
plane matching method based on a graph matching technique.
To conclude, a comparison of the proposed odometer for two
well-known datasets and other visual odometers and SLAM
systems is reported. The comparison shows our method as more
accurate as for the estimation of the position in indoor places
where visual features are poor, while similar values are obtained
for other indoor environments.

I. INTRODUCTION

In recent years, there has been a great advance in the
development of Simultaneous Localization and Mapping
techniques (SLAM). Regarding localization, it comprises two
main tasks, odometry and loop closing. When a new camera
frame is received, the odometry is responsible for estimating
the new camera pose by calculating the transformation
between frames. At the same time, the loop closing takes
care of finding if the current frame has been previously
seen. Accumulating the transformations along time make
the camera position error grow continuously. When a loop
closure is detected, the accumulated odometry error is redu-
ced because of the introduction of a constraint between the
current frame and its correspondence. It is very important
that during all the odometry process the error between frames
keeps as low as possible and the tracking does not get lost.
These odometry problems usually appear in state-of-the-art
methods in structured indoor environments lacking texture.

Among the variety of current sensors for visual odometry,
we employ an RGB-D sensor since it is a light and cheap
device able to extract a color and a depth image in featureless
areas, where the monocular and stereo sensors are not able
to extract depth.

Visual odometers can be classified on the basis of how the
tracking stage is implemented. Currently, most odometers are
based on keypoints. To obtain the transformation between
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frames, this method detects and describes keypoints in two
images and match them [1]. Since in weakly textured en-
vironments the number of keypoints is low, the estimation
tends to be imprecise. Another important tracking technique
is direct image alignment [2]. This method determines the
image alignment that makes most of the pixel intensity agree.
This approach does not work properly either in untextured
places or where the illumination changes between frames.
Another important tracking method is the iterative closest
point (ICP) [3]. Unlike the previous methods, which are
based on decreasing the photometrical error, ICP reduces the
geometrical error. This method iteratively approaches each
3D point from one point cloud to the closest 3D point of
the other point cloud. This method requires either a good
initial guess transformation between frames or that the two
3D point clouds are sufficiently well-aligned.

During last years, different techniques to register frames
using edges, lines and planes have been developed. These
structures are abundant in a structured environment, what
leads to better tracking results in this kind of environments
despite the absence of texture. Using these features indivi-
dually have some drawbacks, while combining them with
other features tend to improve the registration performance.
Some combined methods use lines and keypoints [4] [5],
lines, keypoints and planes [6] [7], keypoints and planes [8]
[9], semi-direct methods and planes [10], direct methods and
edges [11], points with planar patches [12] and edges with
depth maps [13].

The first contribution of this work is a visual odometer
that combines information of planar primitives and the edges
extracted from the image, where both of them are still present
in structured environments lacking texture. Furthermore,
another advantage of edges is that they are less affected by
illumination changes between frames because edge extractors
use differential information between pixel intensities. On
the other hand, the plane abstraction counteracts the depth
noise introduced by RGB-D cameras. Moreover, the number
of planes obtained from a depth image is lower than the
number of keypoints, what means less storage as well as
less computational resources.

Our second contribution is a plane matching method based
on graphs which is used by the proposed odometer in
order to find plane correspondences between frames. Most
current plane matching methods first extract the transforma-
tion between frames by other techniques and then assume
that a plane correspondence exist [10]. However, if the
transformation estimation fails, i.e. the match is non-existent
or is wrong, the registration process also fails. Another kind
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Fig. 1: General view of the proposed system.

of technique for plane matching obtains the transformation
and the correspondences by Random Sample Consensus
(RANSACQC) [8]. For this method, it is necessary to have at
least three planes whose normal spans R3, what sometimes
is a constraint difficult to satisfy in these environments.

The plane matching algorithm most similar to ours is
described in [14], where the authors use an interpretation
tree where they search for plane correspondences among
the planar patches of two images. In this graph, the authors
represent both planar features and the planar relationships
with neighbouring planar patches. Regarding this method,
we introduce a different graph matching technique, as well
as a different method to represent the graph associated to
each image.

We report on extensive experiments for two well-known
SLAM and odometers evaluation datasets to assess our
approach. These experimental results show that our approach
improves the accuracy of the camera trajectory in weakly
textured environments, while it produces similar results on
other environments.

