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Abstract—Technological progress leads to an increased uti-
lization of data analysis and Business Intelligence that support
manufacturing management decisions. Many promising solutions
utilize semantic technologies. However, the deployment and
maintenance of semantic technologies especially in reconfigurable
manufacturing environments require a lot of manual effort. Con-
cepts to embed them in an automated environment, as required
by Reconfigurable Manufacturing Systems, are limited. In this
paper, we present an approach to reuse systems engineering data
to guide an automated process that updates a production data
knowledge base. Thereby, an ontology that integrates distributed
operational data to compute Key Performance Indicators such
as the Overall Equipment Effectiveness index can be updated
during the manufacturing reconfiguration process. This reduces
the effort to handle the required changes of semantic data
integration systems and enables a cost-effective adaption of the
Business Intelligence for Reconfigurable Manufacturing Systems.

Index Terms—reconfigurable manufacturing systems, semantic
data integration, KPI, OEE, systems engineering

I. INTRODUCTION

Manufacturing companies face a number of challenges these
days. Globalization, shorter product as well as innovation
cycle times and a growing volatility of production orders
cause a change of production systems. Therefore, adaptable or
reconfigurable manufacturing systems (RMS) are claimed to
be key enablers for future manufacturing systems [1], [2]. They
consist of intelligent and interoperable manufacturing modules
that can be setup rapidly and in some cases automatically
[3]. Following this concept, one challenge is the support for
real-time operational decision making that is responsible to
maintain and optimize the production on a daily basis [4].

Production management requires transparent knowledge of
the ongoing processes. This can be achieved by utilizing
Business Intelligence (BI) concepts applying Key Performance
Indicators (KPIs). Therefore, data integration is required. In an
RMS, this is a challenging task due to:

« frequent changes of the processes and resources,

« the variety of heterogeneous machine interfaces, propri-

etary protocols, and messaging structures,

« different domain-specific knowledge vocabularies.
Therefore, data integration approaches that support Business
Intelligence in a reconfigurable manufacturing environment
need to be investigated.
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A. Related Work

Recent research has shown promising approaches to address
the challenges of data integration by introducing standardized
technologies, such as OPC UA and AutomationML, and utiliz-
ing semantic technologies, such as ontologies and knowledge
graphs. Bunte et al. [5] introduce a semantic knowledge base to
enable smart services to access data from production resources.
Hildebrandt et al. [6], [7] focus on semantic modeling of
knowledge in the production domain and present a method to
build a respective ontology. Héstbacka and Zoitl [8] introduce
a conceptual architecture and an approach to use Semantic
Web technologies to self-describe the capabilities and data
provided by industrial devices and control systems. Li and
Niggemann [9] propose a three-layered architecture with a
central, ontology-based Modeling Layer in order to address
data provenance problems. Gupta et al. [10] present a system,
KARMA, that utilizes mapping rules to translate structured
data into RDF graphs. In order to enable an semi-automated
translation process for that system, Taheriyan et al. [11] extend
that approach to derive the semantic models by exploiting
an existing domain ontology and previously defined semantic
models of previously defined data sources. Pomp et al. [12]
propose a semantic data platform, ESKAPE, in which available
data are manually connected with semantic models. Thereby,
the gap between isolated data silos is closed to enable an
Internet of Production. In order to reduce the effort for manual
annotations for that approach, Paulus et al. [13] introduce
a framework to automatically recommend semantic concepts
based on an algorithm that matches given labels of data
attributes with semantic concepts from arbitrary pluggable
knowledge bases.

The brief overview of recent research shows that semantic
technologies and ontologies are utilized to enrich manufac-
turing data in order to increase information exchange and
reduce data integration complexity. But the deployment and
maintenance of these technologies still require a lot of manual
effort. There hardly exist any approaches to automate this.
Therefore, in this paper, we propose a concept to automatically
update the required semantic models in a knowledge base by
reusing systems engineering data during the reconfiguration
process.

1693

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 11:07:12 UTC from IEEE Xplore. Restrictions apply.



II. BACKGROUND

Business Intelligence utilizes Key Performance Indicators
to gain insights into current production processes and to drive
management decisions. One of the most important indicators
is the Overall Equipment Effectiveness (OEE) index [14].
According to VDMA standard sheet 66412 [15], the OEE
is defined as the product of a machine’s Availability (Avail),
Performance (Perf), and Quality (Qual).

