
Interpreting OWL Complex Classes in
AutomationML based on Bidirectional Translation

Yingbing Hua∗, Björn Hein†
Faculty of Informatics

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: ∗yingbing.hua@kit.edu, †bjoern.hein@kit.edu

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The World Wide Web Consortium (W3C) has
published several recommendations for building and storing
ontologies, including the most recent OWL 2 Web Ontology
Language (OWL). These initiatives have been followed by prac-
tical implementations that popularize OWL in various domains.
For example, OWL has been used for conceptual modeling in
industrial engineering, and its reasoning facilities are used to
provide a wealth of services, e.g. model diagnosis, automated code
generation, and semantic integration. More specifically, recent
studies have shown that OWL is well suited for harmonizing
information of engineering tools stored as AutomationML (AML)
files. However, OWL and its tools can be cumbersome for
direct use by engineers such that an ontology expert is often
required in practice. Although much attention has been paid
in the literature to overcome this issue by transforming OWL
ontologies from/to AML models automatically, dealing with OWL
complex classes remains an open research question. In this paper,
we introduce the AML concept models for representing OWL
complex classes in AutomationML, and present algorithms for
the bidirectional translation between OWL complex classes and
their corresponding AML concept models. We show that this
approach provides an efficient and intuitive interface for non-
experts to visualize, modify, and create OWL complex classes.

I. INTRODUCTION

The World Wide Web Consortium (W3C) has published
several recommendations for building ontologies, with the
Resource Description Framework (RDF) and the Web On-
tology Language (OWL) being the most popular ones. OWL
was designed as an extension of RDF with significant more
expressivity and is preferred as a language for conceptual
modeling in complex domains. The reasoning facilities of
OWL can, therefore, be used to support decision making in
the domain of interest.

The Automation Markup Language (AutomationML, or
AML) is a neutral, XML-based data format for data exchange
between engineering tools [1]. AML is standardized as IEC
62714 and has its root in the data format CAEX (IEC 62424).
AML supports the modeling of plant topology, component
structure, geometry and kinematics, logic behavior, and com-
munication networks. However, AML per se does not provide
a formal semantics for automated data interpretation [2]. In
practice, tools need to achieve a common understanding of
the data and be responsible for the preservation of semantics.

Efforts have been made on adopting OWL and its reasoning
facilities for processing AML data. The typical approach
comprises three steps: a) transform engineering data stored in
an AML document to an AML ontology by explicitly define
the semantics of AML notions; b) after communication with
the domain experts, an ontology expert extends the AML
ontology with additional knowledge for specific engineering
purposes; c) utilizing the reasoner for providing advanced
engineering services. For example, with predefined ontological
descriptions about error types in plant models, Abele et al.
were able to identify modeling errors in the plant topology
[3]. Hua et al. proposed a model-driven robot programming
approach that is capable of inferring component capability and
the associated programming interfaces from AML models [4].
In this paper, we use the term AML ontology to indicate an
OWL ontology that is converted from an AML document.

It is evident that the approaches mentioned above are based
on sophisticated domain knowledge that is modeled as OWL
complex classes by nesting logic-based OWL constructors.
Therefore, a profound understanding of the domain and the
language OWL is required. Recently, Hildebrandt et al. pro-
posed the domain expert-centric approach for building ontolo-
gies of cyber-physical systems [5]. While this approach tackles
the problem of incorporating domain expert’s knowledge, it is
unclear yet how to deal with OWL complex classes. In the
remainder of the paper, we use the term OWL complex class
and the term OWL class interchangeably if the context is clear.

In this paper, we introduce the AML concept model for
representing ontological semantics in native AML models.
Based on a bidirectional translation procedure between OWL
and AML, OWL classes can be visualized as AML concept
models for inspection and modification, and proper AML
concept models can be transformed to OWL classes while
preserving the ontological semantics. We show that this ap-
proach demonstrates an efficient and intuitive interface for a
non-expert to interact with OWL complex classes.

This paper is organized as follows. Section II discusses re-
lated work on model transformation between OWL and AML.
Section III gives a brief overview of OWL and AML, and
introduces the important notions used in this paper. In section
IV we present the AML concept model that is developed for
preserving ontological semantics in AML. In section V we
describe the bidirectional translation between OWL complex

ar
X

iv
:1

90
6.

04
24

0v
1

 [
cs

.A
I]

 4
 J

un
 2

01
9

classes and AML concept models. Finally, we demonstrate the
utility of this approach with two typical use cases of ontology
engineering in section VI and conclude the paper with future
works in section VII.

