

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/181291

García-Gordillo, M.; Valls, J.; Sáez Barona, S. (2019). Heterogeneous Runtime Monitoring
for Real-Time Systems with art2kitekt. IEEE. 266-273.
https://doi.org/10.1109/ETFA.2019.8869537

https://doi.org/10.1109/ETFA.2019.8869537

IEEE

Heterogeneous Runtime Monitoring for Real-Time
Systems with art2kitekt

1st Miguel Garcı́a-Gordillo
Instituto Tecnológico de Informática
Universitat Politècnica de València

Valencia, Spain
miguelgarcia@iti.es

2nd Joan J. Valls
Instituto Tecnológico de Informática
Universitat Politècnica de València

Valencia, Spain
jvalls@iti.es

3rd Sergio Sáez
Instituto Tecnológico de Informática
Universitat Politècnica de València

Valencia, Spain
ssaez@iti.es

Abstract—Monitoring the execution of real-time systems has
many advantages, it is not only useful to understand the be-
haviour of an application but also to find unfulfilled timing
constraints in an implementation. However, real-time operating
systems usually do not include the tracing tools to observe
the behaviour during the execution. This paper presents the
art2kitekt runtime monitoring tool, used to measure and to
visualise the temporal characteristics of a real-time application.
To demonstrate the functionality of the tool, the behaviour
of an RTEMS-based application running over a Xilinx Zynq
UltraScale+ is observed.

Index Terms—monitoring, tracing, real-time, RTEMS

I. INTRODUCTION

A real-time system is characterised not only by the
correctness in the desired functional behaviour, but also by
guarantying precise timing in its response times. In case of
hard real-time, due to its safety-critical nature, the unavail-
ability or malfunctioning of the system, such as a delay in a
response, can produce detrimental effects to its environment
and to their users.

The development process must ensure both the expected
behaviour and the temporal feasibility of the system. Thread
priorities, temporal constraints, and the precedence relation-
ship of the activities are necessary to define a proper operation
of the system.

In early phases of the development, schedulability analysis
algorithms, combined with static code analysis techniques, are
used to define and validate the temporal configuration of the
system, in order to comply with the real-time requirements.
The analytical processes are typically very complex and need
to ensure the feasibility of the system under all scenarios.
Hence, they usually provide very pessimistic results that are
almost never met in a real execution. The observation of the
system can help to improve the results of the schedulability
analysis, mixing static analysis with the observed timing
behaviour, and also to ease a better understanding of the
application.

On the other hand, it is necessary to evaluate the system
implementation and compare it with the expected behaviour.
Fixing the errors due to an incorrect implementation or finding
events that were not taken into account in the designed model
are made easier with the utilisation of a monitoring approach.

With that purpose in mind, we are continuously working in
the improvement of the art2kitekt (a2k) tool-suite, a collection
of tools integrated in a common web-based framework. The
aim of these tools is to help the engineers in both the design
and the temporal verification of real-time systems using a
model-based approach.

In this paper we propose a runtime monitoring tool that ex-
tends art2kitekt. This new tool provides the observed runtime
statistics, which can be useful to understand the real behaviour
of the system and to improve the design of the system under
development. The tool also may be used to find unfulfilled
timing constraints in difficult cases that cannot be discovered
in the analysis.

In order to demonstrate the new functionality, we have
developed a solution to monitor an embedded application
running in the real-time operating system RTEMS, that we
have extended with a trace recorder module. Also, we have
selected the Xilinx Zynq UltraScale+ as the hardware platform.
It is an heterogeneous processing system comprised of a
quad-core Cortex-A53 and of a dual-core Cortex-R5 real-time
processing unit, allowing us to execute both the application
under test and the trace analyser in different processors but in
the same system-on-chip (SoC), reducing the communication
latency between them.

The paper outline is organised as follows: Section 2 enu-
merates the related research work. Section 3 presents the
system model employed by the art2kitekt tool suite. Section 4
describes the monitoring tool proposed to be integrated into the
tool suite. Section 5 defines the implementation of the runtime
monitoring tool in a Zynq Ultrascale+ platform and details the
specific solutions reached for this architecture. Section 6 shows
the results of a case study using art2kitekt. Finally, Section 7
explains the concluding remarks.

