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Time-predictable platforms can enable static worst-case
execution time (WCET) analysis for computation by providing
WCET-optimized hardware design, such as in-order processor
pipeline and support for scratchpad memories. Additionally,
they aim to minimize end-to-end communication jitter and
latency by providing a synchronized interface to the underlying
communication layer [5], [6]. Different scheduling mecha­
nisms must be implemented for both the communication and
computation layer of an application to support the synchronous
data flow model. Various policies can be used to generate static
schedules that enable static execution of time-critical tasks on
the processor, such as cyclic execution, earliest deadline first,
and fixed priority [7]. Regarding communication, several
industrial protocols have been developed to enable bounded
network latency and temporal isolation of communication
flows, such as TSN, TTEthernet, and PROFINET [8], [9].

The purpose of this work is two-fold: first, to experimentally
demonstrate the distribution of open-source avionic control/­
command case study and, secondly to evaluate the open­
source time-triggered framework proposed by [10] as well
as the underlying communication layer. We achieve this by
implementing a realistic case study of a flight controller on a
time-predictable processor Patmos [11], and distributing the
application using a time-triggered communication protocol
TTEthernet [12]. The main contributions are:

• A case study of a flight management system in a dis­
tributed implementation.

• An experimental evaluation of an open-source time­
triggered runtime system.

• A comparative analysis between the quality of control
of the proposed time-triggered implementation against
single-core and multi-core implementations.

The rest of this paper is organized into eight sections:
Section II presents the use-case application of a flight man­
agement system. Section III presents a background on the
technologies and tools employed by this work. Section IV
presents the design and implementation of the distributed
flight management system using the proposed runtime system.
Section V evaluates the proposed design using the devel­
oped application. Section VI discusses related work on time­
triggered communication and relevant use-cases. Section VIII
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Abstract-With the recent advancements in the Industrial
Internet of Things and Industry 4.0, cyber-physical systems have
become increasingly inter-connected. It is becoming a challenge
to maintain the same quality-of-control and time-predictability of
computation and communication required by safety-critical hard
real-time systems as previously achieved through non-distributed
architectures.

This paper examines the problem of implementing and dis­
tributing a closed-loop command-control system over an Ethernet
network with guaranteed timing bounds. To achieve bounded
communication and computation time, we use an open-source
software framework running on the T-CREST platform com­
bined with a TTEthernet network star topology. We evaluate
its quality-of-control performance in our experimental setup and
compare the results against single-core and multi-core implemen­
tations. The proposed distributed time-triggered runtime system
executes with jitter below lOlLs and can perform a stable flight
scenario as verified by the benchmark implementation.

Index Terms-Time-triggered communication, flight controller,
clock synchronization, WCET analysis, cyclic executive, dis­
tributed tasks.

Safety-critical application domains like avionics, automo­
tive, and Industrial Internet of Things can benefit from the
design of computing systems that provide bounded timing in
both computation and communication as this facilitates certifi­
cation due to the guaranteed end-to-end temporal behavior [1].
However, as real-time systems become more interconnected,
deploying multi-rate time-critical task chains on distributed
systems and maintaining the same time-predictability becomes
a challenge [2].

One approach to guarantee timing closure of distributed
safety-critical applications is to employ the synchronous data­
flow [3] model on time-predictable hardware architectures
[4]. Following the synchronous data flow model allows an
application to define the number of produced and consumed
data samples at each given point-in-time during the design
phase. This model enables the static analysis of all the timing
properties of a design as well as memory, processor and
network load since both communication and computation
resource usage can be statically scheduled at design time.
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summarizes the main conclusions derived from this work.

TABLE I: Flight controller closed-loop variables

II. USE-CASE: ROSACE LONGITUDINAL FLIGHT
CONTROLLER

This section describes the case study of the Research
Open-Source Avionics and Control Engineering (ROSACE)
longitudinal flight controller and its control constraints along
with its hard real-time specification.

