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Abstract—Safety and efficiency of modern industrial plants 
can be improved by providing operators with effective digital 
assistants to diagnose abnormal situations occurring in the plant. 
To make sense of a large number of alarms, root cause analysis 
can help pinpoint the origin of an abnormal situation. We 
investigate the translation of qualitative causal models into 
Bayesian belief networks (BBN) to utilize efficient tools for 
probability inference. The diagnosis result of a fault scenario of 
the Tennessee-Eastman-Process highlight the feasibility of the 
principle approach and the ongoing research aims to fully leverage 
the potential of BBN. 

Keywords—Bayesian methods, Expert systems, Process Control, 
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I. INTRODUCTION 

The impact of situational awareness in the decision-making 
process of operators of industrial processes has long been a 
concern in safety critical operations. In order to address the 
challenge of human factors the performance of the operator 
interface naturally is essential. Situational awareness is 
necessary to maintain reliability, anticipate events and respond 
appropriately when or before they occur. Comprehension of the 
situation is based on a synthesis of perceived information. This 
comprehension requires an understanding of the significance of 
the presented elements beyond simply being aware of 
information. By developing digital assistants to support the 
operator, the operators can make better-informed decisions. 

Reducing the number of alarms presented to an operator, by 
means of alarm management has been the subject of many 
improvement efforts in industry. This reflects in the guidelines 
and standards defined for process industries, most significantly 
the Engineering Equipment Materials Users’ Association 
(EEMUA) publication 191 [1]. Hollifield et al. [2] have 
compiled an overview of the current best-practice in industry. It 
is necessary to combine all available information to provide 
accurate assistance: recorded data, as well as design and 
operation knowledge [3].  

Digital diagnostic assistants for “human in the loop” real-
time operations can be valuable in identifying root causes of 
failures [4], [5] or even predict the onset of disturbances that 
could lead to failures [6], [7], thereby reducing downtime and 
limiting stress for the operators. To establish a model of the 
system, technical documentation like P&IDs and process flow 
diagrams, are important [3], but it is also vital to “harvest” 
expertise and experience from engineers and operators [8] or 
empirical data [5]. Based on this data the causality between 

offsets in the plant can be modeled and the fault propagation can 
be analyzed to identify root causes [7], [9]. 

Bayesian Belief Networks (BBN) have been proposed as 
means of diagnosing faults based causal process 
representations.. BBN yields a way of representing uncertainty 
about the causal relationships and with efficient Bayesian 
inference one can update likelihood estimates of the unobserved 
states and the potential root causes, implying the possibility of 
ranking them. One approach to establish the process 
representation on which Bayesian Network analysis can be 
added is to apply Hazard and Operability Studies (Hazop) [10] 
or fault-tree analysis [11], [12], which are usually prepared for 
risk assessment. Peng et al. [13] also describe the application of 
Bayesian inference to distinguish root causes identified by fault 
propagation in a multi-logic causal model. However, producing 
and maintaining accurate representations of a process in safety 
documents in a consistent digital format is a lengthy process 
involving process, safety and operations experts. 

Multilevel Flow Modeling (MFM) facilitates the generation 
of causal models. Representing the process as a hierarchy of 
mass, energy, and control flows by functional concepts provides 
a structured approach to modelling causality. [14] Using the 
abstract causal model reduces the knowledge engineering effort 
and fault propagation is used to propose root cause candidates. 
To identify the actual root cause BBN can then be used, similar 
to the approach in [13]. 

This paper examines more closely the application of BBN 
for on-line fault diagnosis based on causal models. The approach 
is demonstrated on a case of the Tennessee Eastman Process 
simulator (TEP) [15] .The paper is organized as follows. First 
we present a causal model of the thermal aspects in the TEP 
based on the concept of Multilevel Flow Models  (MFM) [14]. 
Next, we outline different approaches to generate a BBN from 
the causal model. Finally, we obtain the probabilities of all 
possible root causes and compare the results with the true fault 
for the investigated TE scenario. 

