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Abstract—Remote monitoring and control of factory equip-
ment is increasingly attracting interest since it promises a
more streamlined and therefore cheaper system operation and
maintenance. The geographical distance between a factory and
its control center, however, may influence the Quality of Service
parameters of the network connections which might stymie the
overall control process. To get a better understanding of these
potential issues and their impact, we conducted a series of
measurements over varying distances for the remote control,
operation and simulation of Automated Guided Vehicles (AGVs)
that are typical units in a modern factory environment. To achieve
these tests, we defined three architectural patterns reflecting local
and remote connections as well as the usage of cloud-based
services. Applying these patterns, we connected the Factory of
the Future at the Aalto University in Finland with the VxLab
at the RMIT University in Australia and the Microsoft Azure
cloud in the Netherlands. This allowed us to measure several
Quality of Service networking parameters for the communication
over short, medium, and very long distances. In this paper, we
introduce the architectural patterns and the settings of our tests.
Moreover, we present first empirical results and discuss their
impact on the remote control of AGVs.

Index Terms—Automated Guided Vehicles (AGVs), architec-
tural patterns, cloud computing, remote control, operation and
maintenance, virtual private networks (VPNs)

I. INTRODUCTION

Remote operation, maintenance and, to some extent, com-
missioning of factory or mining equipment has gained in-
creased attention in the last decade. This holds particularly for
the manufacturing, material handling, and mining industries
(see, e.g., [1]). The remote operation is supported by rising
levels of digitization, in particular by trends such as Industry
4.0 and the Industrial Internet of Things (IoT). Also, recent
events such as the COVID-19 pandemic increases the attrac-
tiveness of such technologies since skilled technicians may
not be available, close contact between humans is avoided,
and travel needed to maintain service or supply chains may
be disrupted.
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Nevertheless, the successful use of remote maintenance and
operation is subject to some important conditions. A system
must respect the needs of human operators and technicians
who need to be able to act in real time. In addition, a re-
mote control system has to incorporate existing infrastructures
that are operated using legacy application architectures and
protocols. Also the data to be transferred can be rich, e.g.,
when not only sensor values and operator commands but also
video streams, that enable the human operator to monitor the
operation process visually, have to be transmitted. Finally, a
potentially large number of autonomous entities such as AGVs
and mobile robots may be used on a plant site often in the
vicinity of humans, which may afford immediate reactions
under very hard real time conditions.

All the aspects make high demands on the performance of
the used networks. This is further complicated by the fact that
the underlying networks connecting the data producers and
consumers, often comprise a variety of wide-area and local-
area computer networks (such as 5G, WiFi, and field buses).
Moreover, various cloud and edge data processing techniques
might be involved.

One often useful way to meet these challenges is to replicate
the situation locally on the operator’s control center in order
to anticipate potentially critical developments in due time.
Such technologies as digital twins and online simulation
[2], synchronised with the physical process, can be seen as
elements helping to find a solution.

The core of any solution, however, is to be sure that the
networks connecting a plant with a control center fulfill certain
dedicated Quality of Service (QoS) parameters. Only then,
we can guarantee that the technical means allowing us to
react timely on critical developments are available. To address
the complexity issues of the computer networks mentioned
above, we defined a set of architectural patterns that are
introduced in this paper. These patterns cover some typical
network layouts for remote control. In particular, both local
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and remote connections as well as the use of cloud services
are reflected.

Based on the architectural patterns, we further present some
initial tests, in which we gathered QoS parameters across three
complicated communication and computing infrastructures.
We see the results of these tests as a starting point to investi-
gate the entire remote failure resolution scenario for a set of
AGVs. The equipment used for our tests resides on two sites:
The Factory of the Future [3] at the Aalto University in Espoo
(Helsinki), Finland, and the Virtual Experiences Laboratory
(VXLab) [4] at RMIT University in Melbourne, Australia.
Furthermore, the Microsoft Azure cloud with its hosting site
in Amsterdam, the Netherlands, is used. We present empirical
results on latency, throughput, and availability that shall serve
as a guide for other sites and for our own future extensions.

The article is structured as follows: After sketching some
related work in Sect. II, we introduce the architectural patterns
and the equipment used in Sect. III. Thereafter, the description
of the conducted tests is presented in Sect. IV. In Sect. V, the
results of these tests and their impact on the use of remote
control technologies is discussed followed by some concluding
remarks in Sect. VL.