The case study developed and analyzed by Pagetti et al. [13]
describes a multi-rate longitudinal flight controller operating
on a medium-sized aircraft that is in the en-route phase at a
starting altitude of 10000 m. The study investigates a flight
management system for the scenario of a 1000 m step climb
command. During the climb, the autopilot flight management
system maintains a constant ascend rate Vz while preserving
a constant airspeed Va and achieving a stable flight at the
commanded altitude h. Similar flight-level changes are often
performed in real life for fuel economy or maintain altitude
separation from ongoing air traffic routes.

The flight controller in use has been designed in
SIMULINK [14] as a closed-loop system and is divided into
two logical parts: (a) the system that simulates the aircraft, ele­
vator, and engine dynamics and (b) the controller that includes
the control loops (al ti tude _ hold, Vz _ control, Va_control)
and a collection of filters, which aim to model the sensor data
acquisition. Table I lists the variables involved in the operation
of the flight controller.

The case study provides a set of four validation objectives
(PI, P2, P3, P4) for the step response of the Va and Vz
loops to the input command for the climbing scenario. PI
is the amount of time required for the controlled variable to
settle within 5% of the steady-state value. P2 examines the
overshoot as the maximum value attained minus the steady­
state value. P3 is the time duration it takes for the value to
rise from 10% to 90% of the steady-state value. Lastly, P4
is the steady-state error, which is the difference between the
input and the output as t ---7 O. These validation objectives
are used in Section V to drive the evaluation of the presented

B. Offline Scheduler

The task and network schedules are synthesized using the
open-source framework described by [10]. The authors present
a static scheduler for synthesizing time-triggered schedules
using constraint programming. They present a custom Python
application developed to generate a cyclic executive schedule
synchronized to the TTE network schedule using the Z3
satisfiability modulo theory (SMT) Prover/Solver [16].

real-time system implementation and compare it against other
non-distributed implementations.

A. Time-triggered Communication

For the network communication, we integrate the nodes
in a TTEthernet network. TTEthernet is based on a cyclic
communication schedule (called TTE network schedule) that
specifies periodic communication flows called virtual links
(VL) to transmit time-triggered frames within a scheduled
transmission window. Subsequently, the reception of any
frames is only accepted within the network devices' scheduled
reception window. Any frames that arrive outside the reception
window are dropped and not forwarded by devices. The cyclic
transmission pattern of the TTE network schedule repeats in
hyper-periods called cluster cycles.

Network time synchronization is required for all hosts to
synchronize their communication to the respective transmis­
sion/reception windows. TTEthernet achieves this by exchang­
ing unique Ethernet frames called protocol control frames
(PCF). A PCF contains the accumulated time information of
the transmission from a sender to a receiver. Synchronization
masters transmit PCFs at fixed points-in-time to their con­
nected switch. Typically, each switch assumes the role of a
compression master that uses this information to calculate
the global network time offset using a compression function,
as described and analyzed in [15]. The switch broadcasts a
new PCF to all connected devices at the beginning of each
integration cycle that can be used to align their local time
with the network time.

III. BACKGROUND

This section provides an overview of the relevant technolo­
gies and tools that this work integrates.

C. Runtime System

This work aims to evaluate and deploy the open-source
runtime system presented in [10]. Commercial off-the-shelf
TTEthernet applications rely on transmission, reception and
synchronization mechanisms implemented on proprietary
hardware. The implemented runtime system performs this
operations completely in software.

