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Abstract—The effective functioning of society is increasingly
reliant on supply chains which are susceptible to fraud, such
as the distribution of adulterated products. Inspection is a key
tool for mitigating fraud, however it has traditionally been
constrained by physical characteristics of supply chains such
as their size and geographical distribution. The increasingly
cyber-physical nature of supply chains, their autonomy, and
their data richness, extends their attack surfaces and thus
increases opportunities for fraud. However, it also presents new
opportunities for increased and dynamic inspection, which in turn
requires more targeted and flexible inspection regimes. In this
paper we explore opportunities to engineer adaptive inspection
of cyber-physical supply chains to support efforts to reduce
fraud. Through using structural representations of supply chains
(topological models) we propose defining optimal inspection zones.
Such zones circumscribe assets of interest to optimise observation
while reducing the intrusiveness of inspection. Using a motivating
example of adulterated pharmaceuticals and a proof-of-concept
tool we illustrate adaptive inspection, and surface challenges to its
realisation, such as value metrics, forensic readiness integration
and managing contrasting local and global perspectives.

Index Terms—adaptive, inspection, fraud, I4.0, supply chains,

I. INTRODUCTION

A Supply Chain (SC) comprises a network of entities that
collaborate to achieve the manufacturing and sale of a product:
mining raw materials and their refinement, manufacturing and
integration, and the distribution and sale of the final product
to the end consumer. Recent global events including the
COVID19 pandemic and turbulent political environments have
highlighted the fragility of SCs, and illustrated how dependent
society is upon their effective operation.

Unfortunately, SCs are known to suffer widely from fraud:
food [1], medicines [2] and electronics [3] SCs are common
victims. Fraud is a deceptive transfer of value [4], occurring
where observation and controls fail. Increasing globalisation
and the multitude of precursors required for modern products
creates layered networks of producers and consumers which
span the globe [2]. This complexity increases the area for
observation and therefore the deception attack surface, creating
an environment conducive to fraud. One technique used to in-
crease observation is inspection. Usually conducted for quality,
security, maintenance and audit, inspection may also be used
to detect fraud. However, inspection techniques are resource
intensive, and current solutions attempt to optimise strategies

with a cost-based objective function [5]. While inspection
of traditional supply chains is constrained by their physi-
cal characteristics, the data present in cyber-physical supply
chains presents opportunities for less-constrained inspection.
However, supply chains are evolving alongside the emergence
of an industrial transformation: Industry 4.0 (I4.0). The driving
force behind this transformation is enhanced technological
integration; not simply from the perspective of the SC, but
also its value chain (VC), which reflects all value creating
business processes and services [6]. I4.0 can be considered
as a way in which value chains are transformed to become
more integrated with customers’ needs [7] [8]. Horizontal,
vertical, and end-to-end integration across the complete value
chain are becoming both possible and inevitable [6] [9]. This
data rich integration permits autonomous and agile SCs that
are able to react to market dynamics and stronger customer
involvement required to remain competitive. As these variable
markets influence the value of the SC assets, there is a need
for more dynamic approaches to inspection. This introduces
new attack vectors and threats to I4.0 environments, giving
rise to novel forms of fraud that exploit these characteristics.
The I4.0 community has identified the dynamic structure and
autonomous decentralised management as key challenges to
the future of I4.0 SC and its security and, therefore, for the
mitigation of novel kinds of fraud [10] [6].

In this paper, we propose adaptive inspection to reflect
such dynamism. Building on our previous work on both asset-
centric adaptive security [11] and privacy zones [12], we
propose inspection zones to dynamically circumscribe assets
of interest and provide more effective inspection. The goal of
our approach is to achieve asset-centric adaptive inspection to
accommodate complex value networks inherent to the supply
chains of the future.

The rest of this paper is structured as follows: Section II
presents a motivating example of adulterated pharmaceuticals.
Section III provides a background of fraud in supply chain,
supply chain quality inspection, and future I4.0 supply chains.
Section IV proposes a topology-aware adaptive inspection
approach. Section V illustrates a running example with a
proof-of-concept and discusses challenges to its realisation.
Section VI concludes the work.

