

978-1-7281-2989-1/21/$31.00 ©2021 IEEE

User-guided engineering of integrated energy
management functions in automation systems

Jan-Niklas Puls
University of Applied Sciences and Arts

Faculty I – Electrical and Computer

Engineering

Hannover, Germany
jan-niklas.puls@hs-hannover.de

Christian Meyer
Dietz Automation & Umwelttechnik

GmbH

Neukirchen-Riebelsdorf, Germany
christian.meyer@dietz-automation.de

Maxim Runge
University of Applied Sciences and Arts

Faculty I – Electrical and Computer

Engineering

Hannover, Germany
maxim.runge@hs-hannover.de

Prof. Dr. Karl-Heinz Niemann
University of Applied Sciences and Arts

Faculty I – Electrical and Computer

Engineering

Hannover, Germany
karl-heinz.niemann@hs-hannover.de

Abstract—In the area of manufacturing and process

automation in industrial applications, technical energy

management systems are mainly used to measure, collect, store,

analyze and display energy data. In addition, PLC programs on

the control level are required to obtain the energy data from the

field level. If the measured data is available in a PLC as a raw

value, it still has to be processed by the PLC, so that it can be

passed on to the higher layers in a suitable format, e.g. via OPC

UA. In plants with heterogeneous field device installations, a

high engineering effort is required for the creation of

corresponding PLC programs. This paper describes a concept

for a code generator that can be used to reduce this engineering

effort.

Keywords—technical energy management, energy efficiency,

code generation, measurement data acquisition, energy

monitoring

I. INTRODUCTION

Industrial production companies strive to reduce the
energy consumption of their production facilities due to CO2
reduction targets and due to cost issues [1]. One basic measure
to achieve this goal, is the implementation of an energy
management system according to ISO 50001 [2]. This
standard defines the organizational measures needed and uses
a continuous improvement process (plan, do, check, act) to
achieve the goal of energy saving and cost saving. Besides the
implementation of organizational measures, the ISO 50001
demands for the implementation of a technical energy
management system (tEnMS) [2]. A tEnMS measures,
collects, stores, displays and evaluates energy data, so that
energy flows in the production plant can be continuously
monitored. In addition, a tEnMS can also provide functions
for load management [3]. Energy cost of industrial users
depends partly on the peak load of the plant. Load
management tries to flatten the load curve and to avoid peak
load situations.

A tEnMS can be implemented in two ways:

1. A tEnMS can be set up in parallel to the automation
system. In this case an additional infrastructure with
sensors, data processing (PLCs or edge devices) and
communication infrastructure is needed. This concept
yields the benefit that the control system remains

untouched, in case a tEnMS is implemented after the
commissioning of the control system.

2. A tEnMS can be integrated into the existing structure
of the automation system. Since already existing
components (controllers, communication
infrastructure) can be reused from the control system
(shared use), the integrated solution yields economic
advantages. One further advantage of the integrated
solution is that energy data, provided by actors, can be
read and processed through the use of existing
infrastructure. The drawback of such a solution is that
a running automation system will be subject to
changes in order to integrate the energy management
functions.

The rest of this paper will focus on the integrated solution
and it will describe an approach how an integrated solution
can provide energy information for a tEnMS with minimized
engineering effort.

Fig. 1. Control Application

Fig. 1 shows a control application, that shall serve as
example. A flow sensor measures the flow of a medium in a

Karl-Heinz Niemann
Textfeld
DOI of the original publication: 10.1109/ETFA45728.2021.9613238
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

pipe . The remote IO conveys the data via an Industrial
Ethernet to the PLC . The PLC calculates an output value 
and sends it to the frequency converter  that controls the
speed of a pump motor. Up to now energy data is not yet
considered.

Fig. 2. Energy information processing

Fig. 2 now assumes that the frequency converter  is able
to provide energy data (e.g. current power, cumulated energy,
etc.). In addition, it is assumed that an energy meter 
provides additional energy information. An energy data
program in the PLC  acquires the energy data, processes it
and submits it to an OPC UA server  on the PLC. This server
provides the information for a superordinate energy data
acquisition system that is part of the tEnMS. The energy data
program reads the measured values from the sensor/ actuator
level as raw values usually in a device specific format. The
energy data program in the PLC then converts the raw values
into a format, suitable for the energy management at the
superordinate layer. To achieve this, the programmer needs to
understand the data format that the devices provide, e. g. by
reading the user manual of the device.

