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Abstract— This paper proposes a robust economic model 

predictive control method based on a bounded description of the 

demand uncertainty for optimal energy dispatch in a smart 

micro-grid. The proposed method considers the effect of 

uncertainty by tightening the system constraints along the 

prediction horizon. The bounds of the tightened constraints are 

computed offline. A periodic terminal state constraint is included 

in order to guarantee stability. The proposed method is simpler 

and faster than closed-loop min-max based approaches. The 

proposed approach is assessed with the help of a smart-grid 

consisting of some photovoltaic (PV) panels, a wind generator, a 

hydroelectric generator, a diesel generator, and some storage 

devices interconnected via two DC-buses, from which load 

demands can draw required energy. Load demands are 

uncertain, but considered as bounded.  

Keywords—Smart Grid, Economic MPC, Robustness, 

Zonotope, Uncertainty 

I. INTRODUCTION

Automatic control of complex Multiple Input Multiple 
Output (MIMO) electrical systems such as smart grids requires 
advanced predictive control strategies. Model Predictive 
Control (MPC) is nowadays one of the most advanced and 
frequently used techniques for achieving optimal control of 
complex MIMO systems. Moreover, the complexity of smart 
grids increases with the presence of uncertainties. The problem 
of model uncertainty and noise can be solved through 
enforcement of computational constraints as reported in 
[1],[2],[4]. However, this approach raises usually the issue of 
computational tractability.  

Optimization techniques such as Minimax MPC 
approaches as reported in [8] and [9] can better tackle 
uncertainties in complex systems. However, one of the main 
drawbacks of Minimax is that, they principally consider worst 
case scenarios. 

Moreover, in [3][4] adjustable robust solutions have been 

proposed, which assume that adjustable control inputs can be 

made to depend affinely on the uncertainty parameters of the 

problem. This approach is more flexible, and is most of the 

time expected to result in a computationally tractable problem.  

In this work, we propose a robust economic model 

predictive control method that considers the effect of demand 

uncertainty by tightening the system constraints along the 

prediction horizon. The bounds of the tightened constraints are 

computed offline. Additionally, a periodic terminal state 

constraint is included in order to guarantee stability. The 

proposed method is simpler and faster than closed-loop min-

max based approaches, since all the computations do not need 

to be carried out online. In order to verify the applicability of 

the developed method, we consider a hybrid system 

comprising some photovoltaic (PV) panels, a wind generator, a 

hydroelectric generator, a diesel generator, and some storage 

devices interconnected via two DC-buses, from which load 

demands can be satisfied. Load demands are uncertain, but 

considered as bounded.  

The structure of the paper is the following: Section II 
presents the problem formulation and the economic MPC 
strategy. Section III describes how to robustify the proposed 
MPC strategy against demand uncertainty. Section IV shows 
how to update the variable bounds of the MPC optimization 
problem to consider demand uncertainty. Section V illustrates 
the proposed approach with a smart grid case study. Section VI 
draws the main conclusions and presents future research paths. 

II. PROBLEM STATEMENT

A. Control-oriented modelling

Smart grids can be considered as instances of generalized flow-

based networks. Basically every flow-based network consists 

of some components [5],[6],[7],[8],[10],[12], e.g.: flow 

sources, links, nodes, storage, flow handling, and sink 

elements. 

Let us consider a smart micro-grid consisting of nx storage 

elements, nu energy flow handling and source elements, nd 

sinks (demands) and nq intersection nodes. Then, for control 

purposes the smart grid can be represented by the following 

discrete-time descriptor linear model  



 d( +1) = ( ) + ( ) +   ( )k k k kx Ax Bu B d  (1a) 

 d( ) + = 0 )(k kuE u E d  (1b) 

where: 

xnx  is the state vector, unu  stands for the vector of

control inputs, dnd  denotes the disturbances (i.e. 

demands) vector. x xn nA  , xn nuB ,
 

xn nd

d

B  are 

system matrices.
n nq u

u


E and 

n nq d

d


E are matrices of 

suitable dimensions relating energy suppliers and load 

demands on the nq
  
DC bus(ses).   

Assumption 1. The states x and the demands d = ( dɶ ) are 

observable at time k, and the pair (A,B) is controllable. 

According to Assumption 1, the demand at time k can be 

measured. But, the demand throughout the prediction horizon 

Hp needs to be forecasted. Thus, we introduce the following 

assumption. 