II. GLOBALISED PHARMACEUTICAL SC EXAMPLE

To motivate to our work, in this section we present an exam-
ple of globalised pharmaceutical SC based on the study in [2]978-1-7281-2989-1/210̇0 ©2021 IEEE



and illustrated in fig. 1. The materials, Active Pharmaceutical
Ingredients (API)s, are produced in East Asia (e.g. China),
the pharmaceuticals are manufactured elsewhere (e.g. India),
and then distributed for consumption worldwide. Packaging
and repacking occurs continuously throughout the chain. In
wealthy countries, large multi-nationals control the market;
while in lower and middle-economy countries the market
contains thousands of actors and control is decentralised. This
environment is highly dynamic to meet varying global demand.
Therefore, information regarding the SC and its actors is
generally opaque to most.

The SC actors will supply numerous jurisdictions with
different quality and regulatory standards, which have as-
sociated differences in value. For example, increasing the
level of an API to World Health Organisation standards can
double the cost of a product meant for a nation with less
strict requirements. Furthermore, while the industry is strongly
regulated in wealthy nations, regulation is extremely difficult
in larger, dynamic markets, due to costs required to operate
at larger scales in nations with comparatively low financial
resources. Inspection resource issues are particularly pertinent
due to the high complexity of this environment, and the lack
of motivation for producers to inspect, given the high cost
and low regulation. These factors cause products to frequently
mix across jurisdictions. Where products are of inferior quality
through negligence and adulteration, or are counterfeit due
to unethical use of packaging, products will be distributed
fraudulently. Fraud is driven by the economic motivations
to compete in this dynamic market. Fraud is also enabled
through poor observability of the SC structure, actors and asset
movements as a result of the highly complex environment and
divergences in manufacturing culture, languages and standards.

To provide inspection for mitigating fraud within this envi-
ronment, solutions would require accurate information about
the supply chain structure to determine the target of inspection.
Further information would be required regarding the assets
within that target (such as the machinery, staff, and movement
of goods) in order to determine the inspection policy. All
of these issues are even more complicated through the SC
geospatial-distribution causing inspection to be uneconomical.

We consider automated cyber-physical inspection ap-
proaches within I4.0 environments as a solution. We highlight
three key requirements: Data availability to describe the SC
structure, its processes and assets; SC Modelling techniques for
inspection analysis; and techniques for Inspection Planning
to determine the optimal time and place to inspect given
constraints.

III. BACKGROUND

In this section we review the notion of fraud in general and
relate it to SC fraud in particular; we also present background
on SC quality inspection and some on I4.0 SCs.

A. Fraud in Supply Chains

Fraud is an activity in which value is transferred from one
party to another through deceptive means [4]. The target of

Fig. 1. Globalised pharmaceutical supply chain.

this transfer is an asset which holds a perceived social or
financial value to both parties. Fraud is instigated by one or
more collaborating deceivers against one or more victims, be
they natural persons or organisational entities such as compa-
nies, NGOs or governments. Drivers of fraud are commonly
tangible economic reasons such as financial manipulation or to
bypass regulation. They may also be intangible due to culture,
high complexity, or irrational behaviour [13].

SCs are inherently value-driven where the precursors and
final products are assets which are all potential targets of fraud.
They also contain value in supporting assets e.g. machinery,
vehicles, people, IT, data, geographical space, contractual
agreements, social, corporate and public relationships. There-
fore this asset-rich environment creates a value-rich attack
surface suitable for varying forms of fraudulent deception. In
general, fraud in the SC could result in integrity violations of
any one of these assets [4] [14].

