
Towards compositional automated planning

Downloaded from: https://research.chalmers.se, 2024-04-26 13:47 UTC

Citation for the original published paper (version of record):
Erös, E., Dahl, M., Falkman, P. et al (2020). Towards compositional automated planning. IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA, September:
416-423. http://dx.doi.org/10.1109/ETFA46521.2020.9212040

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Towards compositional automated planning
Endre Erős1, Martin Dahl1, Petter Falkman1 and Kristofer Bengtsson1

Abstract—The development of efficient propositional satisfi-
ability problem solving algorithms (SAT solvers) in the past
two decades has made automated planning using SAT-solvers
an established AI planning approach. Modern SAT solvers can
accommodate a wide variety of planning problems with a large
number of variables. However, fast computing of reasonably long
plans proves challenging for planning as satisfiability. In order
to address this challenge, we present a compositional approach
based on abstraction refinement that iteratively generates, solves
and composes partial solutions from a parameterized planning
problem. We show that this approach decomposes the monolithic
planning problem into smaller problems and thus significantly
speeds up plan calculation, at least for a class of tested planning
problems.

Index Terms—automated planning, planning as satisfiability,
online planning, compositional planning, artificial intelligence,
abstraction refinement, SAT solvers, intelligent automation.

I. INTRODUCTION

Increased industrial competitiveness requires fundamental
changes in automation. As companies introduce collaborative,
intelligent and flexible systems into production to meet the
variability, quality and punctuality needs of the modern cus-
tomer, production requirements make it evident that traditional
automation solutions can’t solve all challenges [1].

Machines nowadays operate in complex and dynamic envi-
ronments, quickly producing a wide variety of quality products
for demanding customers. As these requirements continue
to increase, it becomes impossible to remain scalable and
sustainable using traditional automation solutions [2].

Instead, modern automation solutions should utilize efficient
planning algorithms that compute schedules and sequences of
operations automatically. Planning is a deliberative decision
making process which yields sequences of operations that
drive state change towards a goal.

Automated planning is already implemented in some mod-
ern solutions, however the idea of planning isn’t new since
algorithms that compute plans based on explicit state-space
searches exist since the late ’50s [3], and symbolic methods
based on BDDs since the late ’70s [4].

A more recent method that has established itself as an
important planning approach is SAT-based planning. Planning
problems are encoded as satisfiability problems and the results
are calculated by SAT solvers.

Even though SAT-based planning was first proposed by
Kautz and Selman already in 1992 [5], the interest of planning

*This work has been supported by Unification and Unicorn, VINNOVA.
1Endre Erős, Martin Dahl, Petter Falkman and Kristofer Bengtsson

are with Chalmers University of Technology, Electrical Engineering, Sys-
tems and Control Department, Automation Research Group, Gothen-
burg, Sweden. endree@chalmers.se, martin.dahl@chalmers.se, pet-
ter.falkman@chalmers.se, kristofer.bengtsson@chalmers.se

researchers in SAT-based planning methods was limited up
until recently. One of the main reasons behind this was the
performance advantage of explicit state-space search over
solving early SAT encodings of planning problems [6]. How-
ever, modern planners based on satisfiability match, and often
outperform, planners based on other search paradigms [7].

Explicit state-space search and symbolic methods based on
BDDs are known for their performance in solving problems
with a small number of state variables, however SAT-based
methods excel in solving hard combinatorial planning prob-
lems with a relatively high numbers of state variables [8].
Another advantage of planners based on SAT is that algorithms
used to compute plans are almost completely general purpose
SAT solving algorithms, which means that every improvement
in the solver directly improves planning.

However, a known issue with SAT-based automated plan-
ning is that plan calculation seems to slow down significantly
as the plan length increases [6]. In an effort to avoid this
limitation while utilizing the strengths of SAT-based planning,
we present a compositional algorithm that divides a planning
problem into a number of simpler problems that are faster to
solve. We do this with a combination of abstraction refinement
using activation parameters and step-wise problem generation,
resolution and concatenation. We test the proposed algorithm
on a number of examples and show that in a lot of cases a
significant speed-up [9] is achieved.