II. RELATED WORK

The idea of monitoring the behaviour of a system has been
studied for years. Beginning with a set of isolated and simple
tests [1] which have been used for measuring the efficiency of
a real-time operating system (RTOS), e.g. obtaining both the
time consumed by task switching and the speed of interrupt
handling. As well, a general framework [2] has been defined
for extracting runtime traces from a generic real-time system

and to analyse them to obtain its temporal properties. The
different state machine models used to analyse the traces and
to compute the aforementioned properties are also defined.

In the embedded domain, monitoring has been mainly
applied to Linux-based system, such as the trace recorder for
Linux called Hierarchical Scheduling Framework (HSF) [3],
a Linux kernel module implemented as a plugin of their real-
time scheduler framework (RESCH), and it has the capability
of recording events only of the tasks scheduled by RESCH.

Nowadays, the Linux Trace Toolkit next generation (LTTng)
[4] has gained popularity. It is a modular tool for tracing
that allows integrated analysis of both kernel space and user
space in Linux-based systems. It has been evaluated in several
studies, such as the analysis framework [5] to extract metrics
from real-time application on Linux Systems, using the LTTng
tracer. Also, it has been consider in a multi-level trace-oriented
analysis approach based on LTTng [6], with the aim of finding
the causes of latency problems in software systems.

Moreover, different solutions have been developed in the
area of the real-time systems. Such as GRASP [7], a tool-
set with the capabilities of tracing, visualising and measuring
the behaviour of real-time systems, and implemented in a
platform with the µC/OS-II operating system. METrICS is
also presented [8] as a measurement environment for multi-
core time-critical systems, running on top of the PikeOS
RTOS. In another study, embedded real-time systems trace
recording have been developed and evaluated [9], contributing
with several technical solutions and trade-off considerations.

In particular, at the time of writing, a native RTEMS tracing
framework is under development and apparently it will be
included in the 5th version of the operating system [10]. The
advantage that this tool will offer is to take existing code in
compiled format and instrument it in order to log different
events and records in runtime, without rebuilding the code
from the source and without annotating the source with trace
code.

The above studies are designed using software approaches,
usually instrumenting both the application and the kernel, with
the disadvantage that this kind of methodology increases the
execution time of the observed system, in some way altering
its behaviour. Trying to avoid this problem, solutions like an
external non-intrusive measurement tool based on a Field-
Programmable Gate Array (FPGA) [11] can be used for the
evaluation of both context switching and external interrupt
latency in RTEMS. This type of solutions usually increases
the cost of the development platform and reduces the quantity
of statistics obtained in each execution.

Other types of studies are focused on the idea of analysing
the captured traces and obtain results thereof. Such as the tool
CoreTAna [12], that derives an AUTOSAR compliant model
of a real-time system from a dynamic analysis of its trace
recordings, deducing an abstraction of the systems structure
and of the timing behaviour. Or such as a tool [13] focused on
detecting problems related to scheduling and priorities, using
the traces provided by LTTng on a Linux Preempt-RT Kernel.

III. SYSTEM MODEL

As mentioned above, the monitoring tool presented in this
writing is an extension of a2k, a web-based framework focused
on the modelling and on the analysis of real-time systems. The
first step in the definition of an a2k project is to create the
different abstraction levels of the system, represented by the
available models.

First of all, the platform model defines the hardware archi-
tecture model. A flexible definition of the different platforms
types can be made, such as processors or memories. They can
be later instantiated and replicated in the design, connecting
their instances as necessary to define the entire platform. An
important concept in this type of model is the executor, every
platform instance with the capability of executing software,
either a processor or a hardware accelerator.

In a second step, the application model allows to describe
the behaviour of the system, defining the flows, functional
groups of activities with usually a data-flow relationship. A
flow is defined by:

- Period: The time interval between two consecutive flow
request times, i.e. the instant which the flow becomes
ready to be executed

- Jitter: The difference between the minimum and the
maximum start time of a flow, relative to its request time

A flow also contains a list of activities and the precedence
relationship between them, i.e. the sequence in which they
must be executed and the possible simultaneities.