The runtime system is responsible for controlling the ex­
ecution policy of the tasks and the communication with the
underlying TTEthernet network. The system deploys a cyclic
dispatcher to execute tasks based on their release time. Each
task is defined as a simple C structure that maintains a period,
an array of release times, the current release index and the total

commanded altitude
commanded true airspeed
vertical speed
true airspeed
altitude
vertical acceleration
pitch rate
vertical speed
true airspeed
altitude
vertical acceleration
pitch rate
vertical speed command
elevator deflection command
throttle change command
elevator deflection
engine thrust

DescriptionVariable name

Reference Inputs

Entity

Aircraft Inputs

Filtered measurements

Aircraft dynamics

Control outputs
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C. Static Scheduling

The ROSACE benchmark is composed of 12 periodic tasks
(see Table II) that are scheduled over three distributed nodes.
Each of the aircraft, filtering and control nodes is assigned
in-order three, five and four tasks respectively.

place over three VLs between each of the three TIEthernet
nodes, and a total of 21 tasks are distributed over the nodes,
which include communication and computation.

We implement dedicated periodic transmission and recep­
tion tasks for each scheduled VL in software. Listing 1
presents the communication message structures for the respec­
tive three nodes encapsulated in IPIUDP frames at transmis­
sion time. The payload size of the exchanged UDP packets is
33 bytes, 25 bytes and 25 bytes for VL_DYN, VL_FILTER and
VL CTRL, respectively. The floating-point variables correspond
dir~ct1y to the case study variables described in Table I. The
variable step represents the current simulation time derived
from the Aircraft Node 1 and it propagates through the rest of
the distributed nodes to indicate when to stop the benchmark
simulation.

Additionally, we introduce the variables enable _ fil tering,
enable control, and is_controlling that we use as flags
to facilitate the programming and boot-up of the nodes in
a sequential order starting from Aircraft Node 1. The flags
indicate to the receiving nodes, Filter Node 2 and Control
Node 3 that the previous node is programmed and should
process the received data.

As discussed in Section III, all transmission tasks are
associated with a reception task acceptance window. Thus,
we implement the reception tasks as non-blocking functions
that poll the Ethernet controller for the scheduled acceptance
window time. We configure the Ethernet controller to use dual­
buffering in a ping-pong management scheme. When we read
from the active buffer, we clear the other buffer and swap the
active buffer pointer to the other buffer so that it is ready to
receive a new frame.

Fig. 1: Distributed ROSACE topology and example TTEther­
net VL communication schedule.

number of releases. The dispatcher searches through an array
of tasks for an upcoming release time using the TIEthernet
synchronized time as a parameter. After executing a task, its
period is increased by the hyper-period of the schedule and
the current release index points to the next release time. The
proposed runtime system does not support task preemption as
this facilitates the WCET analysis of the presented platform.
Instead best-effort tasks such as the LOGGING task can be
scheduled with relaxed jitter constraints and are executed in a
time-triggered fashion.

D. Hardware Platform

The presented system is implemented on the open-source re­
search platform T-CREST [17]. The platform features a time­
predictable processor, Patrnos [11], that uses WCET-optimized
caches along with private scratchpad memories. Additionally,
we use its toolchain, particularly the static WCET analysis
tool platin [18], to derive the execution time constraints for
our scheduler. The platform is also equipped with an Ethernet
controller that features a hardware-assisted timestamping unit
[19]. The timestamping unit measures the arrival time and
transmit time of PTP and PCF Ethernet frames by monitoring
the MIl interface between the PHY and the Ethernet controller.

IV. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the system model involved in dis­
tributing a flight management system in a TTEthernet network
using a synchronized cyclic task execution runtime environ­
ment.

A. Task and Network Model

In this work, we use the offline scheduler described in
Section III, and thus we model each task Ti as a tuple
(T C D 0, J,) where T, is the period, Ci is the WCET,1" 1" 1" ,,' ,,' "

D i is the deadline of the task, Oi is a relative offset to the
release time, and Ji is the maximum allowed jitter.

We also model the communication of VL flows as periodic
tasks that can be constrained by the transmission time of
the VL together with the WCET of the end-system soft­
ware responsible for transmitting or receiving the frame. The
communication tasks are then integrated with the cyclic task
set of each node to derive valid transmission and reception
points-in-time for the network schedule. The start of each
sending task is offset a bit earlier than its scheduled point­
of-transmission to account for the copy of the data into
the Ethernet controller's buffer. Finally, we model the PCF
reception and clock synchronization as a periodic task since
it is handled in software.