In the following section, we present a version of an existing
incremental planning algorithm that we use as the low-level
solving engine in our approach. In Section 3, the high-level
compositional algorithm is introduced. In the section after
that, we test our approach on a number of examples and
compare planning performances of the compositional algo-
rithm against the algorithm of Section 2. We discuss certain
benefits, drawbacks and possible future improvements of the
compositional algorithm in section 5. There, we also mention
relevant publications in the area of compositional planning and
planning with abstraction refinement. Finally, we conclude the
paper in Section 6.

II. INCREMENTAL PLANNING

We utilize a simple incremental planning algorithm based on
[10] to solve individual problems generated by the composi-
tional algorithm. The incremental algorithm tries to find a plan
by testing the satisfiability of the planning problem’s formulas
for a sequentially increasing horizon length. It utilizes an
incremental SAT-solver that makes it possible to add a new
time point in each step so that the SAT-solver can learn from
previous attempts.



The version presented in this paper also lets the algorithm
create backtracking points that enables it to manipulate the
content of the context between each step, i.e. to remove certain
clauses that are added after a point by backtracking to that
point. For example, if a planning attempt fails, this feature
is used to remove goal clauses for the current step before
adding new goal clauses for the next step. Before describing
the incremental algorithm, it is necessary to define a few basic
concepts. Let’s do this with an example.

Example: A robotic manipulator transports products from
a buffer to a fixture where the products are processed. In
order to control the robot, we have to read its current pose
as well as to send pose commands to it. To establish this two
way communication, a pose command and a pose measured
variable is used. Let’s call these variables posec and posem.

The real sensor-level measurement from the robot is dis-
cretized into three discrete values that can be assigned to the
variable posem. The robot can be at the buffer (b), at the fixture
(f) or at unknown (u) if it is somewhere between the buffer
and the fixture.

Definition 2.1: A variable vi is a named unit of data that
can be assigned a value from its finite domain of values vDi .

Example: In our robot scenario, the values buffer, fixture,
and unknown constitute the finite domain of the variable
posem. We don’t want to command the robot to go to the
unknown pose, so only the poses buffer and fixture make up
the domain of the variable posec.

Definition 2.2: A complete variable set Vc for a system is a
set of all variables defined for that system. A partial variable
set Vp is a non-empty subset of Vc.

Definition 2.3: The complete state space V D
c of a system

is the Cartesian product of all value domains of variables in
V c defined for that system. A partial state space V D

p is a
non-empty subset of V D

c .

Example: With the currently defined variables in our robot
system, the complete variable set and the complete state space
of our system is:

Vc = {posem, posec}
V D
c = {〈b, b〉, 〈f, b〉, 〈u, b〉, 〈b, f〉, 〈f, f〉, 〈u, f〉}

Now that we have defined the states our system can be in,
it is time to model how the system can move between those
states. Before we can do that, we have to define predicates,
which are the fundamental building blocks of our models.

Definition 2.4: A predicate is a logical expression of one or
more variables. A predicate evaluates to true if the assignments
of its variables satisfy the logical expression, and to false
otherwise.

