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Abstract—In an automated industrial environment, a large
volume of data and signals is available, both from sensors and
actuators in machinery and from the interaction with operators
and users. Operation diagnosis can have multiple applications
from a learning point of view (e.g. staff training) or in terms
of process assessment. This work proposes a methodology for
implementing an Intelligent System by means of any interactive
system connected through OPC UA standard. A digital twin
of the process supports configuration and validation, prior to
commissioning. Activity is interpreted and diagnosed according
to the context in which it occurs. Step order in sequence, step
duration and sequence duration are analyzed in a use case based
on a PLC-controlled robotic cell in which it is operated both
in automatic and manual mode for adjusting a linear table’s
positioning.

Index Terms—Activity recognition, Artificial Intelligence algo-
rithms, context awareness, digital twin, emulation, fault diagno-
sis, manufacturing automation

I. INTRODUCTION

Intelligent industrial environments within the context of
Industry 4.0 are based on their digitalization. This requires
acquiring more and more data in order to monitor and control
different aspects of processes. The use of these process data is
enabling to develop systems with higher level of autonomy, in
order to ensure safe process operation, product quality control
and integrity assessment of different equipment.

For systems to be endowed with greater autonomy, they
must be able to sense and interpret their physical environment
and adapt their behaviour accordingly. This capability could
be referred to as a context-aware system.

Literature reflects works related to context-awareness, with
applications in industrial areas such as advanced material
handling [1], or monitoring, where [2] integrates context data
and existing plant information to provide dynamically only
the most relevant information. In addition, a tool developed
by [3] makes available a context-aware (re)configuration of
field devices of a system.

The vast majority of industrial processes have clear proce-
dures defined for their correct operation. For every different
role and tasks involved with the process (i.e.: normal automatic
operation, manual adjusting, maintenance, etc.), different pro-
cedures define sequences of actions that must be fulfilled in
order to perform the operation correctly.

The aim of this document is to propose a framework for the
diagnosis of industrial automated processes, by interpreting,
from process data, the context and the fulfillment of procedures
associated with tasks or operations. This capability could be
used for a variety of things, such as: (i) verification of correct
task performing with respect to a predefined ideal procedure,
(ii) extraction of ideal procedure based on expert operator, (iii)
novice operator training and guidance, etc.

A digital twin (DT) makes it possible to work with an
emulated process, without interfering with the operation of
the real one. All types of situations are reproduced without
stopping production or endangering equipment or people. It
can support development or configuration tasks, as well as
training applications for non-expert employees.

OPC UA, which is based on the client-server principle
and is vendor-independent, is the used industrial communi-
cation protocol. It enables transparent reading and writing
of variables into controller memory, usually a programmable
logic controller (PLC). Latest generation devices include the
capability of an OPC UA server, as it is considered the Industry
4.0 standard.

After this background review and the definition of the
contibution that is the core of this work, the proposed approach
is detailed. A use case is presented based on a robotic cell
that identifies and classifies drone housings, prior development
against a DT of it. Finally, the results achieved and the con-
clusions reached are shown, proposing possible applications
and future work.

II. BASIS OF THE FRAMEWORK

ADAPT framework is based on ULISES metamodel and
its runtime kernel [4]. The basis is a domain-independent
metamodel inspired by the cognitive process that real domain
experts or tutors (e.g. in educational scenarios) carry out
while supervising or tutoring a learner during a process:
experts first perceive facts or observations happening in the
environment. Then, they interpret those observations in order
to identify actions (i.e. they unconsciously assign meaning to
their observations in the context of the domain) being carried
out, and once they have processed this information, they
make a diagnosis, which involves detecting and/or correcting
mistakes. ULISES’s runtime kernel, composed by Observation,



Interpretation and Diagnosis subsystems, defines a metamodel
divided into three logical levels that generically represent the
same process: observation, interpretation and diagnosis levels.