B. Communication

We distribute ROSACE over three nodes, as shown in
Figure 1. Node 1 is responsible for simulating the aircraft
dynamics, engine, and elevators and provides raw data of the
aircraft state. Node 2 is responsible for filtering the aircraft
state. Node 3 generates the control commands for the aircraft.
Node 4 is a TIEthernet switch. The communication takes
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TABLE II: WCET of ROSACE tasks/functions on the T­
CREST platform.

A. System Setup
The presented ROSACE benchmark is distributed over

three nodes that execute the proposed runtime system using
the softcore processor Patmos. The hardware platforms are

¢ = weETdispatcher +weETread_clock +Offsetclock (1)

D. Source Access
All the components of the presented framework are open­

source. The SMT scheduler for the task generation is hosted
at https://github.com/egk696/SimpleSMTScheduler The im­
plemented runtime system is integrated with the T-CREST
platform and the presented benchmark application is hosted at
https://github.com/t-crest/patmos/tree/master/c/apps/rosace

V. EVALUATION

This section presents the experimental setup that the case
study is deployed and evaluates the performance of the pro­
posed open-source runtime system.

to maintain the relative proportions to each other as originally
defined by [13]:

• Aircraft dynamics: 20 ms (originally 5 ms)
• Filtering: 40 ms (originally 10 ms)
• Control loops: 80 ms (originally 20 ms)

Empirically, we select the TlEthemet integration period at
80 ms based on the slowest transmission rate. This allows
aligning the start of each node's schedule hyper period with
the reception of a PCF and a synchronization task.

To generate a valid schedule, we derive the maximum
transmission time from the TTTech development suite [22] and
consider this duration additionally to the WCET of each trans­
mitting task. Moreover, we configure the acceptance window
time of each receiving task to the maximum clock drift and
include this time in the WCET of the respective tasks. Finally,
we allocate an inter-task time gap ¢ that is bounded by the
overhead of the runtime dispatcher, the WCET of reading the
system clock, and the measured clock synchronization offset,
as shown in Equation 1. We provide the task definition to the
custom SMT scheduler and generate the header files for each
nodes that contain the tasks' activation times.

13326
33675

1435878
14923
15119
14902
15119
14923

1046
35420
14084
40352

WCET (clock cycles)Function
engIne
elevator
aircraft dynamics
h fil ter-
q- fil ter
az filter
Vz-filter
Va- fil ter
h C
Vz control
al ti tude hold
Va control

typedef struct {
uint32_t step;
uint8_t is_controlling;
float h_c;
float Va_c;
float Vz_c;
float delta_e_c;
float delta_th_c;

} control_state_message;

Originally, the case study is coded using the PRELUDE [20]
formal language to generate a set of dependent periodic tasks.
PRELUDE can add real-time primitives to the synchronous
data-flow model, by modelling tasks as nodes, where con­
suming nodes have a proportional rate constraint relative to
a respective producing node. More precisely, the authors [13]
describe the following proportional execution rates for the
flight controller tasks. The filter tasks (h_filter, Va_filter,
Vz filter, az filter, q filter) should execute at half
the rate of the environment simulation (aircraft dynamics,
engine, elevator), and the control tasks (alti tude hold,
Vz_control, and Va_control) should execute at half the rate
of the filter tasks.

In contrast, we do not use PRELUDE but instead deploy a
distributed synchronized cyclic executive. We derive a task
set for each node constrained by the relative rates of the
tasks, the WCET and the network transmission points-in-time.
Figure 2 illustrates an example distribution of the tasks in a
time-triggered network.