Threats to the SC are classified as originating internally
from the organisation, or externally from the network or en-
vironment [15]. Given the wide scope of fraudulent activities,
we focus and define SC fraud as an incident of fraud in
which the movement of assets between SC entities results in
a deceptive transfer of value. Fraudulent deception begins in
one entity and is complete once the asset has successfully been
transferred and approved by the receiving entity. The deceptive
transfer of value from the victim to the deceiver occurs as
a result of a SC assets transfer. This value could be taken
from one or more assets. For example, the asset transferred
being of lower value than agreed, or an entity’s public image
reduced due to substandard products. The fraud occurring
across organisational boundaries increases the complexity of
any subsequent investigation. Fraud that occurs internally to
an organisation, such as theft of assets by an employee, is not
focused on an asset transfer, and for our purposes, in this paper,
it is not considered SC fraud. However, an internal employee
who takes bribes to ignore a low quality product being received
or distributed is classed as SC fraud. In this instance the
employee is colluding with an external organisation.

Fraud should be considered during SC Risk Management



(SCRM) which allocates hard (physical) or soft (managerial)
controls according to the perceived risk [1]. Therefore, fraud
is enabled in the SC where controls have been inadequately
applied or risks not sufficiently considered or prioritised [16].
The assets listed previously can be targets for controls depend-
ing upon the type of fraud which needs to be reduced.

Quality Inspection (QI) is often used to verify product
integrity as it moves upstream and can be useful in detect-
ing instances of fraud. However, testing policies (technique
selection) are often known to the supplier and attempts to
subvert them are common [17]. QI is constrained by physical
SC characteristics such as the high volumes of assets, large
size and geographical distribution. As such, pervasive testing is
cost-ineffective. Therefore, sampling policies must selectively
choose when and where to inspect, where inspection resource
allocation is an on-going and key problem [18].

The cyber-physical nature of SCs brings further risks with
the increase of cyber attacks, yet it also creates the potential
for data-driven detection [19] [20] [21]. Downsides to these
approaches focus on the availability of suitable data, par-
ticularly within dynamic environments. Further complicated
by their cross-organisational and cross-jurisdictional nature,
proprietarity reducing interoperability and conflicts between
operation and information technologies. However, increasingly
integrated SC systems may promote opportunities to mitigate
these data-availability issues and allow more resource-efficient
inspection. In the next section we elaborate on QI and consider
a data-driven approach to promote its use for fraud mitigation
in emerging integrated cyber-physical SCs.

B. Supply Chain Quality Inspection

Inspection of assets, processes and people can be found
in many forms across the SC. QI is employed by both the
manufacturer and consumer of a product to verify if an
agreed upon standard or requirements have been met [17]. SC
partners may audit each other by inspecting facilities to ensure
they meet the standards agreed upon within their contractual
obligations [14]. Other assets including machinery, buildings,
electronics, vehicles and physical security controls may be
inspected to ensure they meet health and safety standards or
are operating correctly [22].

The basis of inspection requires: a target - an asset which is
valued by the stakeholders whose characteristics are verified
against instance specific requirements, and a corresponding
technique - which can interface with the target and provide
data to validate the requirements, which has an associated
cost and accuracy. Inspection also has one or more constraints
- mostly fixed and variable costs related to the inspection
process and its impact upon the nominal SC functions.

Targeted inspection is necessary as total observation is cost
inefficient while also eroding privacy and trust. The variety
of different SC assets illustrate the scale of possible loca-
tions available for inspection and corresponding techniques
required. Given the size and dynamic nature of SCs, the key
problem is in planning when, how, and where to inspect or
the inspection resource allocation problem [18] [17].

Approaches to manage QI resources often have statistical
basis [17], as defects in products and the processes that
manufacture and inspect them are considered inevitable due to
the stochastic properties of the natural world [23]. Inspection
can occur considering a probability distribution. Where the
cost of inspection can be balanced against the probability of
a defective product occurring and/or errors in testing methods
[24]. Avoiding QI to save costs is known to have a detrimental
effect in the longer term [25].

