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Abstract—Non-deterministic generation from renewable
sources have resulted in the incorporation energy storage
systems in modern grids. Management of energy between
different storage elements need to done optimally to ensure
efficient operation of the grid. The intraday energy management
problem is addressed in this work through an online model
predictive control using multi objective optimisation. This work
analyses the energy interaction among different storages when
penalty weights in a multi objective optimisation problem
is varied, in order to find an optimal scenario in terms of
weight distribution. Different scenarios are identified and
performance indices are proposed to achieve the same. The
work also addresses implicitly the objective of minimising rate
of degradation batteries. Simulation results are presented to aid
in the analysis.

Index Terms—model predictive control, energy management,
energy storages system, degradation rate

I. INTRODUCTION

The increased penetration of renewable source has re-
sulted in a shift from dispatchable to non-dispatchable, non-
deterministic generation. This comes with associated problems
of ensuring grid stability, power quality and supply demand
balance in the grid. These issues are alleviated through the
incorporation of energy storage system (ESS) which perform
multitude of functions like grid support, power quality im-
provement, ensuring power balance, demand side management
to name a few [1], [2]

The control of grid/microgrid is carried out in a hierarchical
fashion differentiated mainly by sampling time period of
each level and dynamics each level addresses. This is shown
in Fig.1. This hierarchical control can be divided into two
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general parts namely: short term power balancing and long
term energy management [3]. The short term power balancing
side of the control is mainly tasked with maintaining the
system stability, voltage and frequency regulation (AC grids)
under disturbances arising from unforeseen load, generation
variations. As the name suggests this level ensures power
balance in the grid at every instance thereby ensuring stability.
The controller in this level address dynamics in the range of
seconds to milliseconds which require use of fast action and
robust controllers. In the long term energy management level
the controller objective is to manage the energy distribution
among the different elements in grid such that some operating
parameter is optimised. This level also use historical genera-
tion and load data to predict future scenarios which aids in the
effective decision making of energy management. This level
is characterised by longer sampling time and slower controller
dynamics [4], [5]. The hierarchical structure of control is also
characterised by flow of system information and control action
in the directions shown in Fig.1 [3].

The ESS used in grid connected applications are classified
into two categories depending on the physical attributes of
the ESS. They are categorised as high power and high energy
density ESS. The high power density ESS include supercapac-
itors (SC), flywheels, etc. which are capable of handling fast
power dynamics (sudden power changes). This enables them to
be used in applications like ensuring grid power balance, grid
power quality control, voltage regulation etc. Therefore these
type of ESS are mostly employed in and controlled by the
short term power balance level. These ESS cannot store large
amount of energy. The second group of ESS are characterised
by their high energy density. They are capable of storing large
amounts of energy but cannot cater to sudden power variations.
As such they find increased application in the long term energy
management level which also controls them. These include
batteries, fuel cell (FC)- electrolyser system, pumped hydro
storages to name a few [1], [6], [7]. In microgrid application
employing heterogeneous ESS will ensure efficient operation
and optimal sizing of the storage systems [8].

The energy management in heterogeneous ESS based sys-
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Fig. 1. Control architecture for renewable energy based microgrid employing
ESS

tem has been addressed using heuristic rule based or fuzzy
inference based techniques [9]–[11], offline optimal control
[12]–[14] and online model predictive control (MPC) based
techniques [15]–[17]. The offline control mainly deals with the
day ahead decision making for optimal resource allocation as
shown in Fig.1. The MPC based techniques, on the other hand,
deals with the intraday energy management problem based
on real time system states and are implemented as an online
control .

In this paper the intraday control using MPC techniques
for energy management among the ESS is analysed. The
offline day ahead scheduling stage is not considered in this
problem. The objective is to study the interaction among
different ESS in a heterogeneous storage system when weights
of the multi objective optimisation problem is varied. The
cycling of energy, overcharging and deep discharge in different
ESS will be analysed under various scenarios to identify near
optimal weight distribution. As far as the authors knowledge
goes such an analysis was not carried out before as most of
the previous work focussed on proposing improved control
techniques [9]–[17]. This will help to identify a general
consensus on how the weights should be distributed when the
objectives in a multi-objective problem tend to complimentary.
In this case the objectives considered are degradation rate of
ESS and efficiency of operation. Apart from this the authors
also propose an indirect method to minimise the degradation
rates of batteries based on the ideas of non linear degradation
models presented in [18]–[20]. The proposal aims to keep
the optimisation problem quadratic which enables easiness in
solving. The proposed energy management will be for a DC
microgrid.