To generate the combined task and network schedule, we
follow a process similar to the one proposed by [21]. First, we
perform a static WCET analysis on the implemented ROSACE
tasks using the tool platin [18] and present the results in
Table II. The lack of a floating-point unit in the used hardware
platform significantly increases the tasks' WCET. In [13], the
authors report a WCET of 200 fhs for the aircrafcdynamics
while the presented implementation is estimated at 17.9 ms.
Consecutively, we derive valid periods for the tasks that aim

Listing 1: Implemented message structs containing the closed­
loop variables (see Table I) for each communication flow
(VL_DYN, VL_FILlER, and VL_CTRL).
typedef struct {

uint32_t step;
uint8_t enable_filter;
float engine_T;
float elevator_delta_e;
float Va;
float Vz;
float q;
fl 0 a t az;
float h;

} aircraft_state_message;

typedef struct{
uint32_t step;
uint8_t enable_control;
float h_meas;
float q_meas;
fl 0 a t az_meas;
float vz_meas;
fl 0 a t va_meas;

} filter_state_message;
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Fig. 2: Example ROSACE task execution flow over three nodes with software-based TTEthernet communication. Individual
node timing is not relative to each other.

Fig. 3: Distributed ROSACE setup over three nodes that are
integrated in a TTEthernet network.

synthesized on three Terasic DE2-115 FPGA boards [23J that
operate at a frequency of 80 MHz. The nodes are integrated, as
synchronization clients, in a TTEthernet network star topology
that is composed of a single TTE Chronos 18/6 Rugged
switch acting as a compression master and two Linux desktops
that act as the synchronization masters. Figure 3 shows the
experimental setup composed of the three distributed ROSACE
nodes interconnected through a TTEthernet network switch.
A logic analyzer is used to monitor the clock synchronization
precision and the task execution.

To enable our comparative analysis, we additionally execute
and measure the original ROSACE benchmark code 1 in
simulation time on a 64-bit i7-7700HQ CPU system running
at 2.8 GHz with 32 GB RAM.

1https://svn.oneraJr/schedmcore/branchesIROSACE_CaseStudy/c_posix_
implementation/

B. Runtime System and Task Scheduling

We perform a complete system analysis by collecting
statistics from the distributed schedules of the three nodes
during the benchmark execution time of 600 seconds. Table III
presents the gathered results of the performance of the pro­
posed runtime system. The dispatcher manages to execute jobs
with jitter below 10 liS compared to 32 liS of the software
system presented by [24]. The existing dispatcher jitter, is
hypothesized to be caused by reading the clock and searching
through the schedule table. Moreover, the computed schedule
is a candidate for further optimization by estimating tighter
bounds for the acceptance windows and network transmission
time. However, this is outside the scope of this work.

C. Clock Synchronization

We evaluate the distributed system's clock synchronization
relative to the TTEthernet network switch by generating I/O
pulses from the synchronization tasks on each node and the
hardware timestamp units when a valid PCF is received. By
comparing the time difference between the I/O pulse generated
by the arrival of a PCF frame and the I/O pulse generated
by the execution time of the synchronization task, we can
visualize and derive the overall synchronization offset of the
node. We measure the offset using a logic analyzer and present
the results in Figure 4. The nodes are synchronized to the
network schedule (reception of PCFs) to a measured precision
of R:; 100 its. While the observed synchronization of the
distributed task schedules relative to each other is :s; 50 its.

D. Quality of Control

The achieved quality of control of the presented design is
evaluated by measuring the step response of the aircraft during
the scenario of a 1000 m climb that starts at 50 seconds and
executes for 600 seconds. The aircraft has an initial altitude
of h = 10000Tn and requires a total of R:; 400 seconds to
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Fig. 4: Measured clock synchronization accuracy of the synchronization task I/O pulse relative to the arrival time of the
TTEthernet PCF I/O pulse.