An activity is defined by:
- Offset: The minimum amount of time, relative to the flow

request time, which an activity must wait before starting
- Deadline: The maximum time, relative to the flow request

time, at which an activity should have completed its
execution

Once the platform and the application model have been
defined, both are connected using the deployment model and
the execution model, determining the following constraints:

- Processor Affinity: The executor instance within which
activity can be executed

- Scheduler Assignment: The type of scheduler associated
to an executor and the scheduling constraints for the
activities

Also, the engineer must define the estimated Worst Case
Execution Time (WCET) and the estimated Best Case Exe-
cution Time (BCET) for every activity in each of its allowed
executors.

The observation of the real behaviour of the system, using
the proposed runtime monitoring, is useful to verify if the
implementation does not comply with the defined constraints,
e.g. the response time of an activity exceeds its deadline.
Moreover, monitoring can help engineers to adjust the activity
execution time or to analyse the behaviour using the observed
statistics, defined by the worst case, the best case and the
average of:

- Execution Time: The amount of time required to execute
an instance of an activity in a given processor type

HTTP

JSON

ZMQ + JSON

ZMQ + JSON

Z
M

Q
 + JS

O
N

Fig. 1. Architecture of the art2kitekt tool suite

- Response Time: The interval between the request time
of the flow which the activity belongs to and the instant
that said activity is completed

- Inter-arrival Time: The time between two consecutive
flow request times, i.e. the period in a periodic flow

IV. TOOL DESCRIPTION

As previously stated, an extension of a2k has been devel-
oped with the purpose of observing the real behaviour of the
system in runtime. It has been integrated as an independent
server and has the capability of communicating with the
system to be monitored, an extended version of the system
under development.

In order to understand the whole framework (Figure 1), we
have divided the explanation in three sections, describing the
details of a general design, common to any type of architecture
to be observed:

- art2kitekt tool suite: Collection of tools that help de-
signing, analysing, simulating, and monitoring real-time
systems

- Monitoring server: In charge of analysing traces and of
generating as a result the observed temporal behaviour

- System under test (SUT): The observed system is
extended to record temporal traces that will be processed
on runtime

The main effort in this development has been made in the
monitoring server and in the extension of the SUT. Sections
IV-B and IV-C detail the new contributions.

A. art2kitekt tool suite

The art2kitekt tool suite is a collection of web services that
are provided for the design of real-time systems. The common
part in the tool is composed by both the user interface and the
system server.

The user interface (Fig.1(a)) is a web-client that allows to
define and to configure the different abstraction layers defined

in section III, such as the platform model, the application
model or the deployment model. It also permits the engineer
to manage the execution of the services and to visualise the
results of these executions.

The system server (Fig.1(b)) controls access to the database,
that stores the information about models, users and develop-
ment profiles. It also manages connections to modular servers
(Fig.1(c)).

This tool suite has been designed as a distributed system in
a flexible framework. It supports the inclusion of new services
to the tool suite in different servers, such as the monitoring
service explained in this manuscript. These services may use
the models previously defined in a2k, combined with new
information introduced by the engineer or with the results
provided by other services.

B. Monitoring server

The monitoring server (Fig.1(d)), which provides the mon-
itoring service, is in charge of managing the execution of the
system observation, of acquiring the traces with the temporal
information and of processing the received data to build
the statistics of the observation. The following points are a
description of the different elements in this server:

1) Monitoring service: It is a service that allows to control
the execution of a monitoring test, during the time window
in which the SUT is observed. Through the user interface, it
allows to establish and release the communication with the
backend, to send the configuration from a2k to the SUT, and
to start and stop the execution of the monitoring process.

2) Monitoring process: It manages the execution of the
monitoring test and is started from the monitoring service.
This process is executed until the test duration is reached or
a stop command arrives, and is destroyed when it finishes
its execution. It is the thread in charge of running the trace
collector and the event analyser, and offers the mechanisms to
publish the results in a2k.

3) Trace collector: This module is liable for the reception
of the traces, usually grouped in long buffers. It must be
designed depending on the SUT architecture and on the
communication interface used. Besides, it must ensure the
order in the reception of the traces and checks the integrity of
them.

4) Event analyser: This component, called after the trace
collector, analyses the input traces and generates the monitor-
ing statistics, to be published in the a2k result viewers or to
be processed by another service. A state machine architecture
computes the observed statistics and verify its integrity.