II. RELATED WORK

The first result about converting AML to OWL appeared
in 2009 by Runde et al. in their German paper [6]. Two ap-
proaches were proposed and discussed. The abstract approach
represents the CAEX vocabulary directly as OWL classes
in the ontology and transforms CAEX classes, objects and
attributes as individuals of these OWL classes. The concrete
approach generates an OWL class for each CAEX class with
an annotation about its original type in the CAEX schema.
For example, an AML role class Robot will be converted
to an OWL class with the annotation RoleClass. Subsequent
researches generally follow either the abstract or the con-
crete approach. For example, Kovalenko et al. proposed a
lightweight ontology for covering core concepts of CAEX
using the abstract approach [7], while Hua et al. followed the
concrete approach for learning unknown engineering concepts
from AML data [2].

The backward transformation from OWL to AML is less
studied, although the first approach was already published in
2010 in [8]. The transformation begins with mapping atomic
OWL classes to appropriate CAEX classes using the CAEX
type annotation of each OWL class. It proceeds with OWL
individuals of the top level OWL classes and transforms
them into proper CAEX objects. Then the transformation
handles each property associated with the individuals until all
information in OWL is processed.

It is evident that existing methods only target at ”simple”
knowledge types, that is, atomic classes, objects, and proper-
ties. For handling complex ontological knowledge, e.g. OWL
complex classes, one challenge arises that no regular AML
model can preserve complex ontological semantics.

In the remainder of the paper, we assume that we are
given an AML ontology converted from an AML document
following the approach proposed in [2]. Our goal is to develop
a modeling approach that enhances native AML models with
ontological semantics and a translation procedure between
such native AML models and OWL complex classes.

III. PRELIMINARIES

A. AutomationML

AML data is stored in an XML document which conforms
to the underlying CAEX XML schema. An AML document
usually contains a set of class libraries and a structured
collection of engineering objects that represents the plant
topology. We emphasize the following core concepts of CAEX
that we consider in this paper:
• Role class (RC): a role class refers to a type of engi-

neering objects, e.g. Robot. As AML follows the object-
oriented paradigm, role classes can be organized in inher-
itance hierarchies within so-called role class libraries.

• Interface class (IC): an interface class represents a
type of engineering interfaces, e.g. SignalInterface or
AttachmentInterface. Similar to role classes, inheritance
is allowed between interface classes and an interface class
library stores a set of interface classes.

• Internal element (IE): an internal element is the model
of an engineering object, e.g. a joint inside a robot or a
real robot in the plant. By referring to a role class, the
meaning of an internal element is declared. For describing
the plant topology, internal elements are organized as tree
structures in the instance hierarchy.

• External interface (EI): an external interface is the
model of an engineering interface, e.g. an IO pin of a
controller. The type of an external interface is defined by
referring to an interface class.

• System unit class (SUC): a system unit class is a
reusable engineering template that contains an internal
structure, where internal elements are used to represent
individual parts of the structure.

For all the concepts mentioned above, CAEX attributes can
be defined to describe their properties. In the rest of the paper,
we use the notion AML model to refer to any XML model that
can be generated according to the CAEX schema.

B. OWL

OWL1 belongs to the family of expressive Description
Logics (DL) and is closely related to SROIQ [9]. An OWL
ontology defines a finite set of classes (e.g. Robot), individuals
(e.g. a robot instance) and properties in a domain of discourse,
and describes relations between these artifacts. One further
distinguishes between object properties and data properties.
The former one is used for relations between individuals (e.g.
a robot has a controller), and the latter one is for describing
the concrete qualities of an individual (e.g. weight of a robot).
Although an AML ontology generated by [2] has merely two
object properties hasIE/hasEI, we also consider the following
inverse properties in this paper:

isIEOf ≡ hasIE−, isEIOf ≡ hasEI−

An OWL class is either an atomic class or a complex
one when it is generated by so-called concept constructors
[9]. Table I shows the concept constructors of OWL, their
correspondences in the terminology of DL, their DL syntax2,
and their formal model-theoretic semantics in OWL. We use
conventional notions for the syntax: A represents an atomic
class, C or D stands for an OWL (complex) class, R stands
for an OWL property, a or b stands for an OWL individual,
DR is used for the data range of data properties, and lt is
used for a literal value. The nested OWL class C inside a
restriction e.g. ∃R.C is called the filler of the restriction.

In this paper, we consider an OWL complex class con-
structed by using arbitrarily many of the constructors in the

1While OWL is the short name of the Web Ontology Language whose
expressive power goes beyond the scope of description logics, we use this
notion to refer to the specific sub-language OWL 2 DL.

2Please refer to [10] for more details of the DL syntax.