TABLE III: Runtime system task execution measurements
from the three distributed nodes. 4

1.15 X10
l

.o
1'0

I,§ 1t.TINode Task Avg. t:.t (its) Avg. Jitter (its) Max. ET (its) 1.1 1 0 - ---------
1SYNC 79996.464 3.536 44189.587

ENGINE 19997.416 2.584 118.325 E 1 1
~105

4: ELEVATOR 19997.478 2.522 292.263 ..c 1 1
" 19997.074 2.926 13749.913 1
.. AIRCRAFT_DYN
".. VL_DYN_SEND 19997.404 2.596 110.600 1'8

LOGGING 19997.484 2.516 2656.088
VL CTRL RECV 79993.408 6.592 287.463 095

0 100 200 300 400 500 600SYNC 79991.664 8.336 14304.613
VL_DYN_RECV 19996.990 3.010 286.100 Time (8)
Q]ILTER 39996.480 3.520 133.000.. VZ_FTLTER 39996.480 3.520 133.000 230.1

~ AZ_FILTER 39995.624 4.376 133.000 -----<i:
VA_FILTER 39995.656 4.344 134.025
H_FILTER 39995.676 4.324 134.025 Ul 230
VL FILTER SEND 39995.700 4.300 103.750 lSYNC 79991.600 8.400 3272.250 CIl N
VL_FILTER_RECV 39996.108 3.892 286.100 > 229.9 >1

'0 VZ_CONTROL 79991.600 8.400 278.850..
1: ALTCHOLD 79991.600 8.400 129.2380

" VA_CONTROL 79991.600 8.400 103.488
VL_CTRL_SEND 79991.600 8.400 317.538 60 80 100 60 80 100

Time (8) Time (8)

reach the designated altitude with a reference vertical speed
V z = 2.5m/s and a reference airspeed Va = 230m/s.
Figure 5 presents the results of the distributed ROSACE
implementation, gathered by the LOGGING task, during the
commanded flight scenario. The results are compared against
the simulated execution on the Linux machine. The figure is
split into three sub-plots that describe the aircraft's ascend as
follows:

• The top plot presents the altitude curve during the entire
runtime of the scenario.

• The bottom-left plot presents a close-up view of the
aircraft's true airspeed step response during a 20 seconds
time-widnow around the commanded climb.

• And the bottom-right plot presents a view of the aircraft's
vertical speed response during the commanded step climb.

The presented design performs a stable flight-level climb

Fig. 5: Aircraft step response comparison between simulation
and distributed real-time system implementation. Commanded
1000 m climb starts at 50 seconds.

similar to the simulated implementation with a slightly higher
overshoot and response delay due to the reduced sampling
frequency of the implementation.

To validate the performance characteristics of the presented
distributed real-time system, we focus on the time-domain
performance specifications defined by the ROSACE case­
study. In [13], the authors use the same validation rules to
verify the correctness of the SIMULINK model performance.
Table IV presents the flight validation results of the presented
distributed system evaluation that executes in real-time and
compares them against a Linux implementation that executes
in simulation time. The results evaluate the performance of
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TABLE IV: ROSACE requirements validation and results
comparison

the flight regarding the vertical speed V z and true airspeed
Va quality-of-control against a set of objectives discribed in
Section II. The system performs well within the specification
bounds and with results very close to the simulated perfor­
mance of the Linux implementation.

VI. RELATED WORK
This section reviews recent related research in the domain

of distributed time-triggered system evaluation.
Synchronizing task execution with the underlying commu­

nication schedule has been advertised over an asynchronous
approach by [5] and has been explored in detail by [25], where
the authors present an SMT-based approach for synthesizing
combined schedules for communication and task execution.
The authors focus on optimizing the approach's schedulability
and using an earliest-deadline first scheduling policy evaluated
on a proprietary runtime system using a synthetic task set.
In contrast, our work focuses on designing and evaluating a
realistic closed-loop control application experimentally using
a complete open-source framework.