II. CAUSAL MODEL OF THE TENNESSEE EASTMAN PROCESS 

The MFM causal model shown in Fig. 1 represents the 
thermal aspects of the TEP. The MFM methodology 
decomposes the system into mass and energy flows as a 
hierarchy of means and supported objectives of the plant. By 
using abstract function primitives to represent the different flows 
the model can be related to the design intentions and human 
understanding of the plant operation [7]. Some of the abstract 
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mass or energy flow functions in the model directly relate to 
measurable quantities in the process, such as pressures, 
temperatures, and flow rates, as well as manipulated variables. 
The implicit causal model in MFM yields a causal di-graph for 
the measurable quantities of the TEP shown in Fig. 2. 

For the diagnosis, we consider the scenario of a high 
condenser coolant temperature, indicated by two alarms: F9 high 
and F5 low. The alarms are generated by a 2% band around the 
steady state value [16] using the simulation data provided by 
Rikker [17]. 

III. BAYESIAN BELIEF NETS 

A Bayesian belief network is a probabilistic graphical model 
that describes variables and their conditional dependencies 
based on a directed acyclic graph. Efficient algorithms exist for 
both inference of probabilities and learning of the causal 
structure. As such, it represents an established methodology for 
analyzing complex causal dependencies between faults [18], 
[19]. There are a number of synonyms in the literature all 
corresponding to a Bayesian Belief Net (BBN). These include 
Bayes nets, directed acyclic graphs, and probabilistic networks. 

A BBN models the joint probability distribution of the 
combined states of the system under consideration - in our case 
given by the nodes in the (combined) fault-tree(s). The BBN is 
defined by a directed acyclic graph in which each edge 
corresponds to a conditional dependency and each node 
corresponds to a unique random variable. In addition to the 
graph structure, the BBN contains Conditional Probability 
Tables (CPT) for all nodes having one or more parents and by 
marginal probability tables for the root nodes (nodes without 
parents). Generally, one can say that a BBN is a solution to 
model complex systems because they perform the factorization 
of the variables joint distribution based on the conditional 
dependencies. The main objective of BBNs is to compute the 
distribution probabilities of a set of unknown variables given the 
observation of one or more other variables. The detailed 
principles of this modeling tool are explained in [18], [19]. 

Building a BBN involves both a structural part (the graph) 
and a quantitative part (the probability tables). Both of these 
parts can be learned from data. However, developing a BBN for 
a complex system entirely by learning from historical diagnostic 
cases, although very attractive, is rarely an option due to lack of 
data. On the other hand updating an existing model from data is 
often feasible. It is also important to note that the structural part 
(the backbone of the causal dependencies) is more difficult to 
learn than the parameter values of the probability tables. 
Accordingly, it is advantageous to draw structural information 
from an available causal representation of the system. There 
have been a number of publications showing how to map a fault-
tree to a BBN [11], [12]. It is in principle straightforward and the 
OR gates can be directly represented by deterministic CPTs. In 
addition we can then easily represent uncertainty in the 
anticipated propagation of causes to consequences by modifying 
the CPTs using so-called Noisy OR gates [20]. 

IV. GENERATING BAYESIAN NETS 

In the following, we outline three different paths of 
generating a BBN from the presented causal model. Firstly, a 
recipe for removing cycles in the causal di-graph is presented, 
generating a BBN with trinary states for all variables in the 
graph. Subsequently, two different ways of interpreting the 
fault-trees generated by back tracing into a BBN. 

A. Trinary representation 

If it is possible to translate a causal graph directly into a 
BBN, each variable can be considered as having one of three 
states: no deviation (normal), too low value (low), or too high 
value (high). However, control loops in the system will reflect 
as cycles in a causal graph, whereas a BBN needs to be acyclic 
by definition. We propose a recipe to resolve these cycles and 
create a BBN from a causal di-graph, or signed di-graph. The 
approach is based on the following assumptions: 

• During normal operation, reciprocal influence between 
two variables has a dominant direction, due to the 
process and control design. 