Example: Let’s build a few simple predicates and name
them so that we can reuse them later. Something we might
reuse a lot is knowing whether the robot is at the buffer, fixture
or somewhere between:

r at b := posem == b

r at f := posem == f

r at u := posem == u

These predicates can either be true or false, depending on
the current value of the variable posem during evaluation. We
can also build more complex predicates and name them as we
like. For example, another thing we might find useful during
modeling is knowing whether the robot has been issued a
command to move to the buffer. With the current complete
variable set that we have defined for this system, we can say
that the robot is moving towards the buffer if:

r moving to b := ¬r at b ∧ posec == b (1)

Before we define transitions, let’s look at how a very simple
plan would look like. As it was said before, a plan is a
sequence of transitions driving state change towards a goal. In
this example, the robot moves from the buffer to the fixture.

state0 : posem == b ∧ posec == b

trans1 : start move robot to fixture

state1 : posem == b ∧ posec == f

trans2 : finish move robot to fixture

state2 : posem == f ∧ posec == f

This sequence has several steps with each step being one
transition leading to a state. The chain of states is called a
trace and since only one transition is allowed to be taken at
a time, the states are temporally related. This means that we
can say that state2 is the next state after state1.

Definition 2.5: A transition t is a predicate:

t = g ∧ e (2)

where g is a guard predicate and e is an effect predicate. If the
transition is to be taken, the guard predicate has to evaluate
to true for the current step, while at the same time, the effect
predicate has to evaluate to true for the next step.

Example: Let’s look at the start move robot to fixture
transition. This transition is modeled as:

start move robot to fixture =

posemi == b ∧ poseci == b ∧ poseci+1 == f

where the guard predicate is marked with i for the current step
and the effect predicate with i+1 for the next step. We finally
have the necessary components to define a planning problem.



Algorithm 1: Incremental
Input: (i, g, T, smax)
Output: planning result

1 let step := 0;
2 let ctx := create context;
3 add constraint (ctx, i, step);
4 let bp := create backtracking point;
5 add constraint (ctx, g, step);
6 while step ≤ smax do
7 step += 1;
8 if check(ctx) == UNSAT then
9 backtrack to level bp;

10 let t disj := disjunction for T;
11 add constraint (ctx, t disj, step);
12 let bp := create backtracking point;
13 add constraint (ctx, g, step);
14 else
15 return planning result;
16 break;
17 end
18 end
19 return empty planning result;

Definition 2.6: A transition system T for a given system is
a collection of all transition predicates that model the behavior
of that system.

Definition 2.7: A planning problem Ψ is a 4-tuple:

Ψ = 〈i, g, T, smax〉 (3)

where i and g are initial and goal predicates, T is the
transition system, and smax is a limit on the horizon length.
Actually, Ψ is a 5-tuple containing S as well, where S is
a collection of specifications modeled as LTLf formulas
encoded in SAT [11]. However, specifications are omitted in
this paper for the sake of brevity, so we will refer to a planning
problem as it is defined in (3).

The incremental algorithm takes a planning problem Ψ and
either returns a complete result of the planning problem, or an
empty result which represents that no solution was found.

An integer variable step keeps track of the step in the plan
that the algorithm is currently at. At line 2 of Algorithm 1, a
context ctx is created for the problem so that the solver can
keep track of assertions.

As you can see at lines 3 and 5, the algorithm asserts the
initial and goal constraints for step-0 into the context. It also
creates a backtracking point in line 4 before asserting the goal,
so that it can be removed from the context if a solution is not
found in the current step.

Inside a loop that ensures the horizon limit is not exceeded,
the algorithm increments the step and checks if the current
assertions in the context are consistent. If the assertions are
SAT in the first step, that means that the variable assignments
satisfy both the goal and the initial predicates.

Otherwise, the assignments in the goal predicate for step-0
are not consistent with the assignments in the initial predicate,
so the goal is for the current step is removed them from the
context by backtracking to the previous point.

The solver checks the transitions in a step from the dis-
junction of all transitions in the model. If any transition in the
disjunction satisfies the current assignment, planning goes on.
Semantically, it can be said that the transition is taken.

Only one transition is allowed to be taken in each step
from the disjunction of all transitions in the model. Practi-
cally, transitions are tracked in each step with Boolean-valued
variables, so that by the time a plan is found, we know which
transition was evaluated to true in which step. This is done by
conjuncting the transition with a Boolean-valued variable, so
if the transition is taken in a step, that variable has to be true
in that step.