For some Industrial Ethernet protocols, energy profiles,
such as PROFIenergy [4] and Sercos Energy [5], have been
defined in order to provide a standardized format for energy
data. This offers the advantage that no device specific
documentation needs to be used to determine the semantics of
the incoming energy data. However, only few devices support
such an energy profile today. Based on the described situation,
the following challenges arise:

 The energy data is provided from different devices
from different manufacturers. These devices do not
have a standardized semantic, unless energy profiles
are supported by the devices.

 The energy data is provided via Industrial Ethernet or
fieldbus. Depending on the industrial Ethernet /
fieldbus protocol (e. g. PROFIBUS, PROFINET,
Ethernet IP, etc.), the energy data gets into the
controller in diverging data formats.

 The energy data program must consider the
individual characteristics of the devices that provide
the energy data. The programmer must retrieve this
information from the respective device

documentation and adapt the energy data program
accordingly.

 The scaling of the raw values must be performed
individually for each device.

Due to the aforementioned challenges, the implementation

of a tEnMS involves considerable engineering effort to
retrieve data format information and to write the energy data
program for the PLC. In practice, this increased engineering
effort leads to the situation that energy management functions
are implemented only sporadically in industry [6]. These
issues have been addressed in the research project User-
guided engineering of integrated energy management systems
in production (EnEng_PRO)¹. The main objective is, to
reduce the engineering effort required to implement energy
data acquisition software. In the context of the project, a code
generator is being developed that can be used to automatically
generate specific energy data programs for PLCs. The code
generator is intended to support all field devices of an
automation system, also without energy profiles. The
automatically generated PLC programs can then be imported
and integrated into the corresponding engineering
environment.

II. STATE OF THE ART (RELATED WORK)

This chapter presents related work on the topics of
automatic code generation of energy data programs, data
exchange formats and interfaces.

A. PLC code import interfaces and application

programming interfaces (API)

The program code of a PLC typically consists of a PLC
program and/or a hardware configuration and other parts.
Engineering tools offer interfaces that allow a manual import
and/or export of program and configuration files. The
interfaces on the one hand support proprietary data formats,
which are tailored to the specific PLC engineering
environment, e.g. [7]. On the other hand, there are
standardized data interfaces, like PLCopen XML [8], in place
that are vendor neutral. As an alternative to import and export
of configuration files, application programming interfaces
(API for short), such as described in [9], are provided. With
the help of such an API, it is not only possible to import PLC
programs and hardware configurations, but to place them
directly at the desired location inside the project tree of the
PLC engineering system, whereas with manual import the
contents must be inserted by the user at the correct position in
the project.

B. Integrated plant engineering to increase energy

efficiency

In [10] [11] the development of code generators for the
automatic creation of PLC programs is described, but this
literature does not address the generation of energy
management programs. These code generators support
interfaces of the PLCopen XML format or proprietary formats
[9]. Based on the possibility of performing an automatic code
generation for PLC programs, [12] describes the development
of a software tool that uses a code generator to automatically
generate an energy PLC program that supports the
PROFINET communication protocol and the PROFIenergy
energy profile. The automatic code generation of an energy
PLC program is designed to reduce the engineering effort for

¹ Funding code: ZF4283003RR8; Funded by: Federal Ministry for
Economic Affairs and Energy based on a resolution of the German
Bundestag