C. System Under Test

The SUT (Fig.1(e)), that will be observed by the monitoring
tool, must be extended with the following elements:

1) Tracepoints: To register the behaviour of the system,
some instructions, called tracepoints, must be inserted in the
application. They should contain enough data to extract the
characteristics of the event.

The minimum information required is:

- Timestamp: Instant when the event occurs. It could
be defined by an absolute time or by a relative time.
Additionally, it could be represented by time units, such
as nanoseconds, or by clock cycles, that can be converted
to time units using the clock frequency. Also, depending
on the number of bits used in this field, possible overflows
in the timestamp must be taken into account

- CPU: Unique identifier of processor unit and core where
the event occurs

- Type: Different classes of events which describe the
action that occurred at that moment in the execution

The points where these tracepoints are usually inserted, in
order to help to understand the behaviour, are the following:

- At the beginning and at the end of the activities, defining
the code block belonging to this activity

- During the context switch to define which thread is
executed in each processor and which one leaves the
execution

- At the flow request time to compute the response time of
the activities belonging to the flow

- At the beginning and at the end of the interrupt handlers
- At the beginning and at the end of the calls to a hardware

resource

2) Trace recorder: This component is called every time that
a tracepoint is saved. It is in charge of capturing the timestamp
and of saving the traces in a buffer. It must be optimised to
reduce the overhead introduced to the application in order to
modify the SUT behaviour as little as possible.

3) Monitoring task: A specific thread is usually necessary
for managing the communication between the SUT and the
monitoring service, and helps to provided the tracepoints to
be processed. The priority of this thread should be the lowest
or even be implemented in an idle thread if possible.

V. SYSTEM IMPLEMENTATION

In order to demonstrate the new functionality introduced in
a2k, the decisions adopted will be explained, such as the board
selected or the real-time operating system, also the solution
implemented will be detailed, paying special attention to the
difficulties found, with a specific subsection for each of them.

The board selected to develop the demonstrator is based on
a Xilinx Zynq Ultrascale+, a Multi Processor SoC (MPSoC)
composed by:

- Real-Time Processing Unit (RPU), a Dual-core ARM
Cortex-R5

- General Application Processing Unit (APU), a Quad-
core 64-bits ARM Cortex-A53

- Programmable Logic (PL), a FPGA-Based unit

The point of selecting this kind of heterogeneous MPSoC is
to take advantage of the resources shared in the same SoC. The
group formed by the RPU and the PL is useful to implement a
HW/SW co-design application with real-time capabilities, i.e.
the SUT to be monitored by a2k.

The other advantage is to execute a general purpose operat-
ing system in the APU, e.g. Linux, and to run the Monitoring
Server on it. Executing this part of the Test System (TS) and
the SUT in the same SoC allows to communicate them using
the shared memory, reducing the latency of the messages and
improving the overhead introduced in the SUT, compared with
implementing the communication using other type of ports,
such as a serial port or an Ethernet port.

Another important decision is which real-time operating
system manages the execution of the SUT in the RPU. The
authors of this manuscript, and its partners in many projects,
usually work with the RTEMS operating system, so it has been
the selected RTOS in this system implementation. It is an open
source real-time operating system, usually used by the space
industry projects, which has been ported to several embedded
processor architectures such as ARM, Intel and LEON.

In the following subsections, the focus will be on the details
of the solutions adopted in this implementation, considered by
the authors as the key points of this development.

A. RTEMS tracing

An intrusive software technique has been chosen to collect
the necessary data and to determine the temporal behaviour of
the system, i.e. tracepoints must be added to the source code
and generate the executable with them, in order to record the
events and the time when they are executed.

Param

Byte 0:3

Timestamp
Counter

Size 4

4:7

CPU
Id

4

8:11

Event
Type

4

12:15

Param
1

4

16:19

Param
2

4

Fig. 2. Trace Structure

1) Trace structure: A fixed-size structure (figure 2) has
been chosen to ease the management of the tracepoints and
of the buffers where they are stored. Additionally to the
timestamp, the cpu and the type, the trace includes two more
fields with an extra information to complete every type, as
indicated in table I.