Yan et. al. highlight that statistical methods are thwarted by
intentional human action such as defrauding a testing tech-
nique [17]. They use Belief Desire Intention (BDI) modelling
as a Decision Support System (DSS) to consider when an actor
may choose to defraud inspection. They take this approach
further by illustrating that DSS can reduce incidences of fraud
through learning intentions from QI and instigating contractual
changes in response [18]. A similar relationship between the
contract and QI is found in [26]. Although the authors in
[27] evidence that inspection policies can influence a decision
to commit fraud in cold-vaccine SCs, sometimes excessive
inspection does not. While in [28] the authors illustrate that
QI alone cannot prevent defrauding, as deferring payment or
other incentives are necessary. From the above work it can be
seen that QI can be employed to mitigate fraud in the SC, al-
though traditional approaches are still resource constrained by
physical inspection processes and should consider additional
human motivated factors to be successful.

C. I4.0 Supply Chain

I4.0 SC seeks to accomplish the same goals as the traditional
SC. It operates upon data-rich, integrated, autonomous and
decentralised environments built upon the principles of multi-
dimensional integration [29]: Horizontal inter-corporation co-
operation across departments; Vertical within the factory; and
End-to-end in the form of product data across the VC.

The migration from a manufacturing environment with
low digital technology penetration to one which is strongly
automated is a primary indicator of I4.0 maturity. Whilst the
highest level of maturity can be considered complete once
this digital penetration is integrated across the entire VC [29].
The authors in [10] and [30] model this evolution from the
perspective of the IEC 62264 automation pyramid yet with the
inclusion of cross-organisation decentralised decision making.
The once linear SC model has now evolved into a nonlinear
transfer of goods across a network which operates across
a unified organisation. Moreover, value drives the dynamic
nature of the SC as a result of greater horizontal and end-to-
end VC integration [7]. In contrast to the SC which involves
the physical movement of goods from one point of the chain to
another, the VC is responsible for the creation of value at each
step. Therefore as an addition to the decentralised SC model,
I4.0 contains decentralised VCs or value-networks. Traditional
SC environments, which were a linear process composed of
distinct entities, is now moving to a decentralised, non-linear
process where entities are integrated through digital means.
This creates a fundamentally different landscape, requiring



new processes for analysing fraud which consider these value-
driven structures. The data-rich I4.0 environment contains
cyber-physical interfaces into all assets to accommodate in-
tegration, yet integrated approaches to inspection planning in
I4.0 are generally absent from literature [5].

IV. TOPOLOGY-AWARE ADAPTIVE INSPECTION

In this section we propose adaptive inspection of supply
chains. We propose the creation and maintenance of SC
topologies to represent SCs and their relevant context. Based
on these topologies and the key assets of value they represent,
we derive optimal inspection zones that also account for
additional constraints such as privacy and cost. We define
an inspection zone as a precise fragment of a supply chain
topology which will contain one or more assets. It can be
generated computationally - and optimally - around assets of
interest according to the value and risk of fraud associated
with the assets, while also accounting for constraints such
as the cost of executing the inspection. Inspection costs are
contextual and can be fixed or variable. They can involve the
cost of executing the technique, but also the impact of the
inspection through disrupting processes and reducing trust.

Figure 2 presents the overall concept based upon the Moni-
tor Analyse Plan Exeute-Knowledge (MAPE-K) feedback loop
reference model [31]. The lowest layer is the SC, which con-
tains the physical structure and the I4.0 data integration layer.
This layer supports the topology layer that builds SC topology
models, which are stored in the knowledge base. The topology
models represent the structure of the SC (including its assets)
and can be monitored for changes, reducing observability.
The models contain information about actors, their assets
and those assets that move between them. They also contain
information about the relationships between these components
such as their reachability and containment which identify the
value of inspecting a particular point. The topology models
are analysed to assess the value of different assets and to
determine if and what should be inspected. To improve obser-
vation of the environment, inspection is planned of particular
inspection zones. Finally, the inspection plans are executed
through highlighting areas of concern in the topology layer.
The topology layer then translates these locations into cyber-
physical inspection locations where they are acted upon in the
cyber-physical SC. The result of which updates topologies in
the knowledge base to inform future inspection decisions.