A. Observation level

This level contains the necessary elements for specifying
the observable facts that are interesting from an educational
or process diagnosis point of view. These elements are called
observations and they represent events that take place during
an interval of time in the Interactive System (IS). For the
specific case of ADAPT, the IS to be integrated will be an
OPC UA server. The objective of the observation level is to
specify how the observation subsystem has to transform the
data streams in the ISs into observations. If it was received
information of markers that a worker is wearing, a right knee
observation could be generated. Additionally, observations
may have properties. For instance, the lifting right knee
observation can have properties like lifting speed, movement
on the vertical axis, etc. Observations are the primitives for the
interpretation and diagnosis levels. Therefore, the observation
subsystem’s job is to fuse the inputs from the interactive
system in order to transform them into observations and to
update them synchronously for the two upper subsystems:
interpretation and diagnosis subsystems.

B. Interpretation level

Interpretation level describes generically how to recognize
ISs with such accuracy that the diagnosis subsystem is able
to determine whether the actions are correct or incorrect
and its reasons. To that aim, it is essential to know the
context where the actions are happening. For that reason, the
interpretation level defines two elements that are generated
from observations using the constraint modelling paradigm [5]:

o Step: this represents an action that takes place over an

interval of time and that will be diagnosed. A step defines
how the ULISES runtime kernel will analyze observations
to interpret when a step is being carried out. Considering
that observations are durative, temporal relations between
them are described. It is important to point up that a
step must not be interpreted based on the correctness or
incorrectness of an action. What this level must do is to
interpret actions when they are carried out, regardless of
their correction.

« Situation: this element represents the context where the

actions are being executed. For example, if an IS holds
a driving simulator and a lane change is wanted to be
evaluated when overtaking, it is necessary to know if the
driver is an overtaking situation. If the driver is leaving a
lane because he is approaching an exit, that action would
not be relevant in that context.

C. Diagnosis level

The objective of this level is to manage the elements that
will allow an appropriate diagnosis of the activity to be gen-
erated. ULISES’s diagnosis level allows different diagnostic
components like constraint-based diagnostic modules to be

integrated and communicate with external diagnostic systems
like DETECTive [6]. ULISES provides the educational or
process evalution components of the built system with real-
time diagnostic results or final evaluation results as needed.
The diagnostic results contain information at different levels:
the correctness of situations, the correctness of every step
within each situation and other information such satisfied and
non-satisfied conditions within the steps.

D. ULISES runtime kernel

The ULISES runtime kernel is designed following multia-
gent arquitecture. Multiagent systems (MAS) have their origin
in distributed artificial intelligence, but have been widely
deployed in automation in the last decade [7] [8]. In terms of
communication between agents, ULISES is based on the FIPA
standard of interoperability [9]. It provides communication
between any external service and applications and the three
subsystems that the runtime kernel is composed of: observa-
tion, interpretation and diagnosis subsystems. Each subsystem
of ULISES communicates with the others mainly through the
standard subscribe, request and query protocols. Therefore,
each agent can offer and ask for the information it needs
just when it is required. Figure 1 shows the relation between
ULISES’s agents and the rest of the interactive intelligent
system:

o Input-output agents: they allow the ULISES runtime
kernel to communicate with user interfaces or other
services, for example, with PATH [10]. This tool is
both an authoring and monitoring system that provides
domain experts with a way to create knowledge models
(interpretation and diagnostic models) that are necessary
for the framework.

o Observation agent: this encapsulates the observation sub-
system and it is in charge of gathering OPC UA server’s
data via the input-output agents and transforming them
into observations for the interpretation and diagnosis
subsystems.

o Listener agents: they hold the communication between
the IS. In ADAPT’s case, OPC UA server(s) and the
observation agent. It should be noted that there can be
several agents in case of distributed ISs.

o Interpreter agent: this receives the observations that it
is subscribed to, and then it generates the steps and
situations that it detects by using the interpretation model.

o Diagnosis agent: this agent coordinates the diagnosis of
the steps and situations received from the interpreter
agent. The diagnostic process can be carried out internally
(with specific diagnostic components integrated with the
diagnosis subsystem via plugins) or externally (for ex-
ample with DETECTive, in which case, wrapper plugins
handle the communication between DETECTive and the
diagnosis subsystem).