The rest of the paper is organised as follows. In section
II the considered system and its models for the intraday
energy management using MPC is presented. In section III the
optimisation problem is formalised. In section IV the results of
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Fig. 2. Schematic of the proposed microgrid under consideration

MPC control is presented in simulation along with a study of
different cases where the weights of objective functions (from
MPC) are varied. Some performance indices are proposed for
each case to enable an easy comparison. Results of low level
control performance through co-simulation is also presented.
Finally is section V the work is concluded

II. SYSTEM DESCRIPTION

The DC microgrid under consideration for the unit com-
mitment problem is shown in Fig.2. It represents an aggre-
gated system with generation from PV panels, energy storage
systems (ESS) in the form of batteries, fuelcell-electrolyser
system, SC which are all catering to the loads. In the proposed
work, autonomous operation of the microgrid under islanded
mode is considered. It assumed that the energy management
system has access to generation, load profiles resulting in a
deterministic system. In order to develop the intraday energy
management system the first step will to present the models
of ESS and the grid.

A. ESS model

The ESS are modelled using discrete-time state equations
showing the evolution of energy stored in them during intraday
operation. In the case of batteries and supercapacitors (SC)
they are represented by hybrid equations showing state of
charge (SOC) evolution given by

SOCα(i+ 1) =

{
SOCα(i)− Ts·ηα·

Cα
· pα(i) if pα ≤ 0

SOCα(i)− Ts·
ηα·Cα · pα(i) if pα > 0

∀α = {bat, sc}
(1)

where SOCα(i) represents the SOC of ESS considered at ith
instant, Ts is the sample period, pα(i) is the power set point,
Cα is the capacity of respective ESS and ηα is the efficiency
of power converter interfacing the respective ESS to grid.



In the case of FC, energy storage is in the form of hydrogen
and hence the model is presented by the state of hydrogen
(SOH) evolution given by

SOHfc(i+ 1) =

SOHfc(i)− Ts·ηfc·
Cfc

· pfc(i) if pfc ≤ 0

SOHfc(i)− Ts·
ηfc·Cfc · pfc(i) if pfc > 0

(2)

where pfc, Cfc are the power set point and the storage capacity
of fuel cell respectively. The above model encompasses a
FC- electrolyser system which uses electrolyser for generating
hydrogen from surplus energy and FC to supply deficient
energy. The converter dynamics are not considered in the ESS
model as they are in the range of milliseconds

B. Grid model

In intraday problem considered here the grid is represented
as a static system given in discrete-time by the power balance
equation

psc(i) + pbat(i) + pFC(i) + pren(i) + pload(i) = 0 (3)

where pbat(i), psc(i), pFC(i) are the same the ESS powers
while pren(i), pload(i) are the power generated by the renew-
able sources and load demand respectively at any sampling
instant.

III. ENERGY MANAGEMENT PROBLEM

As mentioned before the objective of intraday energy man-
agement problem is the distribution of imbalance power in
the grid among ESS such that degradation of ESS and grid
operation efficiency is optimised. In this context a receding
horizon model predictive control (MPC) was adopted for
the problem. The MPC controller samples the system and
solves an optimisation problem using the system models
defined above for a future horizon using the sampled states
as initial conditions. The result of this optimisation problem
will sequence of set points for the ESS. Thereafter, the first
set point from the sequence is applied to the system and this
process is repeated [21] .

In order, to formulate the MPC optimisation problem cost
functions and system operating constraints need to be defined
first. These are defined such that they always form a QP
(quadratic programming) problem such that they can easily
be solved online and solution is guaranteed. The formulations
aims at proposing problems where the solution time is small
enough that they can integrated into an online controller.

A. Cost function

The multi objective cost function considered for the problem
is given by

J(i) =

N−1∑
i=1

(Jbat(i) + Jfc(i) + Jsc(i)) (4)

where Jbat, Jfc, Jsc are the costs associated with the battery,
FC and SC at the ith sampling instant which will be discussed

in details in subsequent sections and N is the prediction
horizon window length. As mentioned in the introduction each
Jbat, Jfc will have one part dedicated to optimising operating
efficiency and another for minimising rate of degradation.