Assumption 2. The realization of actual demands ( )k +iɶd at 

each future time instant k+i may be decomposed as a 

summation of expected and uncertain additive demands   

( ) = ( ) + ( )  = 1,2,...,ɶ
pk +i i | k i | k i Hd d d  (2) 

where ( | )i kd  is the expected demand for the prediction 

horizon step i at sampling time instant k,  and ( )i | kd is the

error of this prediction. 

The error ( )i | kd is unknown but considered to be bounded

( ) ]  = 1,2,...,    pi | k i Hd     (3) 

where θ are the bounds.

To propagate the effect of the uncertainty along the prediction 
horizon these bounds will be represented in a zonotopic form 

( )  1,2,...,   d d pi | k i Hd 0 H z  (4) 

where: 0 is a column vector of nd zeros considered as the center 

of the zonotope,  denotes the Minkowski sum,
dH  is a 

diagonal matrix defined as  1
diag ,..., 

nd
  and  nd

dz B

with [ 1,1] B .

B. Control objectives

The main goal of the economic MPC control strategy is to 

minimize the use of the diesel generator and to encourage the 

use of renewable energy sources (PV, wind and hydroelectric 

generators). To achieve this end, we have designed the 

objective function in such a way that it includes the terms of 

renewable energy sources as well. 

Hence, the objective function of the MPC controller consists 

of the following terms:  

B.1 Economic cost:

The total economic cost is given by: 

1 2( ) ( ( ) ) ( )T

Ef k k k t  α α u  (5) 

where:  
( )ku is a vector of control actions at time k; Δt  is the 

sampling time in seconds; 
1α is a known vector related to 

economic costs of maintenance of generators and their 

accessories; 2 ( )kα is a known time-varying vector associated 

to the economic cost of power flows related to transmission 

and distribution. 

B.2 Safety storage levels

The safety objectives penalize the amount of power that goes 

below or above a pre-specified security threshold. They are 

defined as:  

 Upper safety level:

   + +( ) = 
T+

sf k k kε ε  (6)

 Lower safety level:

   - -( ) = 
T-

sf k k kε ε (7) 

where - ( )kε and + ( )kε  are the lower and upper safety limit 

violations. 

B.3 Smoothness of the control actions

This objective is used to avoid peaks of power during the 

charging/discharging process of the storage elements that 

could damage them  

Δu )f ( ) ( ) ( = Δ ΔTk k ku u  (8) 

where Δ ( )ku is the control signal rate of change, defined as 

)Δ ( ) = ( ) (– -1k k ku u u

C. Formulation of the nominal MPC controller

Taking into account the model of the smart micro-grid (1) and 

the control objective including (5)-(8), we can formulate the 

overall objective function as follows  
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According to the geographical location of the renewable 

energy sources, we can construct some profiles of their power 

generations, and thereby it is possible to define some 

constraints (i.e. bounds) on their power generation. 



Based on those profiles along with energy storage elements, 

the dispatchability of renewable energies can be reasonably 

achieved. 
We formulate the nominal MPC controller of the optimization 
problem as follows: 

     | | |
0

1

min |

s.t.

( 1 | ) ( | ) ( | ) |  

( | ) | 0 

| |  |  

( )

( )

( ) =

( ) ( ) ( )





   



 


pH

E
k

M
i k i k i

i

d

u d

min max

PC i k

i k i k i k i k

i k i k

i k i i

J

k k

u

x Ax Bu B

E u E

u

d

d

u u

+ -ε ε

min max

1|

| | | | |

( )

( ) ( ) ( ) ( ) ( ) 

( ) 0 |





  

   



min maxi k

i k i k i k i k i k

i k

x x x

x -ε ε
ε

min

( ) 0 

( ) 0 

|

|

 



i k

i k

ε

max ( ) 0 | i k

 (10) 

where: min ( )ku  and max ( )ku
 
are the lower and upper bounds

of the control inputs; min ( )kx  and max ( )kx
 
are the lower and 

upper limits of the storage elements; 1 2 2 3, , ,    
are

weighting coefficients for prioritizing the objectives. 

Finally, in case of demands presenting repetitive periodic 

patterns, the prediction horizon Hp is taken equal to the period, 

and we include the following constraint to guarantee effective 

usage of the storage elements. 

( ) = (0 )
p

H |k |kx x (11) 

Noticeably, the MPC controller (10) is not robust against the 

demand uncertainty forecast defined in (2). Thus, in the next 

section, this controller will be robustified by taking into 

account the uncertainty bounds (3). 