OFEFE = Awail x Perf x Qual (1)
. RunTime
Avail - = PlannedProductionTime @
Perf — RunTimePerPart >< ProducedParts 3)
RunTime
GoodParts
Qual = ProducedParts @)

The Availability is the ratio between the Run Time when
a machine performs value-adding processes and the Planned
Production Time. The Performance describes the effectiveness
of a machine during its run time. It is computed by the
Run Time Per Part, number of Produced Parts, and the Run
Time. The Quality describes the ratio between the number of
Produced Parts and the number of Good Parts that meet the
quality standards without any rework.

In order to compute the OEE index automatically, the
respective tool needs to access the single system components
and retrieve the data. Considering the provenance of the data,
a brief analysis shows that the factors are distributed among
the whole manufacturing system. The Planned Production
Time is specified during production planning and stored in the
respective production planning system. The Run Time Per Part
describes the capability of machine and is stored as part of the
engineering files. The number of Good Parts, Produced Parts,
and Run Time are quantified during production and considered
as operational data generated by the machine. The left-hand
side of Fig. 1 shows the distribution for a single machine’s

setup. All operational data to compute OFE! are stored on
the Assembly Machine.

A machine’s setup may change frequently in a reconfig-
urable manufacturing environment as introduced in Section
II-A. In an extended setup, the latter three OEE factors may
be stored on varying data sources as shown on the right-hand
side of Fig. 1. In that scenario, the number of Good Parts,
required to compute OEE?2, is stored on a Packaging Module.

Fig. 2 shows an excerpt of an exemplary ontology that repre-
sents the relationships between the three single OEE factors.
They are modeled as semantic concepts that are associated
with an OEE machine which consolidates all required data for
a later computation of the OEE. The development and further
introduction of such an ontology is out of scope of this paper
and will be addressed in future work.

A. Application Scenario

The concept of reconfigurable manufacturing aims at in-
creasing a manufacturer’s capability to react upon changing
market demands. That can be achieved by a modularization
of production resources. A machine’s physical as well as
logical setup consists of different encapsulated modules. The
machine’s capability is then determined by their composition
and can be changed by adding or removing those modules.
For example, a machine that builds colored pencils consists
of several modules that supply and assemble the single parts
of a pencil such as the barrel, lid, and ink. Some customers
order loose pencils, whereas others order pencils in boxes that
include a specific number of pencils. Therefore, the assembly
machine can be extended with a packaging module that puts
the loosely produced pencils in boxes during the production
process. The packaging module and assembly machine have an
own programmable logic controller (PLC). A wired connection
enables a data exchange between the PLCs using a proprietary
interface. The respective PLC programs support a Plug and
Produce approach. Thereby, the manufacturer can adapt its
production resources in a fast and efficient way.

The operational data values that are used to compute the
OEE index are distributed among the Assembly Machine and
Packaging Module. For the single machine setup as outline on
the left-hand side of Fig. 1, the Run Time, number of Produced
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Fig. 1. Overview of the single OEE factors and their potential data sources.
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Fig. 2. Exemplary ontological representation of the machine setup for the
assembly machine + packaging module scenario.
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Parts, and Good Parts are stored on the Assembly Machine’s
PLC. In the packaging module extension setup as outlined on
the right-hand side of Fig. 1, the number of Good Parts (boxes
of colored pencils) is stored on the Packaging Module’s PLC.
In the given reconfigurable manufacturing environment, a fast
and cost-effective adaption of the OEE computation pipeline is
required. The integrative system component, i.e., a knowledge
base, needs to have up-to-date information how to access each
data source technically and process its values semantically
according to the machine’s current setup. Therefore, a flexible,
self-adapting data integration system is required.

III. APPROACH

Data integration is a challenging task especially in the field
of production systems due to the variety of heterogeneous
machine interfaces. Proprietary protocols as well as different
technologies increase the effort to implement BI use-cases.
The rise of manufacturing-related standards such as OPC
UA and AutomationML and their integration into semantic
technologies, e.g., shown by Bunte et al. [16], facilitate the
technical access and processing of machine data once a system
is deployed. But setting up and adapting semantic technologies
require a lot of manual effort. This is counterproductive to
the main advantage of reconfigurable manufacturing systems
which is that its functionalities and capacities can be changed
rapidly and cost-effectively [4]. In contrast to approaches that
utilize learning-based methods to reduce the manual effort to
create and maintain knowledge bases, e.g., shown in [11], [13],
our research focuses on reusing engineering data.