TABLE I
EVENT TYPE DEFINITION

Event Type Param 1 Param 2
Thread switch Swapped out thread id Swapped in thread id

ISR begin ISR id -
ISR end ISR id -

Flow release Flow id Release id
Activity begin Activity id Release id
Activity end Activity id Release id

Resource begin Resource id -
Resource end Resource id -

Usually, the traces are used to monitor the beginning and
the end of the execution of an application section, such as an
activity or an interrupt handler. The identifiers of each of the
monitored sections are static defined in a header file, as part of
the traced code. An exception is the release identifier, which
is an incremental counter associated to each flow and serves
to distinguish the different instances of the same flow.

2) Timestamp counter: In the case of RTEMS, the ab-
solute time from the beginning of the SUT execution is
computed in each tick of the operating system, whose fre-
quency depends on its initial configuration, e.g. every 10
milliseconds. The procedure consists of increasing an absolute
counter with the difference between the current value and
the last stored value of the system clock. Using the function
_Timecounter_Getbinuptime() of the SuperCore of
RTEMS, it is easy to get the time from the beginning, but
with an accuracy equal to the frequency of the system tick.

RTEMS provides the _Timecounter_Binuptime()
function to obtain the time at a particular moment with a higher
accuracy, equal to the system clock frequency. It calculates the
accumulated time from the last tick plus the difference with
the current value of the system clock, which gives a greater
accuracy, however, it also increases the overhead.

It is possible to get a timestamp with a greater accuracy
without increasing the cost. This solution requires the util-
isation of the operating system clock directly and uses the
RTEMS rtems_counter_read() function. This clock is
a free-running counter and usually runs with a frequency close
to the CPU, in this case a 32-bit counter running at 499.995
MHz.

With this configuration, the counter will turn back to zero
every 8.59 seconds, adding a requirement to the tracing sys-
tem: a tracepoint must be executed before this time is elapsed,
otherwise it will not be possible to compute the absolute time
from this relative time. This constraint is satisfied by adding
to the application at least one task with a shorter period.

3) Trace recorder: The execution of a tracepoint instruction
calls the trace recorder that is in charge of capturing the current

timestamp and store the event in a tracing buffer. The main
requirement is to implement this critical code with a reduced
overhead, trying to modify as little as possible the behaviour
of the monitored application.

A specific test was defined to measure the overhead intro-
duced in the system due to the execution of the trace recorder.
The test consists in introducing a series of tracepoints followed
one after another from the same thread. The time difference
between two of these consecutive traces, if the thread has
not been preempted, will be used to compute the overhead
introduced.

According to the tests executed on the Cortex-R5 of the
Zynq-US+ at a frequency of 499.995 MHz, the overhead
introduced in the system was observed. The distribution of
the 3749 samples is represented in figure 3, where 91.33%
of the samples obtained introduce an overhead below 440 ns.
Also, only a 0.053% of the samples is above 460 ns, with a
worst observed case of 550 ns.

Best Case

Average

Worst Case

410 ns

421.05 ns

550 ns

Fig. 3. Tracepoint overhead histogram

4) Context-Switch tracing: The developer is responsible for
inserting the tracepoints at the beginning and at the end of the
execution of each activity, interrupt handler or use of shared
resources so that it can be monitored. The subsequent analysis
of these traces will be the one that tries to reconstruct the
behaviour of the system. But there are other points that must
be monitored to know the real behaviour and usually are not at
developer level, such as the context switch where the scheduler
changes the executed thread. The proposed solution is to use
the RTEMS User Extensions [10], an API provided by RTEMS
that allows to extend the code of certain parts of the operating
system, such as context changes. A callback is defined to be
called every time a context switch occurs and in which a call
to a tracepoint will be included, in order to register the threads
involved.

5) Monitoring task: The monitoring task is in charge of
managing the double-buffer in the trace-recorder and of send-
ing the last one used to the monitoring service for its later
analysis, using the protocols designed for that purpose. Its
execution is not a part of the initial SUT, so it must modify
as little as possible the behaviour of the system.

The size of the buffer should be defined depending on the
requirements of the application to be monitored. In case of
the example exposed in section VI, the maximum number of
events per buffer is 1024, i.e. the trace recoder can save a
maximum of 1024 traces before the monitoring task runs again
and empties the buffer. For this particular instance, it means
the application needs an extra memory allocation of 40kB (2
x 1024 x 20Bytes) for the trace storage.