III. ROBUSTYFING THE MPC CONTROLLER

The proposed approach considers the effect of uncertainty 
by tightening the system constraints along the prediction 
horizon. The system control inputs are divided into dependent 
and independent variables. For instance, energy produced by 
the energy suppliers e.g. solar panels can be simultaneously 
used to satisfy load demands and charge the batteries. The 
energy suppliers are the independent variables while the 
consumers are the dependent variables. In this way, some 
particular dependent control variables are selected and bounded 
by zonotope to compensate for any discrepancy between 
predicted and actual demands, while the uncertainty propagates 
forward along the prediction horizon. Additionally, 
corresponding uncertain state estimation due to the uncertain 
demand has also been determined and bounded by a zonotope 
at each time instant along the prediction horizon. The bounds 
of the tightened constraints are computed offline.  

A. Decomposition of the control variables

Eq. (1b) can be used to split the control input variables into 

independent and dependent variables.  The aim is to develop 

an affine parameterization of the control input variables in 

terms of demand variables In fact, the affine dependence 

method has already been discussed in [1],[4],[8], [11]. 

Assumption 4. There are more variables than algebraic 

equations, i.e., nq < nu. The matrix Eu in (1b) has maximal 

rank, i.e. rank Eu = nq.  

We suppose that, control inputs can be partitioned into 

independent and dependent variables (for instance by applying 

LU-decomposition or simply heuristic approaches). 

1 2
( ) ( ) ( )

indep dep
k k ku = P u P u (12)

where 
1

u indepn nP  and 
2

u depn nP are suitable permutation 

matrices which define u  from independent variables indep
u and

dependent variables dep
u .

Then, we can write 

( ) = ( ) ( )
u indep indep dep dep

k k kE u E u E u (13) 

where 
1 2 and  indep u dep uE = E P E = E P

Assuming, dependent input vector will compensate future 

deviations of demand predictions defined in Eq (2), we 

decompose the actual predicted control input into two 

components: 

( | ) ( ) ( | )  1,2,..., -1|   ɶ
dep dep dep p

i k k i k ii Hu u u (14)

where ( )|dep i ku  is the nominal prediction that is computed by

nominal MPC problem (10) and ( | ) dep i ku  is  the component

of dependent inputs that would compensate future unexpected 

additive demand, i.e. ( ) i |kd  in Eq. (2).

On the other hand, we suppose that, the independent 

component will be given directly by MPC optimization 

problem (10) i.e.  

1|( | ) ( )  1, 2,..., - ɶ
indep indep pi k ki i Hu u (15)

Substituting the actual demands (2) and the actual predicted 

inputs (14) into (13), we obtain  

 
 d

( ) ( ) ( | )

( ) + ( )

| | =

- |

indep indep dep dep depk k i k

i | k

i i

i k

  

E d

E u E u u

d
 (16) 

Furthermore, (16) can be split into deterministic and stochastic 

(uncertain) parts.  The deterministic part that is considered in 

the MPC optimization problem (10) is given as: 



d| | = - |  ( ) (  ) ( )indep indep dep depi k i kk i E dE u E u  (17) 

while the uncertain part is given by: 

d( | ) = - ( ) dep dep i k i | k EE u d  (18) 

Assuming matrix 
dep

E  to be invertible, we can write 

1

d( | )  )= (-dep depi k i | k u E dE  (19) 

Considering the zonotopic demand bounds (4), the dependent 

input vector can also be bounded with a zonotope as follows: 

( | )dep d di k  u 0 H z  (20) 

with 
1

d-d dep d

H E E H

B. Decomposition of the state variables

Since the input controls can be decomposed into two 

components, we expect the states to be also decomposable into 

two parts. 

The predicted evolution of the actual state can be expressed as 

d( 1| ) = ( | ) + ( | ) +      =( , . .) 1 2, .i k i k i k k +i i ɶɶ ɶ ɶx Ax Bu B d   (21) 

Considering demand uncertainty and inputs decomposition 

leads to  

 
 d

( 1| ) = ( | ) + ( | ) + ( | ) ( | )
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ind ind depd depep
i k i k i k i k i k

i i |k k
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 (22) 

where 
1 2

 and  
ind dep

B = BP B = BP . 

Expanding (22) and applying demand error compensation, we 

obtain: 

 1

d

d d

( 1| ) = ( | ) + ( | ) + ( | ) |  

+

)

- +

(

( )

ind ind dep dep

dep dep

i k i k i k i k i k

i | k

 



ɶ ɶ

E

x Ax B u u

B d

B B d

E B

(23) 

Now, the future state can be decomposed as 

( 1| ) = ( 1| ) + ( 1| )i k i k i k   ɶx x x  (24) 

where ( 1| )i kx  is the deterministic estimation part

considered in MPC optimization problem, and ( 1| )i k x  is

the uncertain part due to the demand error estimation.  