TABLE I
SYNTAX AND SEMANTICS OF OWL CONSTRUCTORS

OWL Terminology DL Terminology DL Syntax Semantics

covered
in this paper

atomic class atomic concept A AI

Thing top concept > ∆I

Nothing bottom concept ⊥ ∅
ObjectIntersectionOf intersection C uD CI ∩DI

ObjectUnionOf union C tD CI ∪DI

ObjectOneOf nominal {a, b, ...} {aI , bI , ...}
ObjectSomeValuesFrom existential restriction ∃R.C {x|∃y.(x, y) ∈ RI ∧ y ∈ CI}
DataSomeValuesFrom existential restriction ∃R.(DR) {x|∃y.(x, y) ∈ RI ∧ y ∈ (DR)I}
ObjectExactCardinality exact restriction = nR.C {x | |{ y|(x, y) ∈ RI ∧ y ∈ CI }| = n}
ObjectMinCardinality at-least restriction ≥ nR.C {x | |{ y|(x, y) ∈ RI ∧ y ∈ CI }| ≥ n}
ObjectMaxCardinality at-most restriction ≤ nR.C {x | |{ y|(x, y) ∈ RI ∧ y ∈ CI }| ≤ n}

ObjectHasValue fills restriction ∃R.{a} {x|(x, aI) ∈ RI}
DataHasValue fills restriction ∃R.{lt} {x|(x, (lt)I) ∈ RI}

ObjectAllValuesFrom universal restriction ∀R.C {x|∀y.(x, y) ∈ RI → y ∈ CI}
ObjectComplementOf complement ¬C ∆I\CI

uncovered
in this paper

DataExactCardinality exact restriction = nR.(DR) {x | |{ y|(x, y) ∈ RI ∧ y ∈ (DR)I }| = n}
DataAllValuesFrom universal restriction ∀R.(DR) {x|∀y.(x, y) ∈ RI → y ∈ (DR)I}
DataMinCardinality at-least restriction ≥ nR.(DR) {x | |{ y|(x, y) ∈ RI ∧ y ∈ (DR)I }| ≥ n}
DataMaxCardinality at-most restriction ≤ nR.(DR) {x | |{ y|(x, y) ∈ RI ∧ y ∈ (DR)I }| ≤ n}

ObjectHasSelf local reflexivity ∃R.Self {x | (x, x) ∈ RI}

covered part of Table I, and assume that no constructors in
the uncovered part would appear. While it seems to be a
strong assumption, we argue that: a) since CAEX attributes are
mapped to data properties and one CAEX attribute is usually
assigned to an object only once, the universal, at-least and
at-most restrictions on data properties can be omitted; b) the
local reflexivity cannot appear in an AML ontology, since we
can not have an internal element (or external interface) which
is the internal element (or external interface) of itself.

Formula 1 shows some examples of OWL classes used
in this paper. Class A refers to Robots without any internal
element of the type ¬IOController. Class B refers to internal
elements of a Robot from the manufacturer KUKA. Class C
refers to Robots with an IOController that has at least three
IOInterfaces. Class D refers to IOInterfaces from objects that
have at least three IOInterfaces. Apparently, as the complexity
grows, the intended meaning of an OWL complex class
becomes more difficult to understand. In the next section, we
introduce the AML concept model that is able to represent
OWL complex classes as native AML models.

A ≡ Robot u ¬∃hasIE.(¬IOController)
B ≡ ∃isIEOf.(Robot u hasManufacturer.”KUKA”)

C ≡ Robot u ∃hasIE.(IOController u ≥ 3hasEI.IOInterface)

D ≡ IOInterface u ∃isEIOf.(≥ 3hasEI.IOInterface) (1)

IV. THE AML CONCEPT MODEL

Consider the OWL class constructors in Table I. It is evident
that while atomic classes can be represented as AML classes
directly [2], most of the features in OWL are not supported
by AML. Therefore, we propose the following approach to
represent OWL class constructors as dedicated AML models:

Atomic class: similar to the conventional translation proce-
dure as proposed by [8], an atomic class is represented by a
CAEX role or interface class. A class reference in CAEX is

therefore equivalent to a class assertion in OWL. For example,
an internal element a of the role class A is represented as A(a).

Thing: Thing is the most general concept in OWL and
contains all individuals. Therefore, it is represented by a
CAEX object with no specific configurations.

Nothing: Nothing is the most specific concept in OWL and
contains no individual. Nothing is handled as the complement
of Thing (see the complement case below).

Intersection: an intersection CuD contains individuals that
are instances of all the operands C and D in the intersection.
Therefore, an intersection is represented by the composition of
several AML models that correspond to each of the operands,
including CAEX class references, attributes, and subordinate
object structures.

Union: a union CtD contains individuals that are instances
of at least one operand C or D of the union. XML does
not support unions in general. In this paper, we handle each
operand of a union separately and generate one AML model
for each of them.

Nominal: a nominal {a, b, ...} enumerates all individuals
that an OWL class shall contain. Similar to the union construc-
tor, nominals cannot be directly represented in XML, and we
generate one AML model for each element inside a nominal.

Existential restriction: an existential restriction ∃R.C or
∃R.(DR) states the existence of the relation R with the filler
C or the data range DR. If R is an object property, the
existential restriction is represented by a child object (internal
element or external interface) while the filler C is represented
by the model of the child object. If R is a data property, the
existential restriction is represented by a CAEX attribute while
the data range DR is represented by the configuration of the
CAEX attribute, e.g. data type and value requirements.