II. GENERAL VIEW OF THE SYSTEM

The information about the environment is introduced in
our system as camera frames, one colour image and one
depth image. Next, each frame is processed by the Ro-
bust Edge-Based Visual Odometry (REVO) algorithm [15],
which extracts edges, detects keyframes and estimates the
transformation between keyframes. When a new keyframe is
generated, we extract a coloured point cloud by combining
the information from the colour and the depth images, detect
[16] and describe the existing planes, and match them using
our plane matcher. A refined camera transformation between
keyframes is obtained after an optimization process that
combines edges information and planar features. Finally, the
refined pose and the generated point cloud are introduced in
a map which represents the environment.

II-A.  Plane description and matching

Given two graphs, where one encodes the planar informa-
tion of the reference keyframe K f, and the other encodes the
planar information of the current keyframe K f., the graph
matching module determines the correspondences between
them. In order to find these correspondences, we use the

Factorized Graph Matching (FGM) algorithm described in
[17]. The authors present the FGM in a keypoint matching
application, hence we have adapted it to work with planes. To
compare two graphs and to obtain their correspondences, we
compute two affinity matrices that represent the similarities
between the graph nodes and the graph edges, which are
called Kp and Kq respectively. The topology of the graph,
which is represented by the starting and the ending node of
each graph edge, is contained in an incidence matrix, where
(G corresponds to the K f,. graph and G5 to the K f.. The
possible matching candidates between graphs are represented
in the C't matrix.

In our system, the K'p matrix encode the colour similari-
ties of each plane of the K f, with each plane of the K f..
The colour distribution of each plane is represented by a
3x16 histogram, one block for each RGB channel. We use
the Bhattacharya distance to measure histogram dissimilarity.

Regarding the K¢ matrix (which represents the relations-
hips between planar patches of the same keyframe), in our
case, its components store a weighted distance comprising
the distance between the respective normal vectors and the
distance from one to another plane in case of parallel patches.

Finally, matching candidates between graphs are defined
by the C; matrix. A plane from the K f, graph is a candidate
with a plane of graph K f. if the orientation between them
is the same, where the plane orientation has been classified
as horizontal, vertical or oblique.

III. POSITION REFINEMENT USING EDGES AND PLANES

As usual, camera motion can be expressed through the
rigid body transformation T} ;1 € R4 :

Ripr—1 trr—
Tk,klz[ - 1], (1)

where Rypr—1 € SO(3) is a rotation matrix, and
tke—1 € R3*! is a translation vector. The set Ty, =
T(1,0y5 -+ T(n,n—1) €xpresses the camera motion between
frames from 0 to n.

The estimation error in the transformation between con-
secutive keyframes is what we want to reduce through
the optimization stage. We use least squares to minimize
this error, where we combine geometric and photometric
information, respectively represented by planar information
and image edges. We also use the transformation between
keyframes provided by REVO as an initial guess, in order
to achieve a faster convergence during optimization. The
transformation error E is expressed as:

E= Eedge + wplEpl7 (2)

where wy, is the relative importance between the two terms
of the cost function. E prioritizes planar error over edge
error. Feq4. and Ep,; are detailed in the following sections.

To solve the least squares problem we use the Ceres soft-
ware [18]. We describe the rotation term using the Rodrigues
formulation. This formulation provides an efficient way of
representing a rotation, which is described by the angle of



rotation € around a unitary vector v = [z, y, z]. This formu-
lation has no singularities, unlike Euler angles, apart from a
discontinuity in 7 radians, which we properly avoid within
the system. On the other side, instead of using vector (x, y, 2)
and angle #, we use a combination of both elements into a
single vector ¢roq = [rz, 7y, 72| = [x/6,y/0, 2/6], whereas
to invert this representation we use 0; = 1/, /72 + 12 4 r2
for the angle and [z,y, 2] = [ry - 0;,7y - 0;,7, - 0;] for the
vector. Using this single vector in the optimization process
reduces the amount of parameters to optimize.

III-A.  Optimization based on image edges

We have chosen a similar optimization process than in
REVO [15] with two differences. The first one is that we do
not use the pyramidal system that they propose. This method
is often used to register two sequences with big displacement
between them. In our case, we have the initial transformation
between keyframes and the plane optimization term to solve
this problem. By means of the second modification we adjust
the importance of each evaluated point depending on its
depth. This is related to the fact that the sensor is less
accurate for further points. The weight applied to each point
is wg = Z(p)~2, where Z(p) is the depth of the point.

The error term for edges E.qq is described by (3). It
accounts for all the errors for each edge point p; . from the
current image. We also use a Huber loss function dg() in
order to tolerate large residuals.