The algorithm doesn’t know if the next goal assignment
will be consistent with the assignments that are currently in
the context, so it creates a new backtracking point before it
assigns the goal for step-1 into the context.

As you can see, this process is repeated while the horizon
length sequentially increases. If a solution for the problem is
found in a step that is less than the horizon length limit smax,
it is returned by the algorithm. Otherwise, the limit is breached
and an empty result is returned.

It is important to limit the planning horizon so that the
algorithm can terminate in case a solution can’t be found, or
where it takes a long time to calculate it.

III. COMPOSITIONAL PLANNING

As mentioned before, the main idea behind the composi-
tional algorithm shown as Algorithm 2 is to break the planning
problem into simpler problems that can be solved fast. To solve
these individual simple planning problems, the incremental
algorithm from the previous section is used.

Figure 1 serves as an example and a visual guide to explain
how the compositional algorithm works and what is happening
in different steps. To keep track of these steps, we refer to the
alphabetic annotations on the right side of the same figure.

A. Organization

In order for the compositional algorithm to refine, generate
and solve parts of the complete planning problem, we have
to allow its abstraction and refinement. The planning problem
(3) is parameterized so that the compositional algorithm can
enable or disable certain basic predicates in order to generate
abstracted input constraints to the incremental algorithm. In
order to do this, a number of partial variable sets is defined
during modeling.

Definition 3.1: A basic predicate is a predicate of variables
from only one partial variable set.

Defining partial variable sets depends on some expert
knowledge of the planning problem, hence it is a part of the
modeling process. For example, we choose to group variables
together into partial variable sets so that we can form basic



Fig. 1. How the compositional algorithm works

predicates that contain none other but variables from the same
set. This allows us to compose more complex parameterized
predicates and at the same time keep track of which partial
variable sets play a role in them.

Example: Let’s extend our example by adding more func-
tionality to our system. For example, as a safety feature,
let’s add the option to control the robot’s status which can
enable or disable its movement. For this, we define two
new variables, statc and statm with the same value domain
{enabled, disabled}.

Moreover, let’s equip the robot with a sensor in order to
know whether it is holding a product or not. In fact, let’s
equip also the buffer and the fixture with the same type of
sensors so that we can always track where the products are.
For this, we define three additional variables, gripm, buffm
and fixtm with the same value domain {empty, full}.

In this example, grouping the variables into partial variable
sets comes naturally. Let’s name these sets to make it easier
to reuse them later:

pose = {posec, posem}
stat = {statc, statm}
prod = {gripm, buffm, fixtm}

A good example of a basic predicate would be (1) since
it only contains variables from the pose partial variable set.
In order to know which variables are in a basic predicate, the

name of the partial variable set they belong to will be present
as a superscript in the names of basic predicates:

r moving to bpose := ¬r at b ∧ posec == b

We have defined the building blocks that enable us to
generate abstracted planning problems for the incremental
algorithm.

B. Parameterization

In order to enable or disable certain basic predicates, we
define activation parameters that enable or disable parts of
parameterized predicates.

Definition 3.2: An activation parameter is a Boolean-valued
variable that is used to hide (false) or reveal (true) basic
predicates in a parameterized predicate.

Definition 3.3: A parameterized predicate is a set of 2-
tuples:

{〈bp1, a1〉, 〈bp2, a2〉, ..., 〈bpn, an〉} (4)

where bp1, bp2, ..., bpn are basic predicates and a1, a2, ..., an
are their respective activation parameters.

One activation parameter is usually defined for each partial
variable set. Hence, an alternative notation will be used for
parameterized predicates throughout the rest of the paper:

{bpa1
1 , bpa2

2 , ..., bpan
n } (5)

Definition 3.4: A parameterized transition tP is a transition
whose guard and effect are parameterized predicates.