Object cardinality restrictions: an object cardinality re-
striction, i.e. an exact restriction = nR.C, an at-least restric-
tion ≥ nR.C, or an at-most restriction ≤ nR.C, defines the

number of child objects of the class C w.r.t. the relation R. The
CAEX attributes minCardinality and maxCardinality are added
to the child objects to represent the minimum and maximum
number respectively. The exact cardinality of n is represented
by minCardinality = minCardinality = n.

Fills restriction: a fills restriction ∃R.{a} or ∃R.{lt}
corresponds to an existential restriction with a Singleton filler.
If R is an object property, the CAEX attribute isIdentifiedByID
is used to restrict the ID of the child object, as ID is unique
in AML. If R is a data property, lt is set as the required value
of the corresponding CAEX attribute.

Universal restriction: a universal restriction ∀R.C forces
all child objects w.r.t. the relation R to be instances of the
class C. For example, ∀hasIE.C describes things that have
internal elements of type C only. While universal restrictions
can not be directly represented in XML, it can be simulated
by disallowing child objects that are instances of the class ¬C
[11] using the exact cardinality = 0R.(¬C).

Complement: a complement ¬C contains all individuals
that are not instances of C. Since an OWL class can have
arbitrarily nested complements, we first transform an OWL
class to its negation normal form (NNF) so that complements
are only bound to atomic classes [12]. For example, the NNF
of the OWL class A in Formula 1 is:

NNF(A) ≡ Robot u ∀hasIE.IOController

Obviously, NNF(A) does not contain any complements. In
fact, complements can only appear in the following three cases
in the NNF of an OWL class:
(a) A complement can be bound to an atomic class as ¬A or

a data range as ¬DR, and is not part of any restrictions.
In this case, a CAEX attribute negated=true is added
to the AML model. Note that intersections of a mixture
of positive and negative atomic classes, e.g. ¬A1 u A2,
cannot be modeled in AML.

(b) A complement can be the filler of an existential restric-
tion, i.e. ∃R.(¬A) or ∃R.(¬DR). As with the existential
restriction, a child CAEX object or CAEX attribute is
first generated. Then the CAEX attribute negated=true is
added to the child model.

(c) A complement can be the filler of a universal restriction as
∀R.(¬A) (recall that we ignore universal restrictions on
data properties). In this case, we disallow child objects of
the class A w.r.t. the relation R, which can be expressed
using the exact cardinality = 0R.A.

Table II summarizes the introduced CAEX attributes that are
used to capture the semantics of OWL constructors mentioned
above. We call them concept attributes. The attribute primary
is a helper flag to indicate which element in an AML model
is described by the OWL class. We call an AML model with
concept attributes as an AML concept model and enumerate
the values of concept attributes based on possible forms of
NNF in Table III. Intuitively, AML concept models can be
nested to represent nested OWL class expressions. An AML
concept model is proper if it has exactly one primary element.

IE
RC: Robot

IE
RC: IOController
[0,0]

(a) Class A

IE
RC: Robot
manufacturer: KUKA

IE

(b) Class B

EI
IC: IOInterface
[3, -1]

IE
RC: Robot

IE
RC: IOController

(c) Class C

EI
IC: IOInterface

EI
IC: IOInterface
[3, -1]

IE

(d) Class D

Fig. 1. The AML concept models for the OWL classes in Formula 1.

Note that intersections, unions, and nominals are omitted in the
mapping since we handle each element of them individually.

Figure 1 illustrates the AML concept models of the NNF
of the OWL classes A, B, C and D in Formula 1 as tree
structures. Internal elements (IE) and external interfaces (EI)
are represented by tree nodes, and their class references and
attributes are depicted as labels on the top right corner. A
negated object is marked as red. The primary object is marked
as bold with an underline. Numbers in square brackets are the
min and max cardinality of the object, while a value −1 means
that it is unlimited. Note that for the classes B and D, the
primary object is not the root node since XML cannot depict
”part-of” relations (i.e. isIEOf, isEIOf). Therefore, each inverse
property is simulated as a predecessor node in the XML tree.

V. TRANSLATION BETWEEN OWL AND AML

The core idea of the translation is to exploit the tree
structure of OWL class expressions. More concretely, we
introduce AML concept trees that depict OWL complex classes
in a tree structure similar to AML concept models. Then we
describe the forward translation TransF : OWL 7→ AML via
the AML concept trees. Finally, we show that the backward
translation TransB : AML 7→ OWL can be directly carried
out using the mappings in Table III.