B. TS and SUT communication

An MPSoC provides many advantages in this system, such
as the use of shared memory in the inter-processor communi-
cations. Both processors involved in sending messages can use
a reserved area in the shared memory. Also, in this solution,
it is combined with the use of the Inter Processor Interrupt
(IPI), as a signal to notify the receiver when the data is already
available in the memory [14].

The shared memory has been configured to reserve the
regions shown in figure 4. Each of them have been called
by the type, i.e. Mailbox or Shared Area, and by the owner,
i.e. RPU or APU. The owner of an area is the only one with
write permissions, meanwhile, other processors have read-only
permissions in order to avoid writing collisions.

0x00040000

0x18040200

0x30000000

0x00040000

0x00040100

0x00040200

RPU
Region

APU
Region

RPU
Mailbox

APU
Mailbox

0x00040200

Fig. 4. Shared Memory Map

The proposed communication is a point-to-point protocol
that allows to send short messages between two processors
using the mailboxes previously defined. The transmitter writes
within a mailbox a fixed structure message to start the
communication and enables a signal in the IPI, which will
cause an interruption in the receiver (ISR-RX). After that,
the transmitter thread remains on a hold state, waiting for
the acknowledgement. The receiver, in the interrupt handler,
copies the mailbox content in a pending message queue and
notifies, through another IPI signal (ISR-ACK), if the message
has been added to the queue to be processed. When the
transmitter receives the IPI signal, it finalises the waiting state
and it is able to use the mailbox again for the next message
if necessary.

1) Message structure: As mentioned above, the communi-
cation system uses the mailboxes to send the messages. These
messages have a fixed structure with the fields defined in
Figure 5. Source and destination addresses can be defined to

Param

Byte 0 1 2 3 4:7 8:11 12

Src
Addr

Data
Format

Msg
Id

Data
Pointer

Data
Size

CRC
Dest
Addr

Size 1 1 1 1 4 4 1

Fig. 5. Mailbox Message Structure

route the message in a top layer of the communication stack.
As well as a message identifier can be also defined, easing the
receiver process the input message.

The Data Format field details what kind of data is attached
to the message, and the Data Pointer and the Data Size fields
define the location of this data. There are two format types:

- message_fdata_void Message without additional
data

- message_fdata_shmem Additional data located in
shared memory region. The pointer defines the data offset
from the beginning of the shared memory region and the
size, indicating the number of bytes allocated

The last field of the structure is the polynomial CRC with
the purpose of validating the integrity of the message.

2) Memory allocation: A dynamic storage allocator man-
ages the use of the shared memory between the two processors
involved in the communication. For this purpose, the monitor-
ing tool provides the TLSF allocator (Two Level Segregated
Fit) [15], designed to meet real-time requirements, thanks to
its bounded execution time.

The transmitter should allocate an area in its shared memory
region using TLSF and write the data in this area. After that,
it will send the mailbox to the receiver. The Data Pointer in
the message must identify the data area to be processed and
the receiver is in charge of notifying the source that it has
finished reading the data. Logically, since the transmitter is
the only one with writing permissions in this memory region,
it must be in charge of releasing the allocated area, but never
before the receiver has finished working with it. This approach
allows large-size tranmissions, such as images or large arrays,
with zero copy messages.

VI. EXPERIMENT AND TOOL RESULTS

This section shows the results provided by the monitoring
tool, testing the execution of an algorithm of Guidance,
Navigation and Control (GNC). The observed application runs
over a Zynq-US+ platform on the top of the RTEMS operating
system and it has been designed using the a2k tool suite and
the services that a2k provides.

The functional structure of the application is composed by
three flows:

- Data-Handling: in charge of dispatching the messages
and of managing the dynamic memory

- Gnc: the main algorithm in the application
- Monitoring: explained in Section IV-C and responsible

of managing the monitoring traces

Fig. 6. Observed behaviour

The precedence relationship of their activities, i.e. the order
in which they have to be executed, is shown in Figure 7.