II. RELATED WORK

In previous work [5], we connected the visualization in-
frastructure of VXLab [4] with a Lego Mindstorms-based
train system that was positioned in Trondheim, Norway [6].
This connection was based on the popular server-based IoT
protocol AMQP [7] and allowed the remote monitoring and,
with some time-based limitations, controlling of the trains
from Melbourne. We installed a remote AMQP server in
the Australian cloud infrastructure Nectar [8], which was
connected to both the VXLab and the controllers and sensors
used in the trains. Status information like the current position
and speed of a train on a track or the settings of the switches,
was directly sent to the remote AMQP server, which made
direct monitoring from the VXLab possible. Likewise, control
commands issued at the VXLab were sent via the remote
server to the controllers on the train system where they were
directly executed.

To get an idea about the transmission delays, intensive round
trip time tests were carried out, see also [9]. Figure 1 depicts
a 24 hour test between the lab in Trondheim and the remote
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AMQP server in the Nectar cloud. Here, a ping message
was sent every two seconds for a whole day to get an idea
if the round trip time is fluctuating. The figure reveals that
the transmission delay was quite stable between 350 and 360
milliseconds. We experienced only very few fluctuations that
never exceeded 880 milliseconds. Since we used the Internet
infrastructure available at NTNU and the VXLab, and there
are few distances larger than the one between Melbourne
and Trondheim, these results seem promising for carrying out
remote monitoring and control of technical systems.

The facilities of the VxLab were also utilized in [10]. Here,
we investigated a software architecture for controlling robots
that take advantage of the equipment offered in the VxLab
(see Sect. III).

Profanter et al. [11] compare OPC UA, ROS and MQTT
with respect to performance aspects. This paper concentrates
on protocol evaluation, while we focus on architectural pat-
terns.

III. ARCHITECTURE

Our tests follow three main architectural patterns that are
suited to be used in IoT and Industry 4.0 contexts. They are
depicted in Fig. 2.

The access to many IoT devices is nowadays provided
by cloud-based services, see, e.g., [12]. This is reflected by
the cloud architectural pattern on the left side of the figure.
The sensor readings and actuator commands of an AGV can
be remotely accessed by devices using cloud data centers.
The communication between these centers and the AGV is
provided by a Virtual Private Network (VPN) that runs based
on the Internet.

Remote access on AGVs can also be carried out by con-
necting them directly with the control devices instead of using
a cloud. This is addressed by the remote architectural pattern
shown in the center of Fig. 2. Here, the network is also realized
by VPNs running on the Internet. The main difference is



Fig. 3. Industrial AGVs at the Aalto Factory of the Future

that the AGV is directly linked with a control unit and not
a cloud service. In the last years, a number of specialized
communication protocols for IoT and Industry 4.0 applications
such as MQTT [13] and AMQP [7] emerged. ROS uses topics
for this purpose. These mostly server-based protocols vastly
facilitate the use of the remote architectural pattern.

Of course, the access can also be local which is still the
predominant way to operate AGVs. The local architectural
pattern on the right side can be used for this case. As a
mobile device, the AGV is connected with its control unit via
a Wireless Local Area Network (WLAN) either by a direct
peer-to-peer connection or, as shown in the figure, using a
wireless bridge.

As mentioned in the introduction, we use the Aalto Factory
of the Future , the VxLab, and the Microsoft Azure cloud to
connect devices via the patterns introduced above.

The Aalto Factory of the Future [3] is a facility for research,
innovation and educational projects at Aalto University. In
particular, software aspects of flexible, reconfigurable man-
ufacturing scenarios are studied. Figure 3 shows two AGVs.
One is a MIR 100 that can, e.g., be connected to laptops and
Raspberry Pi single board computers also residing at the Aalto
University using the local architectural pattern.

The VXLab [4] is placed on the city campus of the RMIT
University. It was developed to explore themes of software ar-
chitecture and testing for remote monitoring and collaboration
in the control automation industry. The lab consists of industry
and collaborative robots, a seven meters long tiled display
wall, and virtual reality equipment. These units are augmented
by dedicated servers in the Cyber-physical Simulation Rack
(CSRack) facility that consists of HP ProLiant blades in an
RMIT data center running Ubuntu GNU/Linux. The CSRack
hosts several projects including the Gazebo simulation engine
(ROS Melodic, Ubuntu 18.04). Further, the VXLab has another
MIR 100 as well as Rosie, the integration of a Baxter collab-
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Fig. 4. CSRack-hosted robot simulation of the Baxter robot with a mobility
base

orative robot with a Dataspeed mobility base. Figure 4 depicts
a screenshot of a running simulation of Rosie. Combining
these units with those in Helsinki allows us to test the remote
architectural pattern over a really long distance.