A. Reuse of Systems Engineering Data

Considering the whole chain of a reconfiguration process, an
early phase is engineering. Here, the facility operator redesigns
the manufacturing processes as well as the resources based on
the engineering description of the single components. Recent
research on the field of systems engineering has shown promis-
ing results to reduce the effort of system integration as well
as reusing the engineering data for downstream operations.
Briefly, systems engineering is an approach to support the pro-
cess of developing complex technical systems by subdividing
the desired system into subsystems, parts, and components
and controls their implementation through all phases of the
development process. Those components are described by
component models that contain specific information such as
the taxonomy of built-in parts, their mechanical and electrical
interfaces, as well as a description of the logical behavior.

Towards our approach, we propose to extend the compo-
nent models to include a KPI sub-model. The concept of
the extension is shown in Fig. 3. The sub-model contains
information about the operational data, as shown in Fig. 2.
It holds metadata such as

« the name of the data point, e.g., GoodPartsEntry01

« the data point category, e.g., GoodPartsDBEntryType,

« the position within the machine’s hierarchy, e.g., under
the component Packer10,

« the data type and a default value.

Component Model

KPI/OEE Sub-Model

Good Parts
Run Time Per Part
Produced Parts

Core Engineering Data

Geometry/Kinematics |—
* OPC UA NodelD) A
Communication Interface
Other Data

Fig. 3. Extended Systems Engineering Component Model.

That metadata catalog is pre-defined and known within the
borders of the manufacturing system. Thereby, the integration
of the operational data into the ontology as well as further
processing is facilitated. Furthermore, the KPI sub-model is
interconnected to the core engineering data of the component
model, i.e., the communication interface. The communication
interface holds all necessary information in order to communi-
cate with a specific component and access the available data.
For example, if a component implements an OPC UA server,
the KPI sub-model would have a relation to the respective OPC
UA server model that holds the browse path or NodeID of the
corresponding OPC UA variable. During the reconfiguration
process, that information as part of the engineering files can
then be reused in order to automatically create an ontology as
shown in Fig. 2.

In our previous research, we have proposed a similar
approach for a maintenance use-case [17]. So in future, a
component model will contain a core engineering model and
several sub-models for maintenance, KPI computation etc. An
introduction of a detailed KPI sub-model is out of scope of
this paper and will be addressed in our future work.

B. Reconfiguration Process Steps

This section describes briefly the proposed reconfiguration
process steps that are also shown in Fig. 4. A detailed
implementation description of the single components of the
introduced system architecture is part of our future work.
Therefore, here, we will only present the general concept.

Any manufacturing reconfiguration requests are handled by
experts during an engineering phase. The result of this is a
factory model which contains the integrated component mod-
els of the whole plant. On the one hand, specific information
from the factory model, i.e., the communication interface, is
used to derive the device’s communication configuration. An
automatic device configuration is not part of our research.
One possible implementation is shown by Wenger et al. [18].
On the other hand, the KPI model is input to a KPI20OWL
Converter. The task of the KPI2ZOWL Converter module is
two-fold. At first, it updates the ontological representation of
the manufacturing system in the Production Data Knowledge
Base. For this, mapping rules are required that rely on a
system-wide, common agreement on the semantic concepts
specified the component models. Secondly, the Knowledge
Base Interface Adapter is updated as well. The adapter can
be seen as a gateway between the knowledge base and the
machine controllers on a shop-floor and could also perform
any required preliminary processing steps before storing the
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Reconfiguration process steps
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Fig. 4. Reconfiguration process steps and production data system entities.

data. With the converted information from the factory model,
the adapter has all information required to access the opera-
tional data of the single devices. Eventually, the information
available in the knowledge base can be further processed and
queried by down-stream tools, e.g., to compute the actual OEE.

IV. CONCLUSION AND FUTURE WORK

This paper proposes an approach to reuse systems engi-
neering data in order to update an ontological representation
of manufacturing data. Furthermore, it outlines a process
for an automated approach to adapt that knowledge base.
Thereby, it is possible reuse information from an engineering
phase to guide the execution of manufacturing reconfiguration
processes. This supports to reduce the effort that is required
to deploy and maintain semantic technologies and therefore
facilitates their utilization in a production environment. This
is especially important for Reconfigurable Manufacturing Sys-
tems where advanced semantic data integration concepts are
proposed in order to enable a cost-effective Business Intelli-
gence.

Our future work includes an implementation of the intro-
duced KPI model. For this, we will redefine our previous work
on systems engineering component models [17] by integrating
the respective sub-models. Furthermore, an implementation
of the single presented reconfiguration process steps, i.e., the
KPI2OWL Converter, is planned. For this, we will investigate
and enhance previous research results e.g., presented in [19]-
[21] in order to enable an evaluation of our approach in real
manufacturing environments.
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