III. METHODOLOGY

The main objective of the observation level is to provide
the necessary elements to describe how to observe the facts
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Fig. 1: Interaction between the ADAPT agents.

that are being collected by the OPC UA server and that are
interesting in the process. Those facts will be the primitives
for the higher levels, which will describe the activity of the
process (that is interesting from an educational point of view)
in real time. For example, if it is wanted to know if a part is
holding a classification process in a specific period of time, it
should be observed if the part has reached the camera and that
the camera has detected it. As ULISES framework is a generic
framework, the observation level cannot predetermine which
are the characteristics of the IS. This is the reason why every
system built with this framework needs an integration in the
observation level. This section describes how this integration
is carried out within ADAPT.

A. Framework integration with OPC UA

Observation subsystem’s purpose is to gather streams that
are coming from the OPC UA server and to turn them into
observations. The two main elements that participate in this
transformation process are the OPC UA listener and observer
agents.

o OPC UA listener agent: this is the agent that communi-
cates the framework with the OPC UA server. It publishes
when a new cycle starts and ends and communicates
the stream of data that has received from the OPC UA
server. This agent contains an OPC UA client controller
that stablishes connection with the external OPC UA
server and creates subscriptions in the server based on the
observations that have been predefined in the observation
model. Once all data has been gathered, it is published
for all the agents that are subscribed to this information.

o OPC UA observer agent: it is the responsible for convert-
ing the stream of data in actual observations. It receives
the necessary data via a subscription to the OPC UA lis-
tener agent, and sends this data to the OPC UA observer.
The observer implements an OPC UA client to generate

observations in each cycle. When the evaluation and
transformation of the streams of data is finished, observer
agent notifies to the interpreter and diagnosis agents that
observations have been updated. This observations are
stored in a configuration file and are defined based on
the interpretation and diagnosis that is intended to carry
out for the process.

B. Interpretation and diagnosis levels

Once observations have been generated, the interpretation
subsystem or interpreter discerns which steps and situations
are being executed in the IS. Those steps and situations are
modelled using a constraint based approach [4]. That is to say,
user establishes constraints to define those two elements and
in each cycle, those constraints are evaluated. If constraints are
satisfied, steps and situations are created and this information
is sent to the upper diagnosis subsystem.

Regarding the diagnosis subsystem, it processes the steps
and situations that are detected by interpreter. For each step
and situation, a solution is defined, which is diagnosed based
on what has been defined in the diagnosis model. This model is
also based on a constraint modelling technique. In a nutshell,
a solution specifies how those steps and situations should be
carried out. For example, if a simulation where a human takes
part on is being executed, its activity could be evaluated in
real time. Likewise, if a process is being watched, the correct
functioning of each situation and step of the process can be
specified. Therefore, this approach makes ADAPT a suitable
solution for OPC UA based controllers and DTs. This is a
commonly used standard for connectivity between PLCs (real
or emulated) with industrial process DTs, in order to control
software testing.

For the integration of devices and applications that are part
of the framework by means of the OPC UA standard, the
control device, usually a PLC, would act as a server, and
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the platform as a client, and there could be more elements,
such as human-machine interface (HMI) panels or supervisory
control and data acquisition (SCADA) systems. Another part
can be a process emulated through its DT, so that the platform
adapted to the process is tested and validated without affecting
its operation. Once the platform is validated, it is integrated
into the normal operation of the industrial process.

In both phases, the platform accesses the process and
interaction data from the PLC through the aforementioned
standard. From them, tasks and procedures are identified.

IV. DIGITAL TWINS

The emergence of industrial process emulation tools opens
up the possibility of supporting the development and validation
of a framework of the above-mentioned characteristics without
interfering with the operation of the real system. DTs attempt
to imitate the performance of a system to do the same job and
produce the same results. As opposed to simulation [11], it
requires the real control system to work properly: a PLC or a
robot.

The first and currently main application of these software
tools in industrial automation is the control device software
testing or virtual commissioning (VC), prior to the assembly
of the equipment [12] and commissioning phase (see Figure
2). This is done by connecting the real (hardware-in-the-
loop, HIL) or emulated PLC (software-in-the-loop, SIL) to the
virtual model by means of OPC UA [13]. The use of a DT for
VC brings benefits in terms of quality of the work developed
[13], reduction of commissioning time [14] [15], less costs in
this last phase [16], fewer risks and more flexibility.