IV. TEST DESCRIPTION

The software to test the network parameters was imple-
mented in a Python 3 script. To execute the automated test,
a device needs to invoke this script indicating its role as a
server. Then, another device activates the testing script with a
specific set of parameters in order to act as a client. Parameters
like the number of testing iterations or the IP address and port
of the server are necessary to launch the test. A single test
runs automatically every minute until it reaches the predefined
number of iterations. At the end of each test run, the results
are logged in a database file hosted by the client device, tagged
with the UTC time of execution.

Three relevant QoS parameters are tested: First, the latency
L is examined. For that, the well-known networking utility
ping is used 10 times with its default 56-bytes large packets,
and the arithmetic mean of the response times is computed. If
t,(k) is the response time of the k’th ping run, the latency is
therefore calculated as follows:

1 10
L= ;tp(k) 6))

Second, the throughput 7" of data via TCP connections is
tested. To achieve that, the points of time ¢y, when a con-
nection is initiated, and ¢, when its termination is confirmed,
are extracted. When a TCP connection is established, we send
the content of a buffer ¢ times before ending the connection.
Moreover, we experiment with different buffer sizes B that
can be set to 1, 2, 4, 8, 16, 32 and 64 kilobytes. We can
calculate the throughput in the following formula:
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The TCP connection used in our tests was implemented by
the Sockets module on Python.

Third, the script calculates the connection availability «. It
corresponds to the ratio between successfully completed tests
to all tests conducted. We consider a test as successful if the
pings in the latency tests are confirmed and the throughput
implementation does not fall below a certain threshold. Be s,,
the number of successful and s; the number of all tests carried
out, the availability can be computed as follows:

o= 3)
St
At the end of the preselected testing iterations, the script
computes the availability based on the latency and throughput
tests logged during the various test runs.

Our hypothesis is that using the existing AGV technologies
with computing and interfacing resources, that are realized
by remote agents, will lead to some problems due to subpar
QoS parameter values. In particular, we fear that the higher
complexity brought by the extended geographical reach of the
data network and other external factors not under control of the
AGYV user may lead to slower data transfer times and a reduced
availability that may jeopardize the proper execution of the
AGV. To find out if our assumptions are valid, we carry out the
proposed tests that also allow us to evaluate and compare the
influence of the architectural patterns introduced in Sect. III
for the use case involving remote agents.

To test our hypothesis on different geographical bases, we
carry out three test scenarios that are highly different with
respect to the distances between an AGV and its remote agents.
The first scenario is based on the remote architectural pattern.
It reflects a city environment, where the separation of the
agents is less than 20 kilometers, but there is not a dedicated
channel of communication. The second scenario incorporates
a cloud environment following the cloud architectural pattern.
It connects devices at the Aalto Factory of the Future with
one of the Microsoft Azure data centers in Amsterdam /
Netherlands which are approximately 1,500 km apart from
the Helsinki Area. The third scenario is used to test the
connectivity over vast geographical distances. Here, we use the
remote architectural pattern to link Helsinki with computing
resources located at the VXLab of the RMIT University in
Melbourne, Australia. The geographical separation between
the two points is approximately 15,200 kilometers.

Carrying out the three scenarios will provide us with a better
idea if the AGV realization using remote agents is feasible in
practice. Moreover, we like to study the impacts of various
external influences on the behavior of the experimental sce-
narios. Here, we contemplate the following items as influential
for the test results:

1) Buffer size and total amount of data: The data traffic via
a wide-area network is usually realized by a sequence
of data packets travelling to their recipient via a number
of routers that store the packets temporarily in buffers.
To find out the effect of the amount of data sent in such
transmissions via routers, it is worthwhile to vary the

above discussed buffer sizes B and the number c of
transmission iterations in a TCP connection. To deter-
mine the value of the buffer size and the total amount
of data, this experiment takes a previous experience
presented by Manzi et al. in [14] as reference. The
authors reported the amount of data required to stream
velocity commands remotely for a mobile robot (DoRo).
Their robot operates based on the ROS framework.
Velocity commands have to be transmitted 64.5 times
a second while the size of each message is 236 bytes.
Thus, considering an overhead of 30%, the network
connection has to guarantee the transmission of around
20 kilobytes per second. In our tests, we replicate this
data transfer behavior by using a buffer size of 2 kB
and transmitting its content 10 times in a single TCP
connection.