A. From OWL to AND-tree

We define a tree conventionally as a directed graph
G = (V, E) where V is a finite set of nodes and E is a finite
set of edges, to which the following rules apply:
• A tree G has a unique root node that has no predecessor.
• Each node n ∈ V has a unique predecessor.
We call leaf nodes the tree nodes that have no successor, i.e.

at the bottom of the tree. Furthermore, a branching node is an
inner tree node that has a unique predecessor and arbitrarily
many successors. Based on these notions, an AND-tree is a
tree with the following properties:
• The root of an AND-tree represents the expression of an

OWL complex class.

TABLE II
THE AML CONCEPT ATTRIBUTES FOR CAPTURING ONTOLOGICAL SEMANTICS.

Name Type Default Designation Semantics in OWL
negated bool false whether the class reference or the data range of an AML concept model shall be negated complement

minCardinality integer 1 minimum number of occurrence of this AML concept model minCardinality
maxCardinality integer unlimited maximum number of occurrence of this AML concept model maxCardinality
identifiedByID bool false whether the ID of the AML concept model is used as an individual name in OWL nominal

primary bool false whether this AML concept model is the primary object target individuals

TABLE III
MAPPING BETWEEN OWL CONSTRUCTORS AND AML CONCEPT ATTRIBUTES.

OWL Class Expression Negated minCardinality maxCardinality
simple complement ¬C or ¬DR true 1 unlimited

existential restriction ∃R.C or ∃R.DR false 1 unlimited
existential restriction ∃R.(¬C) or ∃R.(¬DR) true 1 unlimited

universal restriction ∀R.C true 0 0
universal restriction ∀R.¬C false 0 0
at-least restriction ≥ nR.C false n unlimited
at-most restriction ≤ nR.C false 0 n

Algorithm 1 Construct

Input: The class expression ce of an OWL class C
Output: A tree node root

1: make a tree node root for ce
2: if ce is an atomic class then
3: return root
4: else if (ce is an intersection) then
5: for operand ∈ ce do
6: let child = Construct(operand)
7: add child as a successor to root
8: end for
9: else if (ce is a restriction) then

10: let child = Construct(ce.filler)
11: add child as a successor to root
12: end if
13: return root

• Each branching node of an AND-tree represents either an
intersection or a restriction (see the notions in Table I).

• Each leaf node of an AND-tree represents either OWL
Thing, OWL Nothing or an atomic class.

For each OWL complex class without unions and inverse
properties, an AND-tree can be constructed by making a
successor node for each operand of an intersection and the
filler of a restriction, as shown in Algorithm 1.

We illustrate the construction process in Figure 2. Each
box represents a tree node, and the number on the upper left
corner of each box shows the sequence of node construction.
The root node of the AND-tree corresponds to the OWL
class D in Formula 1. Since the root is an intersection, the
algorithm will handle each operand of it individually through
line 4 to 6. The atomic operand IOInterface is returned directly
and added as a child to the root in line 7. For the com-
plex operand ∃isIEOf.(≥ 3hasEI.IOInterface), the algorithm
recursively generates sub-nodes until the final atomic filler
IOInterface is reached in line 10. Note that all nodes are

����������� ⊓ ∃������. (≥ ������. �����������)

����������� ∃������. (≥ ������. �����������)

≥ ������. �����������

�����������

1

2 3

4

5

Fig. 2. The AND-tree constructed from the OWL class D in Formula 1. The
numbers in the tree nodes show the sequence of node construction.

generated immediately in line 1 when Construct is called.
It becomes more involved if the OWL class C contains

any disjunctions (unions or nominals) because XML does not
support or statements generally. The solution is to construct m
AND-trees for a disjunction with m elements. However, since
disjunctions can appear in any nested part inside an OWL
class expression, we need to traverse the logical structure of
the class expression to produce a set of AND-trees that is
logically equivalent to the OWL class.

Algorithm 2 shows the AND-tree construction process for
classes involving disjunctions. If the input class expression ce
is a disjunction, then a set of tree nodes are generated for
the elements of the disjunction (line 4). In case the input is
an intersection, the recursive call of ConstructD in line 12
will handle possible nested disjunction in each element and
produce a set of nested trees. These nested trees need to be
multiplexed with the existing trees in roots through line 13 to
15. The algorithm treats restrictions similarly to intersections
despite that the filler of a restriction is used to produce nested
trees in line 19. It is worth noting that only m− 1 copies of
root are made in line 14 and 21 since the original root also
counts during the construction.