But a DT can support all phases of the lifecycle of an auto-
mated system. Literature reflects use cases such as the design
of a production line analyzing results of modifications without
making them [17], the improvement and acceleration of the
overall engineering process [18], or the continuous testing of
programs to improve both model and control software [19].
All this is framed as integrated virtual commissioning (IVC).

For the development of this work, it is assumed that a
DT of an automated process can support the development
and validation of a diagnostic tool, without affecting process
operation and prior to its integration with this, if necessary.
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V. USE CASE

The use case presented below was intended to diagnose
the activity in an automated system in which there is some
interaction with the operator.

A. Process to be diagnosed

The system under study is a robotic cell (which layout
is shown in Figure 3) placed in a laboratory of Mondragon
Unibertsitatea (MU), and its DT (Figure 4) [20].

In this process, the identification, quality control and clas-
sification of drone housings is carried out. This robotic cell
consists of the following elements:

o A table with a KUKA Agilent robot as a manipulator.

e A linear table controlled by a servo-variator for the
transport of workpieces along four positions: manual
supply, height measurement, chromatic sensor and output,
where the robot picks up the housing for transfer to the
corresponding area.

o A perimeter fencing and a light curtain, which makes it
posible to safely carry out the manual input and output
of workpieces.

B. Resources

In addition to the process described above, the following
devices and software packages were available for its control:

e A Siemens S7-1500 series PLC.
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Fig. 5: Platform configuration.

o A Siemens HMI TP700 Comfort Panel.
o A PC with this software tools, among others:

— Wonderware InTouch 2014 R2, a SCADA system.
— KEPServerEX 6.2 connectivity platform with Won-
derware OPC UA Client Service.

Furthermore, the entire control system already described
was duplicated for the platform testing. A identical PLC was
used, which allowed HIL testing. The aforementioned software
tools were installed on a laptop, as well as the following ones:

o TIA Portal V15.1: development environment for Siemens
control devices, for transferring the cell program to the
PLC, emulating the HMI and monitoring variables.

e Simumatik3D® v1.0.3 (S3D), which is an emulation
tool that enables users to test PLC and industrial robot
programs in an easy way. A DT of the cell under study,
previously developed, was available.

¢ Simumatik3D® OPC UA Server v0.1.6, as the robot does
not incorporate a server, in order to emulate it in the DT.

o ABB’s simulation and offline programming software,
RobotStudio 2019.1.

o .NET Based OPC UA Client

o The framework, which includes the methodology and
software to create intelligent interactive systems. PATH,
e.g., is an authoring tool that provides the necessary
knowledge models to be added to the framework.

C. Configuration

The configuration used for the integration and testing of
the framework corresponding to the case study is shown in
Figure 5a, as proposed in subsection III-A. The PLC (real)
for testing and the robot (emulated) were configured as OPC
UA servers, and the SCADA system, the DT of the process,
and the platform as clients. The latter accessed the necessary
data by reading variables from the PLC.

Once the platform was validated against the emulated pro-
cess, it was integrated with the process in normal operation,
like in Figure 5b. The robot was no longer emulated, and the
signal exchange with the cell PLC was via digital I/O.

D. Interpretation and diagnosis phase

The robotic cell operated in two modes, which were repre-
sented in the interpretation and diagnosis models as automatic
situation and manual situation. In this scenario, the diagnosis
subsystem needed to ensure that within the automatic situation
(process being run in automatic mode), (i) all the steps defined
were carried out and (ii) all the steps were executed under a
defined duration. The excessive duration of one of the steps
may be due to the degradation of one of the components or
mechanisms. In manual mode the focus of ADAPT was educa-
tional, diagnosing whether users were correctly following the
established steps to complete a sequence, and in an appropriate
time.

Note the following issues:

o The diagnosis of tasks that are over time or steps that
are not executed in the correct order is based on Allen’s
grammar [21].

o The same step, carried out under different situations, can
be right or wrong.