A. Generating Topology Models

SCs describe a typically linear process in which assets
move through a sequence of processes causing a corresponding
sequence of state changes. We consider them as spatiotempo-
ral with the SC structure corresponding to the dimension of
space and the changing state of the assets across processes
representing time. Figure 3 illustrates a SC, represented as
a Directed Acyclic Graph (DAG), where a manufacturing
process has been chosen from the level 1 SC topology (see mo-
tivating example in fig. 1). The vertices in the DAG correspond
to models of physical processes within the manufacturing

Fig. 2. Topology Aware Adaptive Inspection of Supply Chains

process, which receive assets as input and will then undergo
a state transformation according to one or more states of
the cyber physical process For example, consider node 2.1
Warehouse and 2.2 Milling Machine from fig. 3. The asset in
fig. 4 will change state from packaged to raw according to the
process state 2.1:unloading from 2.1 Warehouse and then the
2.2:loading process state from 2.2 Milling Machine will cause
the asset to move to state processing. The approach takes data
of the physical, cyber and process structures of the supply
chain and generate new topology models, which describe the
combined cyber-physical SC processes in a way that represents
the relationship between them such as their containment.

Formally, we define the supply chain topology as
a tuple SC = (P,E,H, µ, F, δ,K, κ) where: P is
a set of combined cyber-physical SC processes (e.g.
{MillingMachine, ShippingDepot}; E is a list of ordered
relations between the processes E ⊆ P × P ; H is a set of
process identifiers; µ is a mapping between processes and their
attributes µ : P → H; F is a set of unique flags used to main-
tain a track of inspection outcomes (e.g., a negative, neutral or
positive inspection {−1, 0, 1}); and δ : P → F is a mapping
between processes and flags. h ∈ H is used to identify and
verify the processes (such as a unique hash of the process
function), to ensure the relations δ are current. p ∈ P may be
another topology representing its sub-processes or ∅ depending
on the level of detail required to the model. This permits multi-
level topologies. Finally K is a set of container environments
(e.g. {MachineRoom1,MachineRoom2}, and κ is a map-
ping between process p and containers k ∈ K to illustrate
their containment.

As an asset moves through the SC processes, it will undergo
a sequence of state changes which may adjust its value,
although the particular order and number of states is unknown
due to the dynamic nature of the smart manufacturing envi-
ronment. Formally, a tuple AST = (A, V, σ, C, τ) where A



is a set of asset states, V is a set of value changes such that
V ⊂ R+, σ is a mapping between asset states and changes
in value σ : A→ V , C is a set of cyber physical SC process
states e.g. {unloading, loading,milling}, and τ is a mapping
in which the SC process transmutes an asset from one state to
another τ ⊆ A×C×A. A subset of an asset model in the SC
in fig. 3 could be represented as a Labelled Transition System
(LTS) as in fig. 4. In the I4.0 context we propose that these
models can be autonomously built using data available from
the integration of manufacturing and supply chain systems,
and assume this data is available for this purpose in the rest
of this work.

B. Monitoring SC Topology Models

As greater observation reduces fraud, the goal of the inspec-
tion is to improve observability. In this stage, the generated
topology models are monitored to identify significant changes.
This could include the structure of the SC changing due
to factories re-configuring, new suppliers entering the SC,
transport routes closing, smart products changing their path as
a result of changing customer needs, or machine configuration
changes as a result of updates. In the SC topology given
previously, the unique attributes H will be used for this
comparison, typically storing a cryptographically secure hash
of identifiable I4.0 data, and compared using the relevant hash
function (e.g. SHA256) [32].

C. Topology Value Analysis

The SC topology models provide the inspection surface with
a set of spatio-temporal coordinates suitable for inspection.
An analysis of this inspection surface determines the value for
inspection, which can be later balanced against the cost. Value
analysis must be computable at varying scale to permit timely
operation while considering the environment and its context.
Value analysis may take many forms. We first analyse the envi-
ronment’s structure using degree centrality, which indicates the
importance of a node according to its connections [33]. This is
useful as a higher number of connections correlates to a higher
level of observability of the network through observing the
input and output of different processes. This approach is less
intrusive than inspecting directly since it reduces the disruption
and cost, and increases the value of the inspection.