Start Point

Start Point

Start Point

Dispatcher Memory
Manager

Monitoring

Navigation Guidance Control

Data Handling Flow

Gnc Flow

Monitoring Flow

Fig. 7. Application Model Precedences

The execution period of the flows is defined in the applica-
tion model, as a parameter of the description of the flows. The
analysis services provided by a2k compute the assignment of
the activities in the different threads and determine the execu-
tion priorities, in order to comply with the system constraints.
The characteristics of the application are summarised in Table
II.

TABLE II
APPLICATION MODEL - PERIODIC FLOWS

Flow Period [ms] Activities Thread Priority

Data 20
Dispatcher

#0 2Handling Memory
Manager

Gnc 20
Navigation

#1 1 (highest)Guidance
Control

Monitoring 100 Monitoring #2 3

Otherwise, the execution of the interrupt handlers are mod-
elled using sporadic flows, because the periodicity of this type
of flows cannot be defined. Instead, its Minimum Inter-Arrival

Time (MIT) should be observed, the minimum time between
the beginning of two executions of the same flow.

The implementation of the application follows the descrip-
tion made in section V. Also, the tracepoints have been added
to the source code in order to store the temporal events,
which enable the rebuilding of the temporal behaviour in the
monitoring server.

The results provided by the monitoring tool are shown in
a2k in two different formats: graphically and numerically.

1) Behaviour chart: A gantt-chart represents the execution
of each activity categorised in processors (bold name) and in
threads (bellow its processor). This graph helps the engineer to
achieve a better understanding of the temporal behaviour. Fig-
ure 6 depicts the gantt-chart corresponding to the experiment
used in this evaluation.

TABLE III
OBSERVED EXECUTION TIME

Flow Activity Execution Time [us]
Min Avg Max

Data Handler Dispatcher 1.77 6.64 17.82
Memory Manager 0.87 4.55 6.17

Gnc
Navigation 7061.85 7063.15 7064.66
Guidance 1766.04 1766.05 1766.09
Control 883.24 883.25 883.41

Monitoring Monitoring 97.87 100.30 114.17

2) Observed execution time of activities: A statistics table
describes the temporal behaviour bounds of the activities.
Table III describes the minimum, maximum and time average
of the execution time.

TABLE IV
INTERRUPT HANDLERS - OBSERVED EXECUTION TIME

Interrupt Handler Execution Time [us]
Min Avg Max

ISR TX-ACK 6.41 6.83 7.96
ISR RX 1.96 2.24 2.85

3) Observed execution time of interrupt handlers: The
observed behaviour of the sporadic activities, in this case the
interrupt handlers, are defined in Table IV and Table V. Table
IV depicts the execution time of the interrupt routines, whereas
Table V shows the observed minimum inter-arrival time.

TABLE V
INTERRUPTS - OBSERVED MINIMUM INTER-ARRIVAL TIME

Interrupt Handler Minimum Inter-Arrival Time [us]
ISR TX-ACK 99.96

ISR RX 99.95

All aforementioned charts and statistics help the engineer
in the task of checking the compliance of the system with the
temporal system requirements.

4) Monitoring overhead: The overhead introduced due to
monitor the system in a worst-case scenario could be observed
adding the communication overhead, the execution time of
the monitoring task and the increment of time due to the
tracepoints introduced.

In the above example, consider one monitoring period,
around 84 traces are necessary every 100ms to monitor the
system. The execution time of the dispatcher and the interrupt
handlers involved in sending one tracing buffer have to be
added to the equation and, of course, the monitoring task, in
charge of managing the buffers.

TABLE VI
MONITORING OVERHEAD

Worst Case [us]
Dispatcher task 17.82

Interrupt handler TX-ACK 7.96
Interrupt handler RX 2.85

Monitoring task 114.27
Tracepoints 0.550 (x84)

Overhead in 100ms 189.10 us
Overhead percentage 0.19 %

VII. CONCLUSIONS

In this paper we propose a runtime monitoring tool that
extends the a2k tool suite. This new tool can be used to
measure and to visualise the temporal characteristics of a
real-time application. The engineer can analyse this observed
behaviour and compare it with the expected one, helping in
the validation process of the system. Also, it is useful to
understand the behaviour of the system and to improve its
theoretical model.