Considering that (0 | ) = ( )k kɶ ɶx x  and ) (kɶd are known at time k, 

and ( )ind kɶu , ( )dep kɶu  are computed by the MPC optimization 

problem at time k, we can write: 

d( +1) = ( ) + ( ) + ( )  ( )ind ind dep depk k k k k ɶɶ ɶ ɶ ɶx Ax B u B u B d  (25) 

And the deterministic state estimation part can be given by 

( 1 | ) ( | ) ( | ) ( )    = 1,2,..| .di k i k i k i k i   x B dAx Bu   (26) 

with 

(1| ) ( 1)k k ɶx x  computed by means of (25) and 

1 2( | ) ( )| |) (indep depi k i ik k Pu Pu u

Iteratively computing the state of the system at each time 

instant k, we can express the uncertain state estimation part 

( 1| )i k x  as an accumulative function of the unexpected

additive demands

  d d

1

1

( 1| ) = - + 1,2,...( )   
i

i j

dep

j

depi k i |k+ j i 



  x dEEA B B  

 (27) 

with (1| ) = 0kx .

Now, considering demand bounds (2), the uncertain state 

estimation part can also be bounded with the following 

zonotope: 

( )( 1| )   =1,2,3,...
ix dii k i   0 H zx   (28) 

with 
1i i

t t t

d d d
   ⋯z z z  where   1,...,

j

nd

d
j i z B  and 

1=( )
x dX dX

i

dX
i   ⋯H H H HA A   (29) 

where  d d d

1= - +dX dedep p


E EH B B H . 

IV. FORMULATION OF THE ROBUST MPC

A. Tightening the MPC variable bounds

Once the effect of demand uncertainty are propagated to the 

control inputs and states, input and state constraints in the 

MPC problem (10) need to be adjusted using interval 

arithmetic, such that actual predicted inputs and states do not 

violate the defined input and state bounds i.e 

| |  |  

1|

( ) ( ) ( )

( )

 

  

ɶ

ɶ

min max

min max

i k i k i k

i k

u u u

x x x
(30) 

Then, we can reformulate the MPC optimization problem (10) 

in a robust way as follows: 
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(31) 

with 
,dep j and

,x j computed using interval 

arithmetic[13],[14],[15]. 

V. APPLICATION

A. Description

In this section, the applicability of the proposed method will 

be assessed using a smart micro-grid comprising two clusters 

linked through two DC-buses that are connected through a 

switch. The first cluster is primarily used to satisfy residential 

demands, and it comprises some photovoltaic panels, a diesel 

generator, and a lead-acid battery. The second cluster 

consisting of wind and hydroelectric generators, and one 

virtual sink (external grid connection) is used to satisfy 

industrial and other DC-load demands. A grid connection is a 

sink when it is buying energy, and a source when selling 

energy.  The block diagram of the smart micro-grid is shown 

in Figure 1.  

B. Control-oriented Model

All the components are considered as manipulated inputs 

(excluding sinks). The states of the smart grid are defined to 

be the state of charge of the storage elements. 

State variables: 

xb and xh are the state of charge (SOC) of the batteries (lead-

acid and hydrogen respectively): x(k) ≜ [xb(k), xh(k)]
T

Figure 1. Block diagram of the smart micro-grid 

Control input variables: 

u(k) ≜ [Pb1(k), Pb2(k), Ph1(k), Ph2(k),Pd(k),Pw(k), Ppv(k), Pf(k), 

Phy(k),Pg1(k), Pg2(k),]
T

where Pb1 and Pb2 are the charged power and discharged 

power of the lead-acid battery; Ph1 and Ph2 are the charged and 

discharged power of the hydrogen battery; Pg1 and Pg2 are the 

exported and imported power into/from the external grid; Pd, 

Phy, Ppv, and Pw stand for the power supplied to the DC Buses 

by the diesel, hydroelectric, wind, and photovoltaic generators 

respectively. Pf is the power flow from Bus 2 to Bus 1. 