There is much significant research being carried out in
the field of optimizing time-triggered systems regarding com­
munication and scheduling, some examples being [26], [27],
[28]. To the authors' knowledge, few of these have illustrated
the design process of a realistic case study in time-triggered
embedded systems that evaluates the performance of a runtime
system and the underlying network, particularly in the case of
TTEtheruet.

An analytical view on time-triggered architectures for
avionic embedded systems is presented in [29]. The authors
present a time-triggered constraint-based calculus framework
for formal analysis of integrated modular avionics systems.
They present a formal analysis of an avionic landing-gear sys­
tem connected through a TTEtheruet network that can specify
the schedulability and the end to end delay of functional chains
properties of such a system.

A TTEtheruet-based flight management system is investi­
gated and modeled in [30]. The authors present a methodol­
ogy to model the individual components of a time-triggered
embedded system and evaluate the model in simulation using
the Ptolemy II actors framework [31]. In contrast, our work is
experimentally driven and presents the evaluation of a runtime
system that is implemented on an experimental distributed
system setup.

Property Objective
Vz:::; 10 s

PI 5 % settling time Va < 20 s

In [13], the authors presented the ROSACE case study of a
multi-rate longitudinal flight controller. The authors presented
a complete design approach from modelling the controller in
SIMULINK to implementing the application in a multifmany­
core executable using PRELUDE. The tasks were mapped to
three tiles on a many-core TILERA TILEMPOWERGX-36
platform [32] based on their periods. In this work, we exam­
ine and extend this approach to a distributed time-triggered
implementation. We evaluate an open-source framework to
derive and schedule a cyclic task set that we distribute in a
TTEtheruet network over three nodes.

Finally, in [24], the authors present a software-based time­
triggered system for automotive applications. It deploys a
buffering scheme for standard Etheruet controllers to support
time-triggered communication and evaluate the performance
and time-predictability of the end-system with synthetic traffic
flows. In contrast to our work, the authors do not evaluate a
specific benchmark control application, and thus they do not
evaluate task execution together with communication.

This work explored the design of distributing a closed­
loop control application on a TTEtheruet network using an
open-source time-triggered runtime system. Using the pro­
posed open-source framework, we were able to successfully
distribute and schedule the benchmark tasks on three nodes as
well as schedule the underlying communication.

We presented the ROSACE longitudinal flight controller and
the validation objectives of the benchmark. Consecutively, we
described the design process of distributing the flight controller
on a time-triggered distributed system and the implementation
details needed to achieve a functional and time-predictable
design.

Finally, we deployed and evaluated the runtime system in
an experimental TTEtheruet network and measured its perfor­
mance. The benchmark demonstrated the correct functionality
of the proposed framework, and the presented design was able
to pass the validation goals with tight synchronization and
minimal task jitter within 10p,s.

VIII. CONCLUSION

VII. FUTURE WORK

Distributing the ROSACE benchmark over a TTEtheruet
network using an open-source framework for time-triggered
communication allows evaluating the performance of different
communication protocols and scheduling policies using a
realistic closed-loop control application.

Industry 4.0 is enabling fog computing for industrial au­
tomation through the use of time-sensitive networking (TSN).
We identify the challenges involved in the control optimization
performance [33] and plan to explore the design extensions
of the proposed framework needed to integrate into a TSN
network and deploy the presented distributed ROSACE bench­
mark. This will allow us to perform a comparative analysis
of the design and performance between different underlying
network protocols and scheduling policies.

6.430 s 8.360 s
5.560 s 0.020 s

0.170 s 5.460 s
Os 0 s

3.443% 4.360%
0.014% 0.023%

0.973% 0.960%
0.004% 4.374e-04%

Linux Results Distributed Results

Vz :::; 6 s
Va < 12 s

Vz:::; 10 %
Va < 10 %

P3 Rise time

P2 Overshoot

Vz < 5 %
P4 Steady-state error Va ~ 5 %
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