1) Battery cost function: The battery cost Jbat is given by

Jbat =

N−1∑
i=1

cbat·
pbat(i)

pmaxbat

2

+csoc·SOCbat(i)2+cdod·DODbat(i)
2

(5)
where cbat, csoc, cdod are the respective weights of each term
in Jbat, while SOCbat, DODbat, p

max
bat are the state of charge,

depth of discharge (DOD) and maximum power of battery
respectively. The DOD of any ESS is defined as (DODess =
1 − SOCess). The different terms are chosen so as to im-
prove efficiency of battery operation and minimise the rate of
degradation. The cycle efficiencies of batteries are always less
than 100 percent and depend on the type of batteries. Li-ion
battery have a cycle efficiency greater than 90 percent [6]. The
penalising of normalised battery power in (5) aims to improve
the efficiency of operation

In the case of degradation batteries are subjected to calender
life and electrochemical ageing. The latter is attributed mainly
to operating principle of the battery. Degradation in form
of capacity fade arises from changes in electrode-electrolyte
interface, change in active material and composite electrode.
The main factors responsible are operating conditions, high
cycling rates, high SOC and high C-rate discharges [22]–[24].
The battery cost function in (5) tries to minimise degradation
by penalising high state of charge and deep discharges (DOD).
It also tries to address the issues related to battery cycle. In the
autonomous microgrid operation its impossible to eliminate
cycling of battery. Nevertheless the cycle magnitude can be
minimised. The dependency of degradation to cycle magni-
tudes have been quantified in [18]–[20] but with non linear
formulations. This makes an explicit implementation of these
function in optimisation problem difficult to solve and ensure
an optimal solution. In this work this issue is circumvented
by penalising both high SOC and DOD thereby limiting cycle
magnitudes. this helps to retain the quadratic formulation of
the cost function which can be easily solved using commercial
solvers.

2) Fuel cell cost function: The fuel cell cost function Jfc
is given by

Jfc =

N−1∑
i=1

cfc ·
pfc(i)

pmaxbfc

2

+ crate · (pfc(i+ 1)− pfc(i))2 (6)

where cfc, crate are the respective weights of each term in
Jfc, pmaxfc is the maximum power that can be delivered by
FC. The objective as with the case of battery is to optimise
the operational efficiency and minimise degradation. The pe-
nalising of normalised battery power aids in improving the
operational efficiency. In the case of fuel cell a prominent
cause for degradation is the fuel starvation induced due to
sudden changes in load demanded from the fuel cell. The effect
of fuel starvation on the physical properties of the fuel cell has



been extensively studied in [25]–[28]. A such penalising the
sudden changes in FC set points in (7) can help reduce the
rate of degradation.

3) Supercapacitor cost function: The cost function for the
supercapacitor is given by

Jsc =

N−1∑
i=1

csc(SOCsc(i)− SOCnom)2 (7)

where csc is the associated weight on the SC cost function.
The role of SC is to act as buffer storage for sudden power
changes to maintain the grid voltage within prescribed limits.
The voltage regulation control handles the power set points
for SC. The SC is included in the MPC to ensure that it has
sufficient ability to absorb or give surplus and deficient powers.
To this extent the Jsc penalises the SC SOC deviation from a
pre defined nominal value (SOCnom). There is no penalising
for the SC power as they have high cycle life and efficiency
arising mainly from its operational principle [29].

B. Constraints

The optimisation problem should address the constraints
arising from operating, physical limits and electrical charac-
teristics of associated power interfaces used. The constraints
on physical limit of ESS is introduced as the bounds on SOC
and SOH. These are represented as

SOClα ≤ SOCα(i) ≤ SOCuα|α={bat,sc}
SOH l

fc ≤ SOHfc(i) ≤ SOHu
fc

(8)

where SOClα is the lower bound and SOCuα is the up-
per bound on SOC of battery or supercapacitor, while
SOH l

fc, SOH
u
fc are the lower and upper bounds on the

hydrogen storage capabilities for FC.
It should be noted that introducing hard constraints as in (8)

can lead to controller failing due to system being driven out
of feasible region by disturbance or dynamics which are not
modelled from microgrid operation. Therefore it is essential
to define (8) using soft constraints which allows the deviation
from bounds but with heavy penalisation. In the feasible region
there is no penalty. This is achieved through the use of slack
variables [30] resulting in (8) reformulated as