Eedge = Z om (re (pi,c) . wd(Z(pi,c))) 3)

Pi,c
The error associated to each edge r. is obtained by the
Euclidean distance between the projection 7 onto K f;.,
using the edge depth information Z(p;.) as well as the
transformation between frames 7)., of the evaluated edge
from the current image and the position of the closest edge

in the reference image, obtained by evaluating the Distance
Transform (DT):

Te = DT(T(Trc,pi,c» Z(pi,c))) 4
III-B.  Optimization based on plane primitives

This side of the optimization is intended to minimize the
distance of the boundary points of a planar patch from one
keyframe to the corresponding planar patch of the other
keyframe, similarly to [6]. We use boundary points because
they result to be an overall and simplified representation of
a plane shape, and they also reduce the number of points the
system has to process.

The error term for planes £, accounts for all the errors
of the boundary points of planar patches in K f,. projected
onto the corresponding patches of K f.:

Ep= Y > Swm0c(ry-waZ(v), )

vi,r€Plj » T €EPl

where plane matching is described by S, with Sy, », =1
if Pl;, and Pl . match, where v;, € Pl;, is a boundary

(a) PI-EVO
Fig. 2: Generated 3D map from PI-EVO and from REVO.

(b) REVO

point, and 7, is the plane equation of patch k, d¢() is the
Cauchy loss and wy has already been explained.

In the previous formulation, the error from a boundary
point v; , denoted by 7, is calculated as the perpendicular
distance of w;, to the corresponding planar patch once
transformed to the current keyframe:

Tpl = ";{,c . ch *Ui,r + nf,c : Trrc - dk,c (6)
where the plane equation 7 involves the patch normal vector
n and the distance from the plane to the camera optical
center d, and (R,.,Tr,.) are, respectively, the rotation and
translation from K f,. to K f..

IV. RESULTS

In this section, we report on comparison results between
the proposed odometer and some state-of-the-art visual odo-
meters and full SLAM systems. In the comparison, we use
two well-known public datasets, the TUM RGB-D bench-
mark [19] and the synthetic dataset ICL-NUIM [20]. The
metric used to compare with other algorithms is the Root-
Mean-Square-Error (RMSE).

Table I collects the RMSE values for the camera motion
estimators involved in the comparison. Each row corresponds
to a sequence of a dataset, whereas the columns corresponds
to different SLAM systems such as [1] [2] [4] [21] and visual
odometers [13] [21] and our visual odometer PI-EVO. In the
table, column REVO corresponds to the algorithm available
online, which only register two consecutive frames, whe-
reas column REVO E+D+Opt corresponds to the algorithm
described in [13], where they optimize for the N previous
frames to improve camera motion estimation.

Table I suggests that the PI-EVO obtains better results
than the state-of-the-art odometers and SLAM systems for
indoor environments lacking texture, without the need for re-
localization or loop closing strategies and only performing
a register between two keyframes. Moreover, we obtain
similar results to the other systems for unstructured indoor
environments.

In PI-EVO, when a keyframe is processed, a map of the
environment is generated using the optimized pose and the
point cloud associated. By way of illustration, Figure 2 shows
the results of REVO and PI-EVO. It can be observed that one
single wrong register misaligns all the consecutive frames for
the case of REVO.



TABLE I: Absolute trajectory error calculated using RMSE (cm)

Sequence PI-EVO REVO Edge SLAM T ORB-SLAM! LSD-SLAM' Edge VO PL-SLAM' REVO E+D+Opt!
frl/xyz* 3.56 4.86 1.31 0.9 9.0 16.51 1.21 1.55
fr2/xyz* 1.50 1.90 0.49 0.3 2.15 21.41 0.43 -

fr3/str_notex _far 1.60 2.38 6.71 X X 41.76 X 2.17
ICL/office0* 2.78 6.70 3.21 5.67 X X - -
ICL/officel 1.23 2.30 19.5 X X X X 0.98
ICL/office3* 0.89 2.96 4.58 16.18 X X X -

— This information is not available.

X The system has not been able to initialize, or the motion estimator gets lost during the sequence processing.

1 The results come from [21].
1 The results come from [13]
* It shows a possible loop closing dataset.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel visual odometer
capable of operating within weakly textured environments.
We have shown that PI-EVO obtains better results in struc-
tured environments lacking texture, and similar results in the
rest of indoor environments. These improvements have been
achieved through the combination of planar primitives and
edge data during the registration process.

A plane matching technique used in the proposed odo-
meter has also been described. Planes correspondences are
found by the use of a graph matching technique. Unlike other
methods, this process does not require previous knowledge of
the transformation between frames to find correspondences.

As for future work, we plan to integrate inertial data
from an Inertial Measurement Unit (IMU) inside the motion
estimation process, as well as into the plane matching task,
to enhance global system performance.
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