• Actuated variables are likely root causes, e.g. a fault in 
the sensor, controller implementation, or the actuator 
can cause an offset. 

 
Fig. 1 Signed directed graph generated from MFM model. Positive (solid) and 
negative (dashed) edges are directed from cause to effect. Minor reciprocal 
influence (red) and influence of controlled variables (yellow) removed to 
generate BBN. Nodes are coloured according to MFM perspectives. 

 
Fig. 2 Multilevel Flow Model of the TEP. Decomposition of the process by 
flow function primitives [14] for mass flow (blue), pressure (green), heat 
transfer (yellow), and control loops (white).
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Consequently, the following steps are performed to generate 
a BBN: 

1. Identify and keep only dominant influence between 
reciprocal variables. See Fig. 2. 

2. Remove edges from controlled variable to corresponding 
actuated variable, if they are part of a cycle. See Fig. 2. 

3. Generate a CPT for each intermediate node using Table 1. 
Each entering edge eji of node vi has sign sji. If vi has multiple 
entering edges the cross product of the states is formed as the 
sum of the high or low observations, the normal state is only 
probable if all parent nodes indicate normal. 

B. Mapping causal paths 

The assumptions presented in A will often be too simplistic 
to cover all scenarios in a plant, e.g. if a cycle led to remove the 
influence of Pr on MV6 by rule A.2 there would be no 
propagation causing F9 high. Alternatively, we explore a 
situation specific approach to generating the BBN. Given 
specific fault observations, the causal model can be used to trace 
back the causal path and identify possible root causes. In doing 
so, only a subset of the graph will be traversed and occurring 
cycles are detected. The back-tracing spans a fault-tree but 
common consequences linking branches of the fault-tree are 
being ignored. To penalize longer propagations uncertainty is 
introduced for each traversed edge in the causal model, 
assuming a higher likelihood of local causes rather than long 
propagation paths in the system. 

Independent back tracing of multiple faults will lead to 
individual fault-trees. To reach a meaningful diagnosis nodes 
representing the same variable cannot be considered 
independently per fault-tree or causal path, as they refer to the 
same physical entity. 

Two ways of combining the generated fault-trees are 
considered here: (B1) combining all recurring nodes or (B2) 
maintaining split trees unless the causal paths overlap. The 
former approach requires re-examining nodes previously 
detected to form cycles as the combination of independent fault-
trees can recreate those cycles. The latter approach avoids these 
cycles by only combining identical causal paths. In this way, we 
ensure to have single nodes for root causes but we may have 
multiple copies of intermediate nodes. 

The nodes of the mapped BBN each represent a specific 
deviation with two states – “fault occurred” or “ok”. To 
incorporate the uncertainty introduced by the propagation 
Noisy-OR gates define the conditional probability of “fault 
occurred” if a given parent node also has a “fault occurred” state 
but with the respective uncertainty depending on the length of 
the causal path between parent and intermediate node.  

C. Connecting root causes  

While the complete BBN representation of the causal model 
with trinary nodes correctly interprets states that are mutually 
exclusive, a BBN generated by combining fault-trees can 
contain nodes referring to the same variable in mutually 
exclusive states without representing their relation. As outlined 
by Lampis [21] a common n-ary parent node incorporating all 
fault states and “normal” can link mutually exclusive root nodes. 

Extending method B with the notion introduced in A, a 
trinary node with the states “high”, “normal”, and “low” is added 
as parent to the root nodes in the BBN created from independent 
fault-trees. Since the intermediate nodes are not coherently 
linked in the same manner, the uncertainty according to the 
propagation length is maintained for the intermediate nodes. 
Table 2 represents the CPT for a binary root cause depending on 
the trinary parent node.  