Figure 3 illustrates the tree construction process of the OWL

Algorithm 2 ConstructD

Input: The class expression ce of an OWL class C
Output: A set of tree nodes roots

1: initialize roots = {}
2: if ce is an union or a nominal then
3: for each element in ce do
4: add ConstructD(element) to roots
5: end for
6: else
7: make a tree node n for ce, add n to roots
8: if ce is an atomic class then
9: return roots

10: else if (ce is an intersection) then
11: for operand ∈ ce do
12: let nestedTrees = ConstructD(operand)
13: for root in roots do
14: copy root nestedTrees.size− 1 times
15: add the root of each tree ∈ nestedTrees as a

successor to exactly one copy of root
16: end for
17: end for
18: else if (ce is a restriction) then
19: let nestedTrees = ConstructD(ce.filler)
20: for root in roots do
21: copy root nestedTrees.size− 1 times
22: add the root of each tree ∈ nestedTrees as a

successor to exactly one copy of root
23: end for
24: end if
25: end if
26: return roots

class Robot u ∃hasIE.(IOController t IODevice). In the first
step, a root node is generated that contains the complete
class expression (line 7). Then, for each operand of the
intersection, a child node is generated in step 2 and 3 (line
12). Since the Robot node is atomic, no further construction is
required in the recursive call (line 9). On the other hand, the
restriction node ∃hasIE.(IOController t IODevice) is copied
in step 4 (line 21), since its filler is a union and produces
two atomic nodes IOController and IODevice (line 19). In
step 5 and 6, the atomic nodes are added to the original
and copied restriction nodes (line 22). Finally, the root node
Robot u ∃hasIE.(IOController t IODevice) is copied once to
accept the two distinct restriction nodes in step 7 (line 14-15).

B. Working with Inverse Properties

For OWL classes that describe objects in the instance hierar-
chy, inverse properties might appear for gathering information
about their ancestors or siblings (see the OWL classes B and
D in Formula 1). Due to structural restrictions in AML, we
assume that the following conditions hold when an inverse
property R− ∈ {isIEOf, isEIOf} appear:

C1: R− does not appear in the filler of any restriction that
has R as property, e.g. ∃R.(∃R−.C).

����� ⊓ ∃�����. (������������ ⊔ ��������)

����� ∃�����. (������������ ⊔ ��������)

������������

��������

1

2 3

5

6

copy
����� ⊓ ∃�����. (������������ ⊔ ��������)

����� ∃�����. (������������ ⊔ ��������)
47

7

copy

Fig. 3. The tree construction process of the OWL complex class
Robot u ∃hasIE.(IOController t IODevice). The numbers in the tree nodes
show the sequence of node construction.

C2: R− does not appear in the filler of cardinality restric-
tions, e.g. ≥ n R−.C.

C3: R− does not appear in the filler of any restriction that
has a different property R′ 6= R, e.g. ∃R′.(∃R−.C).

C4: isEIOf does not appear in the filler of any restrictions
that has an inverse property, e.g. ∃R−.(∃isEIOf.C)

The conditions C1 and C2 avoid modeling redundancies
in OWL, since AML data has a tree structure, and each
node in the tree has a unique predecessor. A class expression
∃R.∃R−.C is therefore logically equivalent to C, and a
cardinality restriction is redundant to an existential restriction.
The condition C3 avoids modeling errors in OWL since the
set of internal elements is disjoint with the set of external
interfaces. The condition C4 holds since external interfaces
have no child object in AML. We call an OWL class that
meets the conditions C1-C4 as a proper AML class.

The inverse properties of a proper AML class always appear
continuously at the outermost layer of the class expression. In
other words, the AND-tree of a proper AML class has all
inverse properties in the upper part of the tree. Therefore,
Algorithm 3 iteratively removes the inverse properties from
the root of an AND-tree. We call an AND-tree that contains
no disjunctions nor inverse properties as an AML concept tree.

Figure 4 shows how the inverse property in the root of
class D’s AND-tree is removed. Since the original root node
is an intersection, the algorithm first constructs a template
node for the new root (line 11). Then a new child node is
constructed for the previous child IOInterface by formulating
an existential restriction in step 2 (line 14 to 15). To keep
the consistency of the tree, the expression of the new child
node is added to the new root node in the third step (line 16).
For the previous child ∃isEIOf.(≥ 3hasEI.IOInterface) with
the inverse property isEIOf, the filler ≥ 3hasEI.IOInterface is
added to the new root node as a conjunctive term in step 4
(line 18), and the corresponding grandchild with its sub-tree
is added as a child to the new root in step 5 (line 19).

It is obvious that the inverse property isEIOf is now re-

∃�����. �����������

∃�����. �����������

∃�����. ����������� ≥ ������. �����������

����������� ����������� �����������

3

5

5

∃�����. �����������⊓ ≥ ������. �����������

4

EI
IC: IOInterface

EI
IC: IOInterface
[3, -1]

IE

����������� ⊓ ∃������. (≥ ������. �����������)

����������� ∃������. (≥ ������. �����������)

≥ ������. �����������

�����������

∃�����. �����������

�����������

1

2

2

1. construct new root
2. add normal children

3. extend new root
4. extend new root
5. add inv children

Fig. 4. The construction of the AML concept tree of class D and the conversion to its AML concept model. The numbers in the tree nodes show the sequence
of node construction. The orange dashed lines show the mapping between nodes in the AML concept tree and the AML concept model.