For the described purpose, tasks and interpretation models
were defined by means of the authoring tool PATH, which
was already integrated in the framework. The following steps
and situations were defined and implemented, based on signals
from the process and user interaction, to support the diagnosis.

1) Normal operation: work sequence.

« Situation: operating in automatic mode.
o Steps:

Request permission for access to the facility to place
a workpiece.

Start the process.

Identify color and height of the workpiece.

Sort workpiece.

2) Manual mode operation: linear table position setting.

« Situation: linear table position adjustment being carried
out.
o Steps:

— With table in input position, select manual mode.
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Fig. 6: Constraits by step.

— Move to predefined height testing position.
— Position adjustment (can be skipped).

— Validate position.

— Move to predefined colour testing position.
— Position adjustment (can be skipped).

— Validate position.

— Move to predefined output position.

— Position adjustment (can be skipped).

— Validate position.

The whole sequence could be repeated as many times as
required. At the end of the sequence, it could be switched to
automatic mode, if necessary. Note that if a return to automatic
mode was made before the end of the procedure, it would be
considered wrong.

The implementation, in the interpretation model, of the
described steps and situations was carried out from the defi-
nition of restrictions associated with each step. These can be
starting, finishing, general or action restrictions, among other
types. Figure 6 shows the definition, in PATH, of a constraint
associated with a step.

Every cycle of execution of the framework algorithm all
rules were solved and the status of each step was determined,
i.e. whether it started, finished, continued, etc. (see Figure 7).

VI. RESULTS

An automated industrial process, both emulated by a DT
and real, has been integrated into the framework, which has
made it possible to diagnose steps and situations. In order
to test the platform, the cell has operated alternating between
automatic and manual modes. Randomly and periodically, long
steps and incorrect sequences in terms of step order have been
introduced. Table I summarizes types of situations tested, with
several wrong and correct cases for each.

Figure 8a shows an error situation in the sequence of steps
of the automatic mode situation, as well as an excess of
duration of one of them. Figure 8b illustrates another scenario,
that of a correct sequence of steps but with an excessive total
duration of the manual mode operation.

As already indicated, this diagnosis was based on measuring
the duration of the steps and checking the correct order of
them. Note that these two variables were defined without
any programming effort. The generation of observations was
programmed automatically and through the OPC UA server.

atico.TAR | ModoManual. TAR

ieza.INT

Nombre

Restricciones

Ihstancias Restricciones inicio

mam_ModoAutoManual == 1.0 AND (in.Boxin == 0.0 AND c0.ConsignaMesa

Observaciones Instancias

iPosAlcanzada pa
Restricciones generales

c0.ConsignaMesa '= 100.0 AND mam ModoAutoManual == 1.0

STEPS:Piezalntrod... |pi

Boxin in

Modo AutoManual mam

Restricciones de accion

Restricciones de fin
c0.ConsignaMesa == 100.0 OR mam ModoAutoManual == 0.0

Fig. 7: Detection of whether a step is in progress.

TABLE I: Summary of results.

Tested situation Result

Step order in sequence.  Diagnosed.
Step duration. Diagnosed.
Sequence duration. Diagnosed.

VII. CONCLUSIONS

A first approach to implement a framework for automatic
context diagnosis of an industrial system has been presented.
A use case based on a robotic cell has also been brought
forward. The development of the work and its validation have
been supported by a DT of the process, prior to integration
with the real one.

Emulation makes it possible to reproduce all scenarios of
interest without affecting the operation and safety of real
systems and users. It can be part of an exclusively virtual
application, or support the configuration of one that will later
work with a real process, as presented in the use case.

ADAPT can be used for diagnosing the correct execution of
automatic and manual tasks, definition of procedures based on
expert user interaction with the control system, and training of
unskilled staff. Any real or emulated control device and any
DT can be integrated, if they have OPC UA connectivity.

So far ADAPT has been tested mainly using process data
comming from a PLC, however in future works process-
operator interaction data from different HMI devices will also
be included. This information will provide more complete
view of the correctness of the task fulfillment, and applications
such as operator training could be addressed.
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