2) Time of the day and network load: As proposed for
the cloud and remote architectural patterns that were
presented in Sect. III, we use VPN connections that run
on external Internet connections. An important factor
for the connectivity parameters mentioned above is the
performances provided by the Internet Service Providers
(ISPs) on the way which may heavily depend on the
network load used by the other customers of an ISP.
The network load may vary over the day as it tends
to be higher in the working hours than, e.g., at night.
Thus, we like to find out if certain periodic patterns can
be recognized which would allow us to predict at which
time of the day the connectivity parameters might not
be sufficient to guarantee an effective AGV operation.
To analyze and identify the existence of such periodic
behavior, the testing script will run for a whole weekday,
i.e., 1440 minutes.

3) VPN setup: The VPN software of choice for the cloud
and remote architectural patterns is OpenVPN, since it is
a free and widely supported open-source Secure Sockets
Layer (SSL)-based solution. The community edition of
OpenVPN, however, has multiple features and versions
that may influence the parameters of its connections. For
instance, the newest version 2.4 offers a significantly
enhanced behavior than the standard version 2.3 which
is the default version pre-loaded for popular operative
systems such as Ubuntu 16.04. In the result section
of this paper, we will refer to the OpenVPN setup
parameters used in the various tests.

V. ANALYSIS OF EXPERIMENTAL RESULTS

The experimental results of our tests are summarized in
Tab. I. The Figs. S, 6, and 7 depict the evolution of the latency
and throughput over the test period for the city, cloud, and
remote use cases discussed in Sect. IV. In addition, the figures
include lines describing the linear regressions over the sensed
latency and throughput values as well as the corresponding
equations (see, e.g., [15]). The lines provide hints about the
generalized behaviors across the test periods.
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Fig. 5. Test results for the scenario 1: City (24/03/2020). Computing resources in Helsinki area (Finland)

TABLE I
LATENCY, THROUGHPUT AND AVAILABILITY RESULTS FOR THE THREE
TEST SCENARIOS

Quality of Service Statistic Test scenario
parameter 1. City | 2. Cloud | 3. Remote
w (ms) 11.89 29.11 357.11
Latency max. (ms) 154.23 77.38 445.24
min. (ms) 5.32 27.25 327.90
o 14.20 3.92 10.28
© (kB/s) 538.40 218.71 19.58
Throughput max. (kB/s) | 1324.70 239.82 20.53
min. (kB/s) 1.28 18.64 2.30
o 173.33 20.38 0.73
Availability Percentage 98.90% 99.93% 8.19%

Comparing the average u latency results of the three scenar-
ios in Tab. I reveals a positive correlation with the geographical
separation between the computational resources. The latency
results obtained for the city and cloud scenarios have a
magnitude under 30 ms. This is typical for scenarios following
the local architectural pattern in which WLANSs are used. Thus,
the behavior in these scenarios indicates appropriate respon-

siveness conditions that facilitates a fluid communication for
both architectural patterns used. In contrast, the latency of the
remote scenario is considerably higher since the average here
is around 360 ms. This matches the results of the latency tests
between Melbourne and Trondheim [5] that were carried out
in 2015 and discussed in Sect. II.

To evaluate the stability of the latency values however,
we should also consider the maxima as well as the standard
deviations. According to that, the cloud scenario has the
most stable latency performance, supported by the lowest
standard deviation o, while the remote architectural pattern-
based scenarios (city and remote) indicate a higher dispersion.
In particular, the remote scenario depicted in Fig. 7 shows
significant fluctuations over time.

The average values for the throughput measurements point
to a negative correlation with respect to the distances between
the computational resources. A reason for this is that passing
a larger number of routers increases the likelihood to pass one
that is subject to heavy traffic. This may result in the activation
of certain automated methods for congestion control over
TCP networks (see Nagle’s algorithm and the small packet
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Fig. 6. Test results for the scenario 2: Cloud. Computing resources at Microsoft Azure - West Europe (Amsterdam / Netherlands)

problem [16]) which may reduce the throughput. To look into
that, we conducted a separate route tracing test to find out
the number of routers that are passed by the data packets.
As expected, the networking over longer distances comprised
more routers: In the city scenario five hops were enough to
reach the recipient while for the remote case 14 routers had to
be passed. These test results reveal the complexity scale in Not
Standalone (NSA) network components for the architectural
patterns. On the other side, the throughput in the remote
scenario is more stable than in the city case as indicated by
the standard deviation values o.