The approach selects all processes within the topology that
are suitably flagged according to previous inspections. Q =
{p : p ∈ P ∧ δ(p) > 0} where δ(p) is given in equation 1.

δ(p) =


−1 if p inspection was negative
0 if p inspection was positive
1 if p has not been inspected
2 if p should be prioritised for inspection

(1)

Following the selection of process, centrality is calculated
in the normal way for each q ∈ Q, CD(q). The value
model is a tuple VM = (X,λ), where X is a set of
centrality values multiplied by corresponding contextual value
x ∈ X = q · v with v ∈ V as previously defined contextual

value in the asset model. Finally λ : X × A maps the asset
state to its combined value. The contextual value acts as a
multiplier, whose sensitivity will be adjusted according to the
requirements. A product with high financial value would be
reflected in the context and thus scale the value accordingly.
Whether the optimisation would seek a high or low value is
scenario-dependent. Cases of theft could consider high value
and adulteration low. In I4.0 environments such information
would be available in the form of asset models (e.g. [34]). We
assume the availability and usability of this data for inspection
analysis.

D. Inspection Zones Planning

Once the value analysis has been computed, inspection can
be planned by defining inspection zones around one or more
assets according to available inspection resources. Inspection
Zone Planning (IZP) involves selecting a subgraph of the SC
topology according to the value of inspection against the cost.
IZP is a combinatorial optimisation problem and, therefore,
a variety of search-based solutions may be applicable. IZP
could be considered as an instance of the knapsack problem
[35], with the purpose of maximising the value of inspection
associated with the asset state’s value. This is similar to the
value model (VM ) within constraints of inspection cost, which
correlates to the knapsacks total weight constraint. Consider
the asset states a ∈ A, values xi with costs ci, maximum
inspection cost Z. Equations 2 and 3 denote the IZP.

Max
|A|∑
i=1

xiai (2)

Subject to
|A|∑
i=1

ciai ≤ Z and a ∈ {0, 1} (3)

In order to find a solution to IZP, the cost of inspecting each
location and the maximum cost allowed must be calculated
from costs directly associated with the inspection process and
contextually associated with the environment. The complexity
and scale of these costs are out of the scope of this paper. Ca

the cost of inspecting asset state a is simply the sum of the
elements of all direct Da and contextual Ka costs.

E. Executing Inspection

Inspection can be executed based on the defined processes
and assets. The result of the execution will inform the next
iteration of the MAPE-K loop. It can exclude places previously
inspected and flag processes adjacent to those which are
subverted to ensure completeness. The inspection function ι(a)
returns the result of the integrity evaluation of a process and
asset (positive or negative), which is added to the topology
model.

V. RUNNING EXAMPLE AND DISCUSSION

In order to consider the example in Section II. Suppose
some pharmaceuticals were identified as low quality through
consumer complaints and one manufacturing factory was
chosen for inspection.



Fig. 3. A cyber-physical supply chain topology represented as a DAG. Illustrating Level 2 of a topology contained within level 1, with two further containment
relationships in machine room 1 and 2.

Fig. 4. A subset of an asset model represented as a LTS undergoing state
changes from supply chain process with example contextual value changes

Consider monitoring a version of the SC topology from the
example of the factory in fig. 3 and noticing that observability
of the network is low as all flags are set to 1; likely due
to a considerable change or due to no prior inspection. A
value analysis is performed to determine where best to inspect.
Degree centrality analysis is first used, then contextual value
from the asset model is added. In this case 2.5 Packaging
Machine is reduced by 50% as it is unbranded and, therefore,
not highly valued and less relevant to an adulterated chemical
process. Meanwhile 2.2 Milling Machine is increased by 20%
due to high operational costs and the high negative effects of
doing it incorrectly. Assume contextual costs (kj) to 0.2 for
all inspection points, and direct costs arbitrarily 0 ≤ di ≤ 1.
Table I lists the final parameters for all flags δ(p) = 1 in the
first iteration. Consider all points contained in Machine Room
2 with a higher inspection cost due to its location.