Example: Let’s build a parameterized transition that models
how the robot takes products from the buffer.

take product from buffer =

{b fullprodi , r emptyprodi , activestati , activatestati ,

r at bposei , r go to bposei , r fullprodi+1 }

In order for the robot to hold a product in the next step
(r fullprodi+1 ), several things have to be fulfilled in the current
step. The buffer must hold a product (b fullprodi ) that the
empty robot can take (r emptyprodi ). In order to do anything,
the robot has to be active (activestati ) and in order to take a
product from the buffer, it has to be at the buffer (r at bposei ).

Meanwhile, we don’t want to cause changes in some vari-
ables in the next state. The basic predicate (activatestati :=
statci == enabled) ensures that the measured variable statm
will hold its enabled value in the next step. The same goes
for the posem variable.

Definition 3.5: A parameterized transition system TP is a
transition system whose transitions are parameterized transi-
tions.



Definition 3.6: A parameterized planning problem Ψp is
defined as:

ΨP = 〈iP , gP , TP , P, smax〉 (6)

where iP and gP are initial and goal parameterized predicates,
TP is a parameterized transition system, P is a list of activa-
tion parameters and smax is the limit on the plan length that
is applied to every generated problem sent to the incremental
algorithm.

Now that we have modeled a parameterized planning prob-
lem, we let activation parameters enable or disable basic
predicates in parameterized predicates, generating abstracted
input constraints for the incremental algorithm by conjuncting
these enabled basic predicates.

C. Activation

The compositional algorithm takes a list of activation pa-
rameters P , activates the next parameter in the list, generates
and solves problems. Hence, the order of the activation pa-
rameters in the list P decides the problem refinement order.

Example: Let’s take the parameter list:

P = (prod, stat, pose)

and take product from buffer, the parameterized transi-
tion that we have built earlier. This transition contains seven
basic predicates, where the first six are constituting the guard,
and the last one the effect. While generating the real input
predicate for the incremental algorithm as a conjunction of
these basic predicates, the values of their respective activation
parameters determine whether the basic predicate is included
in the conjunction or not.

The activation parameter list P has three parameters that
are initially disabled, hence the Activate procedure from Line
3 of Algorithm 2 activates the first parameter prod, enabling
the basic predicates b fullprodi , r emptyprodi and r fullprodi+1

to take part in the generated conjunction that is the input
transition for the incremental algorithm.

We can refer to this step-wise parameter activation as
refinement. Each step of the compositional algorithm is called
a level, and in each level, the problems that are generated and
sent to the incremental algorithm are more refined, meaning
that more variables play a role in the generated predicates of
a problem. For instance, let’s follow the complete refinement
of the generated transition:

b fullprodi ∧ r emptyprodi ∧ r fullprodi+1

In the next level, the algorithm activates the stat parameter,
so the generated transition is more refined:

b fullprodi ∧ r emptyprodi ∧
activestati ∧ activatestati ∧ r fullprodi+1

Finally, in the last level, the algorithm activates the pose
parameter and the generated transition is completely refined.
The completely refined transition is a conjunction of all
predicates from its parameterized counterpart.

Algorithm 2: Compositional
Input: (iP , gP , TP , P, smax)
Output: planning result

1 let level := 0;
2 let (i, g, T, P) := Activate(iP , gP , TP , P);
3 let r := Incremental(i, g, T, smax);
4 Plan(r, iP , gP , TP , P, smax, level);
5 function Plan(r, iP , gP , TP , P, smax, level) begin
6 if not all parameters activated then
7 if r.plan found then
8 let h := := new empty list;
9 let concat := 0;