Algorithm 3 removeInverseProperty

Input: The root of an AND-tree root
Output: The root of a new AND-tree newRoot

1: let ce = class expression in root
2: if ce contains no (nested) inverse property then
3: return root
4: else
5: if ce is a restriction then
6: construct a new node newRoot for ce.filler
7: change the filler of root to owl:Thing
8: add root as a successor of newRoot
9: move root.children as sucessors of newRoot

10: else if ce is an intersection then
11: construct a template node newRoot
12: let inv be successors of root with inverse property
13: let normal be other successors of root
14: construct a new node normalChild as an existential

restriction with normal being its filler
15: add normalChild as a successor to newRoot
16: add the expression of normalChild to newRoot
17: for node ∈ inv do
18: add the filler of node to newRoot conjunctively
19: move node.child as a successor of newRoot
20: end for
21: end if
22: RemoveInverseProperty(newRoot)
23: end if

moved. Note that the OWL class expression of the new root
node is different from the original one. Informally, the original
root describes the primary object in an arbitrary position of
the CAEX instance hierarchy (marked as yellow), while the
new root describes the predecessor of the primary object.

C. The Forward Translation: from OWL to AML

Until now we have shown the algorithms to transform a
proper AML class into an AML concept tree. The forward
translation TransF : OWL 7→ AML can be implemented by
traversing AML concept trees in a depth-first manner. For
every tree node, we generate a corresponding AML concept
model whose concept attributes are configured based on the

mappings in Table III. The CAEX type of the target AML
concept model is determined either by the object property
being used in case of a restriction or by the CAEX type
annotation of the OWL class in case of an intersection in
the root node. The orange dashed lines in Figure 4 show
the translation from the AML concept tree of class D to its
AML concept model illustrated in Figure 1d. Recall that OWL
atomic classes are mapped to CAEX class references.

D. The Backward Translation: from AML to OWL

If an AML concept model is proper, i.e. it has exactly one
primary element (see section IV), then the backward transla-
tion TransB : AML 7→ OWL can be directly carried out using
the mappings in Table III. First, a traverse of the AML concept
model is necessary to localize the primary object. Afterwards,
successors of the primary object are translated to restrictions
with normal properties while the predecessors are translated to
restrictions with inverse properties. If Algorithm 2 would have
generated several AML concept models during the forward
translation, they are translated independently to several OWL
classes and combined disjunctively as a union. In this case, an
original OWL class with nested unions will be reproduced as
a union of expressions, e.g. ∃r.(C t D)→ ∃r.C t ∃r.D.

It is worth noting that the mappings in Table III are used
for both TransF and TransB. Therefore, the forward and
backward translation are inverse functions of each other in
terms of semantic equivalence. That means, for an OWL class
C and an AML concept model M , we have:

TransB(TransF(C)) ≡ C

TransF(TransB(M)) ≡M
(2)

VI. USE CASES

We have implemented the AML concept model and the
bidirectional translation in Java. The source code and examples
can be found in the GitHub repository3. To demonstrate the
use cases of the proposed approach, we discuss two typical
scenarios in ontology engineering (Figure 5). For editing AML
models, we recommend the AML editor4.

3https://github.com/kit-hua/ETFA2019
4https://www.automationml.org/o.red.c/dateien.html

https://github.com/kit-hua/ETFA2019
https://www.automationml.org/o.red.c/dateien.html

AML

Ontology

OWL
Class

AML
Concept Tree

AML
Concept
Model

AML

Document

converted to

Fig. 5. The work flow for ontology engineering using bidirectional translation.

In the first use case (orange arrows in Figure 5), the required
OWL class does not exist yet, and a user wants to create an
AML concept model for the concept in mind:

1) The user generates the primary AML concept model
for the target concept, i.e. a CAEX role class, system
unit class, interface class, internal element or external
interface with class reference and concept attributes.

2) The user adds CAEX attributes and sub-elements with
sufficient constraints to the model. This process repeats
recursively for nested attributes and sub-elements.

3) If the primary AML concept model shall be further
restricted by the properties of its predecessor or siblings,
a parent AML concept model is generated. This process
repeats recursively for further predecessors and siblings.

4) The user generates the OWL class using the backward
translation and adds it to the AML ontology.

The second use case (blue arrows in Figure 5) refers to the
ontology evolution procedure in which OWL complex classes
already exist in an AML ontology. These classes might be
modeled by an ontology expert or created using the AML
editor as described above. Now the user might want to inspect
a particular OWL class and modify it by demand. First, the
chosen OWL class is translated into AML concept models
via its AML concept trees. Then, the user can open the
generated AML concept models in the AML editor and inspect
them by browsing their XML structure. If any modification
is necessary, the user can edit the AML concept models as
described above and export the new one to an OWL class.