manual program generation. For the code generation, the code
generator requires the engineering data and device description
data of all field devices that are to be integrated into the
tEnMS. As an input file for the code generator, a file in
Automation Markup Language format [13] is provided, in
which a network structure with one or more PROFIenergy
nodes is contained. The entries for the PROFIenergy devices
each contain a reference to the device-specific GSD files.
Based on the information from the GSD files, it is
automatically determined which PROFIenergy functionalities
(e.g. measurement data acquisition or standby management
commands) are supported by the device so that a suitable
energy PLC program can be generated for the respective
device of the network structure. The PLC program parts are
generated in a generic structure, while PROFIenergy enables
a semantically uniform mapping of the energy data. The
energy PLC program created by the code generator is
generated in an XML format, standardized by PLCopen [8].
The PLCopen format describes a manufacturer neutral
exchange format that is compatible with PLC programs
according to IEC 61131-3 [14]. Thus, the generated energy
PLC program can be imported into engineering tools that
support the PLCopen import. During operation, the developed
energy PLC program communicates with higher levels by
means of an OPC UA server running on the PLC to receive
commands for load management and to provide the acquired
energy data. These two known concepts shall be used to
generate the energy data (acquisition) program for any kind of
device, especially those, that do not support an energy
management profile like PROFIenergy.

III. DESIGN AND CONCEPTION OF THE CODE GENERATOR

SOFTWARE

This chapter integrates the energy data program (EDP)
generated by the code generator. The program structure of the
EDP is then described. To this end, the process of creating the
EDP, including importing it into the specific engineering
environment, is first described in general terms, followed by a
detailed explanation of the code generator software.

A. Integration of the generated energy data program into

the automation system

The code generator software developed in this publication
is responsible for the automatic generation of an EDP tailored
to a specific automation system. The code generator is
designed to reduce the engineering effort (see chapter II. B.)
in the development of EDP. Due to the concept, the developer
must create each device type specific EDP only once manually
as a template file. Based on these template files, the code
generator generates automatically an EDP for existing or new
plants. The EDP automatically generated by the code
generator software is to be integrated into the PLC in parallel
with the automation program. Fig. 3 shows the data flow of
the EDP data and the automation program data.

During runtime, the EDP and the automation software are
to be executed in parallel in the PLC  . In contrast to the
contribution presented in the chapter state of the art [12], the
code generator software supports devices independent from
specific energy profiles, such as PROFIenergy. Specifically,
it is not necessary that the devices support any specific energy
profiles. At least each device has to provide energy data. The
EDP contains the energy related data of all devices of an
automation system that provide energy data. The energy data
of the frequency converter, for example, describes the current

power flow . All devices to be integrated into the EDP are
assumed to provide energy data in addition to the process data
. A frequency converter provides process data such as the
current number of revolutions of a motor per minute. Energy
meters can be integrated as well . In the PLC, the process
data is linked to the automation program controlling the
technical process and the energy program processes the
energy data. Afterwards the energy program forwards the
processed energy data to the OPC UA/ Modbus TCP server
for further use by the tEnMS  while the automation program
sends determined commands to the frequency converter .

B. Energy data program structure

This subchapter describes the program structure of the
generated EDP. Fig. 4 shows the individual program elements.

Fig. 4. Structure of generated PLC energy data program

The code generator creates and links all program elements
during the EDP generation. IEC 61131-3 [14] defines most of
the program elements as program organization units (POU).
In this context, POUs are not only function blocks (FBs) but
also programs (PRG). In addition to the POUs, the EDP
requires global variables and a folder structure. The code
generator instantiates a FB (e.g. MeasurementData-
Acquisition_ACS880 in Fig. 4) for each device type that is
part of the EDP. If there are several devices of one device type
in the automation system, the code generator instantiates the
corresponding FB multiple times. The instantiations take
place in the EnEng_PRO_EnergyManagement (PRG)
program. In order to provide the measured device energy data
during runtime for higher level systems, the code generator

Fig. 3: Data flow of EDP data and automation program data

generates global variables (e.g. GVL_MDA_PROFINET-
_IO_G1 and GVL_MDA_PROFINET_IO_G2) and connects
them with the corresponding outputs of the instantiated FBs.
Furthermore, the global variables for providing the measured
energy data are linked to the OPC UA/ Modbus TCP server of
the PLC. Also, the code generator links the inputs of the
instantiated FBs to the corresponding hardware configuration.
If the code generator software does not generate the hardware
configuration, the already existing hardware configuration
must be linked to the inputs of the instantiated FBs manually.
All program elements generated by the code generator, apart
from the hardware configuration, are integrated into a created
folder structure (EnEng_PRO_EnergyManagement,
FB_MeasurementDataAcquisition, GVLs_MDA) for better
clarity and structuring. The engineering environment creates
the main program (PLC_PRG), which is responsible for the
automation of the industrial plant automatically. The user has
to integrate the routine (EnEng_PRO_EnergyManagement
(PRG)), which is responsible for the cyclic call of the EDP,
into this main program manually.