SOClα − εα ≤ SOCα(i) ≤ SOCuα + εα|α={bat,sc}
SOH l

fc − εfc ≤ SOHfc(i) ≤ SOHu
fc + εfc

(9)

Constraints are also imposed on the power that can be
delivered by the ESS. These are decided based on the electrical
operation limits of the ESS and characteristics like current
rating, efficiency of the associated power electronic interface.
Imposing bounds on power delivered will also ensure that high
C-rate discharges do not occur . These are given by

pminα ≤ pbat(i) ≤ pmaxα |α={bat,sc,fc} (10)

where pminα is the minimum and pmaxα is the maximum power
that can be supplied by the battery, supercapacitor and FC.

C. MLD constraints

The ESS models represented in (1),(2) represents a hybrid
model. In order to incorporate it in the optimisation problem
they are converted into a mixed logical dynamic (MLD)
system using boolean and auxiliary variable. The methodology
outlined in [31] is used for the MLD formulation of the ESS
models and is given by following set of equations

SOCα(i+ 1) = SOCb(i) +
Ts·
Cb
· zα(i) · (ηα −

1

ηα
)

−Ts · ηα
Cb

· pα(i)

−pminα · δα(i) ≤ pα(i)− pminα

−pmaxα · δα(i) ≤ −pα(i)
zα(i) ≤ pmaxα · δα(i)
zα(i) ≥ pminα · δα(i)
zα(i) ≤ pα(i) + pmaxα · (1− δα(i))
zα(i) ≥ pα(i) + pminα · (1− δα(i))
∀α = {bat, sc}

(11)

where δ(i) ∈ {0, 1} such that [δ(i) = 1] ↔ [pα ≥ 0] and
zα(i) = δ(i) · pα are the boolean and auxiliary variables
respectively. The MLD formulation for the FC is same as
(11) in terms of SOH. The above are linear constraints on
mixed integer variable and can be solved using commercially
available solvers.

Therefore the optimisation problem for the MPC can be
summed up as follows

J = min

N−1∑
i=1

(Jbat(i) + Jfc(i) + Jsc(i) + ρ · Jslack) (12)

subject to

ESS model (1), (2)
Grid model (3)

Constraints (9), (10), (11)
(13)

where ρ is penalty for slack variables of soft constraint.

IV. RESULTS

The system parameters used in the optimisation problem for
energy management is shown Table.I. The proposed optimi-
sation problem was solved using parser YALMIP and solver
MOSEK (version 9.5) in MATLAB environment. It should
also be noted that the simulations have been performed under
the assumption that generation, load demand is deterministic
and no uncertainty exists.

A logical solution to ensure efficient operation by energy
management problem will be to provide a higher value for
cfc on FC and lower value for cbat as the cycling efficiency
of the FC is lower than that of the battery. A straightforward
choice will be using the inverse of cycle efficiency of FC and
battery as the weights. A 60 and 90 percent cycle efficiency
is considered for the FC and battery respectively [6]. This
condition will be referred to as Case 1 and the values of



ht
TABLE I

SYSTEM PARAMETERS AND THEIR VALUES USED

Parameter value

Csc 0.5 kWh
Cbat 9 kwh
CFC 6 kWh

Sampling time 30 min
MPC horizon (N) 10

pmin
bat , pmax

bat 2 kW
pmin
sc , pmax

sc 2 kW
pmax
fc , pmin

fc 2kW
SOCl

bat, SOCl
sc, SOHl

fc 0.2
SOCu

bat, SOCu
sc, SOHu

fc 0.95
|pbat∆|, |pFC∆| 1 kW

SOCnom 0.5
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Fig. 3. Case 1:The results of energy management controller for (a) Imbalance
power catered by ESS, (b) SOC, SOH evolution of ESS, (c) power supplied
by the ESS

different penalty weights used in the optimisation problem is
outlined in Table.II. The penalty weight csc is kept at 2.5 to
ensure that SOCsc is forced to remain around the SOCnom
which set at 0.5 to ensure that sufficient reserve exists in SC
to absorb or provide imbalance power