To compute the availability values, we used 20 ms as our
threshold in order to address the experiment described by
Manzi et al. [14] that was discussed in Sect. IV. Here, we see
that both, the city and cloud scenarios provide high availability.
Depending on the safety requirements of a particular remote
system control operation, the QoS may be even good enough
to operate based on the equipment and architectural patterns
used in these scenarios. But the test also reveals that the
long-distance connection used in the remote scenario renders
a QoS that is far too unstable to allow us to control such

systems between Espoo and Melbourne. Here, only control
mechanisms that demand a far lower throughput would work.

To assess the influence of the date and time on the tests, we
should consider the time zones at the geographical locations
of the computing resources. While carrying out our tests,
the time zones of Amsterdam, Helsinki and Melbourne were
UTC+2, UTC+3, and UTC+10, respectively. As shown by the
low gradient of the linear regression line, the throughput in
the remote scenario is quite stable. In contrast, the latency
measurements in this scenario exhibits recognizable sinus-like
oscillations in periods of four hours without an attributable
reason. In addition, the line indicating the linear regression of
the latency values follow a low slope. On the other hand, the
other two scenarios that cover adjacent time zones between
the AGV and its computing resources, depict periods with
accumulations of throughput and latency spikes. For the city
case, the phenomenon is appreciable in the morning hours,
while in the cloud case it happens in the evening. Nevertheless,
in both scenarios the effects are not very significant and their
throughput values nearly always remain above the availability
threshold. Thus, the external disturbances concentrated in time
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Fig. 7. Test results for the scenario 3: Remote. Computing resources at RMIT’s VXLab (Melbourne, Australia)

lapses do not seem to have serious negative impacts on the
system availability in these scenarios.

Finally, we want to look on the influence of the VPN
used. As discussed, we applied OpenVPN that uses static keys
with a size of 2048 bits, complying the Advanced Encryption
Standard (AES) on the Cipher Block Chaining mode (CBC).
The cryptographical hash in use is based on SHA-256 using a
default parameter selection. The standard version of OpenVPN
(version 2.3 for Ubuntu 16.04) was set to work initially
on the connection-less transport protocol UDP. It could be
successfully initialized for the city and cloud scenarios, but
did not work in the remote scenario. Thereafter we tried
to utilize the fact that OpenVPN is tailored for UDP by
using this protocol instead of TCP in the remote scenario.
But even then, OpenVPN was unable to establish a secure
communication channel. However, the alternative version 2.4
of OpenVPN proved to be a better fit for using it with
TCP. Using this version, we easily managed to establish the
connections properly in all three scenarios. Therefore we used
this version in all test runs.

Figure 8 depicts another latency experiment between Aalto

and RMIT using ping. We show it in addition to Fig. 7 since
it contains an interesting plateau that lasted for a few hours
during the European night. We are not sure about the reason
for the slight deviation of the latency from 310 to 340 ms but
assume some maintenance work in the global communication
network. We mention this case to demonstrate that there can,
indeed, be external reasons that are beyond the control of the
AGYV operator. In a practical use of remote control systems
over long distances the appearance of such surprising effects
should always be taken into consideration.

VI. CONCLUSION

In this paper, we presented architectural patterns for the
remote control and simulation of AGVs. We investigated
connections between our European site in Espoo in Finland
and Melbourne in Australia as well as between Espoo and
the Microsoft Azure cloud in Amsterdam. The gathering and
interpretation of empirical data on the network performance
was a key aspect of this paper. This data can serve as a first
indication on the expected QoS parameters like latency and
throughput in larger setups.
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Currently, many industrial AGVs depend on a stand alone
WLAN solution (as depicted in the local architectural pattern).
In the near future, this standard will be complemented and,
perhaps, replaced by interconnected solutions, e.g., based
on 5G. These novel remote control procedures will be an
enhanced way to link data and functions provided by AGVs
to industrial automation platforms demanded by Industry 4.0
requirements. To safely realize the remote control procedures,
new remote architectural patterns are required. Further, new
use cases to facilitate a better application of distributed com-
puting and the use of digital twins and simulation resources
need to be studied.

Future work will incorporate more devices such as UR 3
robots and PLCs or PLC-like devices in our facilities. To
research the impact of 5G-technology on the connectivity,
we further plan to utilize a new 5G-Lab that is currently
established at NTNU in Norway. Moreover, larger applications
including Augmented and Virtual reality are in our scope for
future work as well.
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