The selected approach to monitor the real-time application
is a software tracing method that consists of adding tracepoints
to the code and of recording them during the execution, adding
a minimised overhead. A monitoring task is embedded in the
application and provides the traces to the monitoring service.
This service is in charge of analysing the traces, in order to
be able to rebuild the observed behaviour, and of providing
the results to the a2k viewers.

The a2k monitoring tool has been tested in a heterogeneous
MPSoC using and RTEMS based system. The statistics of the
temporal behaviour of a GNC application has been depicted
in the same way that they would be provided by a2k.

Future work for this study focuses on improving the runtime
monitoring tool in different ways. First of all, improving the

RTEMS implementation, including tracepoints in the release
time of the flows, the instant which the flow becomes ready
to be executed, to provide the observed response time of the
activities. And also, implementing the monitoring recorder in
other real-time operating systems, different from RTEMS.

ACKNOWLEDGEMENTS

The work presented in this paper has received funding
from the ECSEL Joint Undertaking under grant agreement
No 737475 (AQUAS project). This Joint Undertaking receives
support from the European Unions Horizon 2020 research and
innovation programme and Spain, France, United Kingdom,
Austria, Italy, Czech Republic, Germany.

REFERENCES

[1] K. M. Sacha, “Measuring the real-time operating system performance,”
in Real-Time Systems, 1995. Proceedings., Seventh Euromicro Workshop
on, pp. 34–40, IEEE, 1995.

[2] A. Terrasa and G. Bernat, “Extracting temporal properties from real-time
systems by automatic tracing analysis,” in Real-Time and Embedded
Computing Systems and Applications, pp. 466–485, Springer, 2004.

[3] M. Asberg, T. Nolte, and S. Kato, “A loadable task execution recorder for
hierarchical scheduling in linux,” in Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), 2011 IEEE 17th International
Conference on, vol. 1, pp. 380–387, IEEE, 2011.

[4] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low impact
performance and behavior monitor for gnu/linux,” in OLS (Ottawa Linux
Symposium), vol. 2006, pp. 209–224, Citeseer, 2006.

[5] F. Rajotte and M. R. Dagenais, “Real-time linux analysis using low-
impact tracer,” Advances in Computer Engineering, vol. 2014, 2014.

[6] N. Ezzati-Jivan, G. Bastien, and M. R. Dagenais, “High latency cause
detection using multilevel dynamic analysis,” in Systems Conference
(SysCon), 2018 Annual IEEE International, pp. 1–8, IEEE, 2018.

[7] M. Holenderski, M. Van Den Heuvel, R. J. Bril, and J. J. Lukkien,
“Grasp: Tracing, visualizing and measuring the behavior of real-time
systems,” in International Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), pp. 37–42, 2010.

[8] S. Girbal, J. Le Rhun, and H. Saoud, “Metrics: a measurement en-
vironment for multi-core time critical systems,” Embedded Real Time
Software and Systems, ERTS, vol. 18, 2018.

[9] J. Kraft, A. Wall, and H. Kienle, “Trace recording for embedded
systems: Lessons learned from five industrial projects,” in International
Conference on Runtime Verification, pp. 315–329, Springer, 2010.

[10] RTEMS Project, RTEMS User Manual - Release 5.ec95748, 2019.
[11] F. Nicodemos, O. Saotome, and G. Lima, “Rtems core analysis for space

applications,” in 2013 III Brazilian Symposium on Computing Systems
Engineering (SBESC), pp. 125–130, IEEE, 2013.

[12] A. Sailer, M. Deubzer, G. Lüttgen, and J. Mottok, “Coretana: A trace an-
alyzer for reverse engineering real-time software,” in Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, vol. 1, pp. 657–660, IEEE, 2016.

[13] M. Côté and M. R. Dagenais, “Problem detection in real-time systems
by trace analysis,” Advances in Computer Engineering, vol. 2016, 2016.

[14] A. Pérez, A. Otero, and E. de la Torre, “Performance analysis of see
mitigation techniques on zynq ultrascale+ hardened processing fabrics,”
in 2018 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), pp. 51–58, IEEE, 2018.

[15] M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo, “A constant-time
dynamic storage allocator for real-time systems,” Real-Time Systems,
vol. 40, no. 2, pp. 149–179, 2008.