The results from the energy management problem is shown
in Fig.3. The Fig.3(a) shows the imbalance power (pgen −
pload) in the grid catered by ESS. The Fig.3(b), (c) are the SOC
evolution and power supplied by the different ESS. In order
to quantify the performance of energy management controller
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Fig. 4. Case 4: The results of energy management controller for (a) SOC,
SOH evolution of ESS, (b) power supplied by the ESS

the following indices are proposed

cycα =

N−1∑
i=2

∣∣SOCα(i+ 1)− SOCα(i)
∣∣

2 · (SOCαu − SOCαl)
EHα = cycα · Cα
∀α = bat, fc

(14)

where cycα indicates the number of cycles undergone by
the ESS in one day with a value of 1 corresponding to
one charge-discharge cycle given by SOC variation from
SOCαl → SOCαu → SOCαl. This index is of interest
as it is indicative of the degradation especially in the case of
battery as higher cycling increases degradation rate [20]. The
second index under consideration is EHα which is the energy
handled (stored and discharged) by the ESS. In an ESS with
1 kWh storage capacity in one charge discharge cycle EHα

is 1. This index is indicative of the efficiency of operation
of the microgrid. If energy handled by ESS having low cycle
efficiency like FC is high, provided battery is available for
storage, it can lead to a less efficient operation.

The indices values for the Case 1 is provided in Table.II.
It can be seen that energy handled by the ESS for this case
is more or less equal and the cycle number for the battery
is also low (0.3644). As can be seen from Fig.3b for the
proposed weights SOCsc is maintained close to 0.5 allowing
it to cater unforeseen surplus or deficiency in demand. This
looks like an acceptable operation condition nevertheless it
needs to be explored whether at different penalty weight values
an improved performance can be achieved.

In this context simulation were carried out for different
cases emphasising different weights and important scenarios
along with performance indices are summarised in Table.II.



TABLE II
SIMULATION RESULTS FOR DIFFERENT CASES AND THEIR PERFORMANCE INDICES

Case Parameters Results
cbat csoc cdod cfc crate csc cycbat EHbat cycfc EHfc

1 1.1 1 1 1.67 1 2.5 0.3644 3.2794 0.5495 3.2971
2 1.1 1 1 10 1 2.5 0.6319 5.6872 0.1147 0.68835
3 10 1 1 1.667 1 2.5 0.1328 1.195 0.7839 4.7034
4 10 1 1 10 1 2.5 0.3566 3.2098 0.3712 2.2273
5 1.1 10 10 10 1 2.5 0.4358 3.922 0.4027 2.416
6 1.1 10 10 1.667 1 2.5 0.2679 2.4108 0.6810 3.845
7 1.1 1 1 1.667 10 2.5 0.4259 3.8340 0.4549 2.7291

It should be noted in all the cases penalty weights for the
slack variables are kept at 500. The worst performers have
been Case 2 and 3. This is mainly due to excessive battery
cycling with minimum FC energy handling in case 2 leading
to increased battery degradation and vice-versa in case 3
resulting in inefficient performance as seen from the indices
values. Therefore excessive emphasis of only cbat or cfc is
not advisable. Another ad performer is case 6 where csoc, cdod
are emphasised which leads to higher energy handling of FC.
Nevertheless in case 6 it still does not lead to very high values
of EHfc as in case 3. Therefore it can be concluded that
emphasising cbat has a more profound impact than csoc, cdod.

Case 4 appears to provide a good performance with low
cycbat and low cfc nonetheless it can be misleading. The
low indices value means an increased utilisation of the SC
as can be seen from Fig.4. It can be noticed from Fig.4 that
between sampling instance 15 and 25 the SC tends to be
highly charged or deep discharged which reduces its ability to
cater to unforeseen load variation thereby affecting the voltage
regulation performance. Therefore providing high weights on
both cbat and cfc is best avoided to minimise the increased
utilisation SC.

Finally case 5 and 7 provide good performance with both
maintaining low cycbat while keeping the EHfc low and lesser
than EHbat which is indicative of more efficient performance
in comparison to case 1 (as EHbatand EHfc are more or
less equal). The case 5 and 7 performance are shown in Fig.5
and Fig.6 respectively. Case 5 compared to 7 provides some
instances of deep discharge in SC, as can be seen at 18th
sample, which can make it less desirable from the perspective
of SC utilisation. In comparison case 7 with an increased
emphasis on the rate of change of FC set point ensures better
protection for the FC.