TABLE I
INPUT PARAMETERS FOR STARTING ITERATION

Proc. (p) Centr. (q) Asset (a) (v) Val.(x) Cost (c)
2.1. Wareh. 0.2 Packaged 1 0.2 0.4
2.2. Milling 0.4 Milled 1.2 0.48 0.46
2.3. Granul. 0.6 Granulated 1 0.6 0.57
2.4A Press. 0.4 Pressed 1 0.4 0.89
2.4B Press. 0.4 Pressed 1 0.4 0.89
2.5 Pack. 0.4 Packaged 0.5 0.2 0.59

Suppose the integrity of processes 2.Milling and 3.Granu-
lation as subverted. We implemented a Python script which
models and analyses the topology using the NetworkX library

[36], and a greedy approach to solve the IZP with maximum
inspection cost Z = 1. Table II presents the results of the five
other iterations, with the an iteration number (N ), costs and
values for each zone, and values of the flags for the processes.

As shown in table II, 2.3 Granulation and 2.1 Warehouse
are first chosen for inspection according to the maximum
value. Inspection identifies 2.3. Granulation as subverted and
flags the adjacent nodes as priority (δ(p) = 2) for the next
iteration to ensure that all surrounding subverted processes are
discovered. In the next iteration it identifies 2.2 Milling also
as subverted and 2.4A Pressing and 2.4B Pressing as clear.
Up to iteration N = 4, the results show the identification of
the subverted processes as δ(p) = −1. In iteration N = 4 we
observe the ability to adapt to the changing environment. The
discovery of the subverted nodes causes the factory to reset
their configurations, this has the effect of changing the unique
attributes and the flags are reset to 1 in 2.2 Milling and 2.3
Granulation, in iteration 5 as the topology has changed. The
IZP then selects 2.3 Granulation for inspection where it is
now identified as not subverted.

A. Discussion

Comparison and Performance. Adaptive Inspection for fraud
is suitable, scalable and effective for the environment when
compared with alternatives [17] [23]. Due to the complexity of
cyber-physical environments, topological modelling is crucial
to correctly define the inspection surface where previous works
fail to account for this interplay and properly leverage the
cyber domain [17] [18] [26] [27] [28]. Alternative solutions to
inspection resource allocation [23] involve a statistical analysis
of product sampling or inspection station placement which fail
to take into account human-motivation such as our application
of value-analysis, which is crucial for fraud. Furthermore,
inspection of I4.0 environments must be adaptive due to
environmental flux such as re-configuring factories. Consid-
ering inspection as a search problem, comparative solutions to
search for a node within the graph, (e.g. a binary search) may



TABLE II
ADAPTIVE INSPECTION OF THE RUNNING EXAMPLE ILLUSTRATING 5 ITERATIONS OF THE MAPE LOOP

Inspection Zone Planning Flags
N Zones Cost Value 2.1Warehouse 2.2Milling 2.3Granulation 2.4APressing 2.4BPressing 2.5Packaging
1 {2.3 Gran., 2.1 Wareh.} 0.97 0.67 0 2 -1 2 2 1
2 {2.2 Milling} 0.46 0.48 0 -1 -1 2 2 1
3 {2.4A Pressing} 0.89 0.4 0 -1 -1 0 2 1
4 {2.4B Pressing} 0.89 0.4 0 -1 -1 0 0 1
5 {2.3 Granulation} 0.57 0.6 0 1 0 0 0 1

-1 = Negative inspection, 0 = Positive inspection, 1=Not yet inspected, 2 = Prioritised for inspection

need to be restarted in case of changes. Therefore, inspecting
dynamic I4.0 environments for fraud in a non-adaptive way is
costly with the potential of not finding a solution. Given the
data-intensive nature of adaptive inspection it will be essential
to implement the system while being mindful of any excess
resource overhead.