Disturbance variables: 

d1 is the industrial load, d2 is the residential load. The 

disturbance vector d consists of the two loads: 

d(k) ≜ [d1(k), d2(k)]
T

The matrices and vectors that define the system and its 

constraints are given as follows: 

bc bd

hc hd

d

1  0
=

0  1

η -η 0 0 0 0 0 0 0 0  0
=

0 0 η -η 0 0 0 0 0 0   0

0  0
=

0  0

 
 
 

 
 
 

 
 
 

A

B

B

 

where:  

ηhc and ηhd are the charging efficiency and discharging 

efficiency of the hydrogen battery respectively; and ηbc and ηbd 

are the charging efficiency and discharging efficiency of the 

lead-acid battery respectively. 

x
min

 = [0 0]
T 

, x
max

=  [100 100]
T

u
min

 (k)=  [0 0 0 0 0 0 0 0 0 0 0]
T
,

u
max

(k)=  [2.2 10.2 2.2 10.2 7.7500 Ppw(k)  Pppv(k) 2.2 8 3 3]
 T 

where Ppw(k) ≤ 7.75Kw and Pppv(k) ≤ 6.75kW  are the energy 



generation profiles of the wind and photovoltaic generators 

respectively. The static equations are defined through 

Eu =[-1 1 0 0 1 0 1 1 0 0 0; 0 0 -1 1 0 1 0 -1 1 -1 1] 
Ed =[-1 0; 0 -1] 

The additive uncertain demand ( )i | kd is considered to be

bounded by a box defined in zonotopic form (4) as 

1

2

0
=

0
d

 
 

 




H
 and 1 2 0.7    

On the other hand, the charging batteries’ inputs u1(k) and 

u3(k) have been chosen as dependent variables. 

Initial values of the subsystems, as well as the state of charge 

of the batteries are set to zero. The simulations were made for 

96 hours (4 days). The diesel and hydroelectric generators 

delivered between 1-1.3 kWh in summer during the first six 

hours of the day, and in winter in the afternoon for six hours.  

The batteries delivered between 1-2 kWh during the first two 

hours of the day. 1 kWh was bought from the external grid 

during the second hour of the day. 

Model parameters 

ηbc 0.95 

ηbd 1 

ηhc 0.85 
ηhd 1.0 

Δ [35 35]T 

Hp 24 
λ1 2500 

λ2 12 
λ3 0.1 

  Energy prices (e.u) 

Lead-acid battery charging :   0.02 

Lead-acid battery discharging:   0.02 

Hydrogen battery charging :   0.02 
Hydrogen battery discharging:   0.02 

Power flow between node:       0.02  

External grid selling:    2.0 
External grid buying:    2.0 

Diesel:       4.3 
Hydroelectric:    1.8 
Wind:       1.7 

Solar:       1.4 

Table 1. System and control parameters’ values 

Figure 2 and 3 show some expected profiles of PV and wind 

generator, as well as load demands. The additive uncertain 

demand is represented with the shadowed green area in Figure 

3. 

Figure 2. Forecasted profiles of PV and wind generators, and load 

demands 

The profile of a generator represents the maximum power that 

can be ideally produced by the generator.  

Figure 3. Load demands’ profiles 

C. Results

The proposed MPC strategy has been implemented using 

YALMIP (CPLEX solver) within the Matlab environment. 

Table 2 shows an economic comparison between the nominal 

system (i.e. neglecting uncertain demands) and the proposed 

robust method. As expected, the demand uncertainty increases 

the overall energy production costs, but the proposed method 

provides robustness against unexpected changes in the 

demands.  

Figure 4. Sample summer plots of energy production 



Figure 5. Sample Winter plots of energy production 

Nominal 

EMPC 

Robust 

EMPC 

Summer 568.02 587.72 

Winter 676.66 706.10 

Table 2. Daily economic costs. 

VI. CONCLUSIONS

In this work, a robust economic MPC strategy for optimally 

controlling an smart micro-grid considering uncertainty in the 

demand forecasts that is assumed unknown but bounded. 

Uncertain load demands are unknown but bounded by 

zonotopes. The proposed robust economic model predictive 

control strategy is based on tightening in real-time the 

constraints of the control inputs.  Control inputs have been 

decomposed into independent and dependent components, and 

then the dependent component has further been divided into 

two parts, whereby one of the parts is bounded by a zonotope 

and is used to compensate for any deviation of the actual 

demand from the forecasted one.  Additionally, a 

corresponding uncertain state estimation of the uncertain 

demand has also been determined and bounded by a zonotope 

Finally, the results of a case study have shown that, the 

proposed robust EMPC method can be successfully used to 

solve the problem of energy dispatch considering demand 

uncertainty in electrical smart micro-grids. The next steps for 

completing this work will be devoted to the development of an 

automatic method of successively selecting optimal control 

inputs for compensating demand deviations. Additionally, 

extending the developed method to include uncertainty of 

energy prices and renewable energies will also be carried out. 
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