In order to summarise case 1 and 7 provide good perfor-
mance indices while keeping SC utilisation also within limits.
The selection criteria depends on the priority placed on the grid
operation whether to have a more efficient or less degrading
one. These tend to be complementary and as such suitable
selection needs to be taken based on operator requirements.

The Fg.7 shows MPC based energy management scheme
integrated with the low level control for voltage regulation
in the grid. The low level control corresponds to the short
term power balancing scheme discussed in the introduction.
As can be seen from Fig.7 the generated set points from

0 5 10 15 20 25 30 35 40 45
(a)

0.2

0.4

0.6

0.8

1

S
O

C

SOC SC
SOC bat
SOH FC

0 5 10 15 20 25 30 35 40 45
(b)

Samples (Ts=30min)

-1

-0.5

0

0.5

P
ow

er
 (

kW
)

Power SC
Power Bat
Power Fc

Fig. 5. Case 5: The results of energy management controller for (a) SOC,
SOH evolution of ESS, (b) power supplied by the ESS

0 5 10 15 20 25 30 35 40 45
(a)

0.2

0.4

0.6

0.8

1

S
O

C

SOC SC
SOC bat
SOH FC

0 5 10 15 20 25 30 35 40 45
(b)

Samples (Ts=30min)

-1.5

-1

-0.5

0

0.5

P
ow

er
 (

kW
)

Power SC
Power Bat
Power Fc

Fig. 6. Case 7: The results of energy management controller for (a) SOC,
SOH evolution of ESS, (b) power supplied by the ESS



-
Vbusr

Vbus

Vbus

Voltage regulation control 

cbus

1

+

Cfb

Fig. 7. The low level control schematic integrated with MPC based intraday
energy management scheme

0 150 300 450 600 750 900 1050 1200 1350
Time(min)

-2

-1.5

-1

-0.5

0

0.5

1

V
ol

ta
ge

 d
ev

ia
tio

n

 

-0.1

-0.05

0

0.05

Time (min)

Fig. 8. The voltage regulation performance by low level controller aided by
energy management algorithm with dynamic response in the inset

MPC (Pfc, Pbat, Psc) is applied to the current controllers of
the FC, battery and SC power converters which will ensure
that the required current is injected to the grid to ensure
stability and voltage regulation. The SC converter is also
provided with a cascaded control scheme with an outer voltage
control loop for regulation. This takes care of maintaining
the grid voltage within prescribed limits under unforeseen
disturbances. The MPC set point for SC will be augmented
with the voltage control loop output. The Fig.8 shows voltage
regulation performance of low level controllers when working
in tandem with MPC. The results were obtained using co-
simulation by simultaneously running a MATLAB code along
with a Simulink model where the MPC and low level control
schemes were implemented respectively. The MATLAB code
sampled the data from Simulink at every sampling instant
and used it for solving the optimisation problem. The case 7
parameters are used in the optimisation. The voltage regulation
transient response is shown in the inset of Fig.8 and is
dominated by the SC control loop dynamics. The unmodelled
delays of the low level do not have any relevant impact on the
energy management algorithm performance and its ability to
find an optimal solution.

V. CONCLUSION

An intraday energy management scheme has been proposed
in this work which aims at minimising degradation rate and
optimise operating efficiency of microgrid. In this context the
work proposed cost function which are quadratic in nature
that can heuristically reduce the degradation rate along with
some performance indices which allowed to quantify the grid
performance. The interaction of ESS based on weighting
factors were studied through different cases. The case enabled
to develop a general consensus regarding the selection of
penalty weights in optimisation problem.

A major observation from this work is that objectives in
the optimisation problem and resulting ESS interaction tend
to be complementary. This follows that while degradation rate
is reduced the operational efficiency tend to low and vice
versa, also while battery, FC utilisation is reduced the SC
utilisation increases which can reduces the reserve capacity
of the grid to cater unforeseen disturbance variation. This
allows use of multi objective optimisation techniques including
Pareto optimisation for improved decision making in future
work. Another aspect that future work can focus on is per-
formance of the MPC energy management controller under a
non-deterministic generation. In this context investigation of
stochastic MPC techniques can be carried out. Apart from this
the low level controller interaction with MPC controller under
stochastic generation, load profiles can be carried out as well.
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