Value vs. Values. SCs are driven by the value of assets,
products and the chain of value producing businesses services.
Key to this approach is the application of value (such as
money) as a means for identifying human motivated activities
such as fraud. The high complexity of these values pose
challenges to their collection and analysis. Therefore, devel-
oping and evaluating ways to identify, analyse and compare
contextual value within smart manufacturing environments is
crucial to this ongoing work. However, this can be at odds
with supporting human values, that aim to ensure that systems
are designed, developed, and deployed responsibly, reflecting
the values of the stakeholders, its users, and society. Ignoring
human values in SCs can have negative economic impact,
cause reputation damage, and cause systems to be developed
with inherent bias [37]. Therefore, a key challenge is to
ensure that SCs build in, maintain and guarantee the values
of their stakeholders. Additional challenges arise when SC
stakeholders have divergent values, or disparities that give rise
to adversarial behaviours that enable fraud [2]. The SC in
the motivating example stretches across multiple jurisdictions
and continents with clear cultural and linguistic differences. If
inspection is to support the needs of all stakeholders and to
be a benefit and not a hinderence to the SC integrity, then it
must consider human values. It is necessary to ensure that base
measurements of value also consider human values, and that
these metrics are complimentary and not contradictory. Tech-
nical solutions must be developed to identify, operationalise
and negotiate human values.

Local and Global. SCs may be considered as systems
of systems, in which each system is capable of operating
independently of the wider chain and having independent
goals. Inconsistencies between local and global goals can
give rise to conflict between systems. Identifying and man-
aging conflicts between perspectives is a key challenge to
ensure that inspection supports the needs of all stakeholders.
The adaptive inspection process will differ depending upon
whether it should support the goals of one SC actor (local)
or the entire SC (global). This will introduce issues related
to decentralisation of the adaptive feedback loop, which is

an ongoing challenge in this field [38]. As shown in our
pharmaceutical example (see Section II), the inspection pro-
cess supports the distributor and consumer, but less so the
manufacturer. To achieve decentralised adaptive inspection,
data availability needs to be further stressed, as components
of the system will likely be operating in different geographical
spaces and timezones, and with a different perspective of
the data. Coupled with the volatility and scale associated
with data in smart manufacturing environments, ensuring data
synchronisation will be crucial.
Forensic Readiness. Forensic readiness (FR) refers to the
ability of an organisation to collect and store digital data,
proactively, in order to maximise its use while minimising
costs of future investigations [39]. In case an inspection dis-
covers serious problems that require escalation to full internal
or external forensic investigation, relevant data may not be
admissible in a court of law due to tampering or improper
handling (e.g., a broken chain of custody). Without FR, data
may not be available at the time of an investigation due to
its volatility [40], which may mislead to wrong conclusions.
In the pharmaceutical example, once a subverted node is
discovered, the incriminating data about that node should be
forensically acquired and stored. However, the smart-factory
may wish to resume operations quickly to prevent financial
losses. Even with data being available, it can be arduous to
identify relevant data among the large amount of data produced
by a SC. The first challenge is the resource intensive nature
of collecting and storing forensically sound data given the
large scale and complexity of SCs. This is a target for abuse
given its potential for privacy invasion. Further challenges
lie with the interoperability of these systems. Systems will
need to negotiate and manage forensic ready data formats
and authorisation capabilities. Novel protocols and schemas
will need to be developed or adapted to ensure seamless
and transparent integration between forensic ready systems,
in order to ensure standards are maintained within the SC.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed adaptive inspection to provide
more dynamic observation of I4.0 SCs for mitigating fraud. We
further suggested that inspection zones can provide a building
block for more targeted and optimised adaptive inspection. We
illustrated the approach through a Globalised Pharmaceutical
example and derived an agenda of research challenges. In
future work we will evaluate the approach in real case studies
in terms of its performance, cost and effectiveness under



varying SC dynamics. We also plan to expand the work
to support the identified challenges in particular support for
human values and inconsistencies between local and global
goals in complex SCs.
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