C. Overview of the configuration steps to be performed

This subchapter generally describes the steps to be
performed by the person using the code generator software.
The code generator software generates the EDP on the basis
of a project file. The project file contains the instantiated
devices that support the provision of energy data. Each
instantiated device describes a component located in the real
plant (e.g. a frequency converter). The user manually
instantiates each device in the project file. To do this, the user
selects the specific device type to be instantiated from the
library integrated in the code generator software. The library
contains all different types of devices that the user has ever
added to it. If a device type is not yet integrated, it can be
added via an editor. The user then configures the selected
device so that it corresponds to the real device of the plant.
After all devices have been successfully added, the user starts
the code generation function. Based on all devices instantiated
in the project file and the IEC 61131-3 standard [14], an EDP
is generated in the structured text programming language
automatically. The code generator stores the program in
XML-based PLCopen format [8]. The following Chapter
“Structure and operating principle of the code generator”
describes the structure of the code generator in detail. In
addition to the EDP generation, there is an optional possibility
that the code generator performs the target system specific
hardware generation of all instantiated devices. The optional
hardware generation is useful, if the user wants to integrate the
EDP into a PLC of a new plant where no hardware
configuration is available yet. The code generator stores the
hardware description generated also in the XML-based
PLCopen format. Following the generation, the user imports
the EDP file and, if necessary, the hardware configuration file
into an engineering environment that has an import and export
file interface of the PLCopen standard [8]. If the code is
generated for an already configured system, the hardware
configuration and automation program are already available
in the engineering environment. In this case, the user must
only integrate a method for the execution of the imported EDP
into the main program of the PLC. Finally, the user downloads
the automation program, the EDP and the hardware
configuration from the engineering environment into the PLC.
Fig. 5 shows the described procedure.

After successful implementation of code and hardware
generation for engineering environments the development of

code and hardware generation for the specific application
programming interface of proprietary engineering
environments follow. Proprietary engineering environments
are characterized by the use of proprietary import and export
standards. For example, for a particular proprietary
engineering environment the code generator software must
store the EDP code in a proprietary XML file format [9]. If the
EDP code is not stored in a proprietary XML file format, an
import into the specific engineering environment is not
possible. The same proprietary engineering environment uses
Computer-aided x (CAx) files of the Automation Markup
Language (AML) type as the import file format for the
hardware configuration [9].

D. Sructure and operating principle of the code generator

To generate the described energy data program
automatically, a code generator is needed. This subchapter
describes the structure and operating principle of the
EnEng_PRO code generator software in detail. To understand
the operating principle of the software, the terms device
object, device object type, device object type library, device
object type library editor and device instance list, need to be
explained first. Fig. 6 shows the schematic of the code
generator.

A device object  represents a device located in the real
automation system, e.g. a frequency converter of a certain
type, which is to be integrated into the EDP. Each device
object consists of two parts. The first part contains
unchangeable properties. These unchangeable properties are
described in the device object type . The second part
contains individually configurable properties, which are
called dynamic properties. These dynamic properties are
described in the device object itself . The device object type
properties are always identical for each device object of the
specific type. These unchangeable properties are specific type
information such as the name of the model and the
manufacturer, as well as the measured variables supported by
the model (e.g. current, voltage, current ambient temperature,
etc.). Other unchangeable properties are the supported
communication protocols. So far, the code generator software
supports devices that use the communication protocols
PROFINET IO and/or PROFIBUS DP. In addition, template
files describe each device object type. On the one hand there
is a specific template file for each communication protocol
type, which is necessary to generate the hardware
configuration. On the other hand, there is a template file,
which contains the device specific energy management
function. This template file is necessary to generate the EDP.
The code generator software stores all device object types in
the device object type library  so that they are available for
reuse. Editing of all device object type entries in the device

Fig. 5: Code generation overview

object type library is possible by using the device object type
library editor . Specifically, new device object types can be
added to the device object type library, existing entries
modified or obsolete entries removed from it. When the user
is adding a new device object type entry to the library, the user
has to import the device specific template files during this
process. First the user must create each template file once in
the engineering environment to be supported. After that, the
user exports the file in the engineering environment specific
file format (e.g. PLCopen XML). After successful completion
of the device object type creation process the code generator
software stores the template files in a predefined folder.