TABLE 2 CPT FOR BINARY ROOT CAUSE BASED ON TRINARY PARENT NODE 

 trinary 
high high normal low 

fault occurred 1 1 0 
normal 0 1 1 

 trinary 
low 

high normal low 

fault occurred 0 1 1 
normal 1 1 0 

TABLE 1 CPT FOR INTERMEDIATED NODE vi BASED ON PARENT vj 

 sji = 1 
vi vj high normal low 

high 1 0 0 
normal 0 1 0 
low 0 0 1 

 sji =-1 
vi vj high normal low 

high 0 0 1 
normal 0 1 0 
low 1 0 0 

TABLE 3 ROOT CAUSE PROBABILITIES (HIGH / LOW IN %)  
FOR TEP SCENARIO  HIGH CONDENSER COOLANT TEMPERATURE Ti,cc 

Root 
cause 

(A) 
Trinary 

(B1) 
Combined 

(B2) 
Split 

(C1) 
Combined  
& Trinary

Ti,cc 
56.71 / 
14.08 

 53.37 / 
 50.04 

54.80 / 
50.07 

 35.55 / 
 31.12 

MV11 
14.08 / 
56.71 

 ---  ---  --- 

MV4 
17.96 / 
46.11 

 50.04 / 
 56.18 

50.16 / 
64.09 

 29.24 / 
 37.43 

MV5 
37.88 / 
26.82 

 50.05 / 
 50.13 

51.24 / 
50.33 

 33.30 / 
 33.37 

Efeed 
36.63 / 
29.81 

 50.07 
 50.04 

50.78 / 
50.22 

 33.34 / 
 33.32 

Ti,rc 
29.81 / 
36.63 

 50.04 / 
 50.06 

50.22 / 
50.78 

 33.33 / 
 33.34 

MV1/
MV2/
MV3 

34.62 / 
31.87 

 50.07 / 
 50.04 

50.70 / 
50.11 

 33.35 / 
 33.32 
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V.  DIAGNOSIS RESULTS 

Table 3 shows the probabilities inferred by the respective 
BBNs with the CPTs described before and no prior knowledge 
about the marginal distributions (“stupid prior”). Hugin 
Researcher [22] was used to design and diagnose the BBNs. In 
case of the trinary representations the marginal probability for 
“high” and “low” is 33.33 %.In the binary cases either of the 
independent root nodes for “high” and “low” can show “fault 
occurred” with 50%. Accordingly, the deviation from 33.33 % 
or 50 %, respectively, after Bayesian inference, indicates the 
likelihood of the fault being the root cause. 

From Table 3 we observe that all BBNs put the actual root 
cause as first or second highest probability. However, the 
significant shortcoming of the fault-tree based BBNs (B and C) 
is reflected in the consistently higher probability of MV4_low as 
root cause, since it could immediately cause F5 low. However, 
the missing link between the mutually exclusive states prevents 
the interpretation of this contribution. On the other hand, the 
presented trinary BBN does not contain the same notion of 
uncertainty for longer propagations represented by the Noisy-
OR gates, since the noisy combination of more than binary states 
is not trivial, and at the same time some causalities had to be 
removed from the model to create a valid trinary BBN. 

The diagnosis achieved by the two approaches of binary 
BBN yield the same ranking of causes. The introduction of 
trinary root causes for the binary model does not affect the 
ranking of the root causes, but allows a clearer distinction 
between the fault states of a single variable. It is noted that the 
required post-processing of the split paths can be significantly 
smaller, if the overlap of consistent causal paths is already 
considered during the back tracing in the causal model. 

VI. CONCLUSION 

In summary, the presented investigation reveals a great 
potential in using BBN to interpret the root cause analysis based 
on causal models and shortlist the most relevant root causes to 
support operators. However, generating a general diagnostic 
BBN from a causal model is limited by the acyclic nature of 
BBNs. On the other hand, back tracing multiple observations 
and combining their fault-trees into a BBN disregards causal 
connections that could improve the diagnostic power of the 
BBN. 

The combination of the comprehensive trinary and simple 
binary representation of quantitative fault states improves the 
diagnosis of the binary network but cannot fully capture 
causality of a given situation. The ongoing work focuses on 
identifying an efficient method to map a given causal model into 
a BBN maintaining as much as possible of the causal structure 
in a given situation while leveraging the possibilities of a trinary 
representation of process variables.  
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