In conclusion, AML concept models can be inspected and
modified using the AML editor, while the forward and back-
ward translation are transparent to the user. By comparing the
OWL complex classes in Formula 1 and their corresponding
AML concept models in Figure 1, we believe that the two use
cases demonstrate an intuitive and efficient interaction with
OWL complex classes. Because the forward and backward
translations are inverse functions of each other (see Formula
2 in section V-D), Figure 5 also illustrates that a round-trip
engineering of OWL complex classes is possible by following
the work flow of both use cases successively.

VII. CONCLUSION

In this paper, we studied the problem of interpreting OWL
complex classes from an AML ontology. We identified the
inadequacy of existing approaches and introduced a native
AML based approach for visualizing, editing and creating

OWL complex classes. More specifically, we presented the
AML concept model that is capable of carrying ontological
semantics, and a bidirectional translation procedure for the
conversion between OWL complex classes and AML concept
models. With two typical use cases in ontology engineering,
we demonstrated the utility of the proposed approach.

Future works are considered in two aspects. First, the
semantic expressivity of the AML concept model is restricted
by the object properties hasIE, hasEI and can be extended to
cover further modeling facilities in AML, e.g. connections
between objects. Second, the current implementation does not
provide a friendly user interface and can be improved by
integrating the translation procedure into the AML Editor.

ACKNOWLEDGMENT

This work has been supported from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 688117 Safe human-robot interaction in logistic
applications for highly flexible warehouses (SafeLog).

REFERENCES

[1] R. Drath, A. Lüder, J. Peschke, and L. Hundt, “Automationml - the
glue for seamless automation engineering,” in 2008 IEEE International
Conference on Emerging Technologies and Factory Automation, Sept
2008, pp. 616–623.

[2] Y. Hua and B. Hein, “Concept Learning in AutomationML with Formal
Semantics and Inductive Logic Programming,” in 2018 IEEE Inter-
national Conference on Automation Science and Engineering (CASE),
2018.

[3] L. Abele, C. Legat, S. Grimm, and A. W. Mller, “Ontology-based Val-
idation of Plant Models,” in 2013 11th IEEE International Conference
on Industrial Informatics (INDIN), July 2013, pp. 236–241.

[4] Y. Hua, S. Zander, M. Bordignon, and B. Hein, “From Automationml to
ROS: A Model-driven Approach for Software Engineering of Industrial
Robotics using Ontological Reasoning,” in 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
Sep. 2016, pp. 1–8.

[5] C. Hildebrandt, S. Trsleff, B. Caesar, and A. Fay, “Ontology Building
for Cyber-Physical Systems: A domain expert-centric approach,” in
2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), Aug 2018, pp. 1079–1086.

[6] S. Runde, K. Güttel, and A. Fay, “Transformation von CAEX-
Anlagenplanungsdaten in OWL: Eine Anwendung von Technologien des
Semantic Web,” in Automation 2009, Der Automatisierungskongress in
Deutschland, VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik
(GMA), Jun 2009, pp. 175–178.

[7] O. Kovalenko, M. Wimmer, M. Sabou, A. Lder, F. J. Ekaputra, and
S. Biffl, “Modeling AutomationML: Semantic Web technologies vs.
Model-Driven Engineering,” in 2015 IEEE 20th Conference on Emerg-
ing Technologies Factory Automation (ETFA), Sep. 2015, pp. 1–4.

[8] S. Runde, A. Fay, and S. Böhm, “Konvertierung von OWL-
Planungsergebnissen nach CAEX,” in Automation 2010, Der 11.
Branchentreff der Mess- und Automatisierungstechnik, VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik (GMA), Jun 2010, pp.
1–12.

[9] B. Motik, P. F. Patel-Schneider, and B. C. Grau, “OWL 2 Web
Ontology Language Direct Semantics (Second Edition),” 11.12.2012.
[Online]. Available: https://www.w3.org/TR/owl2-direct-semantics/

[10] M. Krötzsch, F. Simancik, and I. Horrocks, “A Description Logic
Primer,” CoRR, vol. abs/1201.4089, 2012. [Online]. Available:
http://arxiv.org/abs/1201.4089

[11] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL 2 Web Ontology
Language Direct Semantics (Second Edition),” 11.12.2012. [Online].
Available: https://www.w3.org/TR/owl2-syntax

[12] P. Hitzler, M. Krtzsch, and S. Rudolph, Foundations of Semantic Web
Technologies, 1st ed. Chapman & Hall/CRC, 2009.

https://www.w3.org/TR/owl2-direct-semantics/
http://arxiv.org/abs/1201.4089
https://www.w3.org/TR/owl2-syntax

	I Introduction
	II Related Work
	III Preliminaries
	III-A AutomationML
	III-B OWL

	IV The AML Concept Model
	V Translation between OWL and AML
	V-A From OWL to AND-tree
	V-B Working with Inverse Properties
	V-C The Forward Translation: from OWL to AML
	V-D The Backward Translation: from AML to OWL

	VI Use Cases
	VII Conclusion
	References