Dynamic properties are the individual device name, the
selection of the communication protocol used by the device in
the plant and the unique protocol address. Another dynamic
property is the selection of measured variables. The measured
variables supported by the device object type, which should
be included in the EDP are selected here.

All device objects created by the person using the
EnEng_PRO software, including their respective dynamic
components, are instantiated in the device instance list . The
code generator connects each instantiated device object with
the associated device object type. During the code generation
process, the code generator generates the target system
specific EDP on the basis of the instantiated device objects, as
well as the reference to the respective device object types. For
this purpose, the code generator fills all required template files
with the configuration parameters entered by the user. The
filled template files are then used to generate the EDP for
PLCopen based systems or systems that uses a specific
application programming interface. Optionally, the code
generator generates a target system specific hardware
configuration as well, which is also created on the basis of
filled template files.

IV. DESIGN OF THE USER INTERFACE

The code generation of the EDP requires a lot of
configured device objects. To configure each device object
intuitively, the user needs a user interface that supports the
easy use of the code generator software. The code generator
software stores each configured device object in the device
instance list of the actual EnEng_PRO project.

Fig. 7 shows the screen with a device object instance list
containing three device objects   .

Fig. 7. EnEng_PRO user interface with device object instance list

In the user interface the user can add device objects to the
device object instance list  or edit , duplicate  or delete

Fig. 6: Used data model in the code generator

 existing device objects. Expanding the tree view node for
device object T1  results in displaying related information
and settings for the device object. The device object type
ACS880 was selected from the device object type library. For
this device object type, some general information such as
manufacturer or the device type class (in the example
frequency converter) is taken from the library. In addition, the
library entry also contains information about which measured
variables can be acquired by the corresponding device as well
as the supported communication interfaces. The device type
data from the library is linked to the PLC source code template
and the individual configurations in the user interface. The
code generator software generates PLC EDP which contains
each created device object. Through the user interface the
following features are supported:

 EnEng_PRO project management (e.g. to save or

open a configured device instance list as an

EnEng_PRO project file)

 Selection of a device object type from the library to

retrieve device specific data and the associated PLC

source code template

 Extending and customizing the library with the

device object type editor

 Optional generation of the PLC hardware

configuration

 Selection of the communication interface of the

device to be used (including bus specific address

settings, which are included into the hardware

configuration)

 Selection of the communication interface to provide

the energy data to higher level systems on the PLC

(e.g. OPC UA, Modbus TCP)

 Selection of energy data elements to be used as basis

for code generation

 Selection of a PLC code import format (e.g.

PLCopen XML)

 Automatic generation of a PLC energy data program

for energy data acquisition

V. CONCLUSION

This publication describes the development of the
EnEng_PRO code generator software as a part of the tEnMS.
This software generates the plant specific energy data program
(EDP) for each PLC automatically. The EDP acquires the
current energy data of each device supporting energy
functions connected to the PLC. Then the EDP processes the
energy data. The provision of the processed energy data to
higher level systems takes place via OPC UA/ Modbus TCP
server of the PLC. The code generator supports PLCopen
based PLC systems [15] as well as systems that provide a
system specific application programming interface [9]. The
code generator uses the existing hardware structure
information of the plant, in order to integrate all devices that
are providing energy data in addition to process data (e.g.
frequency converters) into the EDP. Energy meters can be
integrated as well. The code generator software has a user
interface designed to support the automatic creation of an
EDP. In the first step, the EDP is responsible for the energy
data acquisition of all devices of an automation system that
support the provision of energy data, independent of energy
profiles. These devices must support the communication

protocols PROFINET IO and/or PROFIBUS DP. The
EnEng_PRO software stores all different types of device
description information in a permanent library. The user uses
the library entries to configure the energy data program. An
editor allows modifying any library entry, as well as adding
new entries or deleting obsolete entries. With a growing
number of energy management projects carried out, this leads
to a steadily growing number of library entries. The number
of library entries is growing because each automation system
has implemented different device object types. Some of them
are not yet implemented in the library, but are needed for the
EDP. A constantly growing number of library entries leads to
a continuously increased reuse of the individual device object
types. That leads to a continuous reduction of the engineering
expenditure. It is assumed that a low engineering effort
increases the willingness to integrate a tEnMS into the
automation system. A successful integration of a tEnMS is
assumed to reduce the energy consumption of the plant and
thus energy cost. In addition, a contribution is made to climate
protection.

In the next development steps, the code generator can be
extended by additional functions. For example, it is possible
to add load management functions. Load management
functions can switch devices of an automation system into
different energy saving modes.

REFERENCES

[1] German Federal Association of Energy and Water Industries:
Electricity price for industry. Aug. 2019. At:
https://www.bdew.de/service/daten-und-grafiken/strompreis-fuer-die-
industrie/ (20.03.2021).

[2] ISO 50001: Energy management systems - Requirements with
guidance for use. 2018.

[3] Rossiter, A. P., Jones, B.P. (Eds.).: Energy management and efficiency
for the process industries, Wiley American Institute of Chemical
Engineers, Hoboken, 2015.

[4] PROFIBUS Nutzerorganisation e. V. (PNO): Common Application
Profile PROFIenergy: Technical Specification for PROFINET.
Version V1.3. Oct. 2019. At: https://www.profibus.com/
download/profienergy/ (19.03.2021).

[5] Schlechtendahl, J.: Whitepaper SERCOS Energy. Feb. 2012. At:
https://dc-us.resource.bosch.com/media/en/general_use/products/
engineering/sercosiii/files_1/sercos_energy_whitepaper_en.pdf
(24.03.2021).

[6] Güldner, F., Menze, T. ARC Advisory Group - Energy Management
Online Survey. The Findings, ARC Advisory Group, 2014.

[7] Rockwell Automation: Logix 5000 Controllers Import/Export. Sep.
2020. At: https://literature.rockwellautomation.com/idc/groups/
literature/documents/rm/1756-rm084_-en-p.pdf (22.03.2021).

[8] PLCopen: Technical Paper PLCopen Technical Committee 6. XML
Formats for IEC 61131-3. Version 2.01 - Official Release, 2009.

[9] Siemens AG: Openness Automating creation of projects. Oct. 2018.
At: https://cache.industry.siemens.com/dl/files/163/109477163/
att_926042/v1/TIAPortalOpennessenUS_en-US.pdf (24.03.2021).

[10] Steinegger, M., Zoitl, A.: Automated code generation for
programmable logic controllers based on knowledge acquisition from
engineering artifacts: Concept and Case Study. In: Proceedings of the
17th IEEE Int. Conf. on Emerging Technologies and Factory
Automation (ETFA). Poland, Karków, 17. – 21.09.2012.

[11] Armentia, A., Estevez, E., Orive, D., Marcos, M.: A Tool Suite for
Automatic Generation of Modular Machine Automation Projects. In:
Proceedings of the 16th IEEE Int. Conf. on Industrial Informatics
(INDIN). Protugal, Porto, 18. – 20.07.20189. P. 553-558.

[12] Würger, A., Niemann, K.-H., Fay, A., Gienke, M., Paulick, M.:
Integrated plant engineering to increase energy efficiency. In: atp
Nov.- Dec. 2019. P. 70–77.

[13] Lüder, A., Schmidt, N.: AutomationML in a Nutshell. Nov. 2015.At:
https://www.automationml.org (22.03.2021).

[14] IEC 61131-3: Programmable controllers - Part 3: Programming
languages. 2013.

[15] ABB AG: Automation Builder. At: https://new.abb.com/plc/
automationbuilder (30.03.2021).