10 let level results := new empty list;
11 (i, g, m, P) := Activate(iP , gP , TP , P);
12 for j in (0 to (r.trace.length - 1)) do
13 let gl := r.trace(j + 1);
14 concat += 1;
15 if j == 0 then
16 let rP := Incremental(i, gl, T, smax);
17 let h := rP .trace.tail;
18 level results.push(rP );
19 else if j == r.trace.length - 1 then
20 let rP := Incremental(h, g, T, smax);
21 level results.push(rP );
22 else
23 let rP := Incremental(h, gl, T, smax);
24 let h := rP .trace.tail;
25 level results.push(rP );
26 end
27 end
28 let rloopy := Concatenate(level results);
29 let rfilt := Filter(rloopy);
30 Plan(rfilt, iP , gP , TP , P, smax, level + 1);
31 else
32 return empty planning result;
33 end
34 else
35 return r;
36 end

D. Generation

As you can see from line 4 of Algorithm 2, the Plan function
receives the planning result of the previous level, and for each
step in the calculated plan it generates a new planning problem.
This generation doesn’t occur at once, since the following
problem depends on the result of the previous problem in the
same level. We could say that the following problem inherits
information from the previous result.

Three cases are differentiated while generating problems
depending on the place of the step in the solution of the
previous level. We refer to these cases as the first, central and
last problems of a level. A first case problem is generated from
the first step in the plan of the previous level. For example,
this can be seen at point C in Figure 1. Similarly, a last case



problem comes from the last step in the plan of the previous
level as it can be seen at point D. All other problems that are
generated from steps between the first and the last step are
central. This can be seen at points H and I in Figure 1.

Steps in the plan hold transitions that change the state
towards a goal. Sample plans at certain levels of the com-
positional algorithm can be seen at lines B, F and L in Figure
1. Each transition in a plan has a source and sink state. The
three different cases of problems in a level come from the way
the initial and goal predicates of a problem are generated from
these source and sink states of a transition in a step.

1) First case problem: When the algorithm is generating
a first case planning problem, the initial predicate i of this
problem is generated from the initial parameterized predicate
iP after the next parameter has been activated. In essence, it
is a refined version of the initial predicate from the previous
level. This is happening at line 16 of Algorithm 2.

The goal predicate of the first case planning problem is
generated from the sink state of the transition in the first
step, and it is a conjunction of assignments that make up that
state. You should note that this new goal predicate doesn’t
contain variables that play a role in the initial predicate of
the same problem. In order to concatenate results after they
are calculated, the goal predicate of the first case planning
problem is not provided with assignments for the variables
that are being included in this level.

If we would to provide assignments for these variables in the
goal predicate of the first case problem, there would probably
be a discrepancy between assignments of adjacent plans of
the level during concatenation. We would have to guess the
assignments for those variables and in the end, we would
have to plan between plans to achieve a correctly concatenated
solution. That is why we leave it to the solver to decide an
assignment to the new goal predicate variables included in the
next level that is consistent with the other assignments.

2) Last case problem: When the algorithm uses the last
step in the plan of the previous level to generate a problem,
that is a last case planning problem. This is happening at line
20 of Algorithm 2 and at points D and J in Figure 1. Since no
further problems will follow in this level, the goal predicate
g of this problem is generated from the goal parameterized
predicate gP after the next parameter has been activated. In
essence, it is a refined version of the goal predicate from the
previous level.

The initial predicate of the last case planning problem is
generated from the source state of the transition in the last
step, and it is a conjunction of assignments that make up that
state. This time, we are providing the initial predicate with
additional assignments by using an inheritance variable h to
pass assignments between problems and solutions of a level,
as you can see in lines 18 and 25 of Algorithm 2. At this
point, after the solver has found satisfiable assignments for
the goal state of the previous problem of the same level, the
new assignments are inherited by the next planning problem
to play a role the initial predicate, as you can see at points D,
H, I and J in Figure 1.

3) Central case problem: When the algorithm generates a
central case planning problem, the initial predicate is gener-
ated the same way as the initial predicate in the last case
problem, and the goal predicate the same way as the goal
predicate in the first case problem.

E. Resolution

To solve each generated problem of a level, we use the
Algorithm 1 from the previous section. In lines 4, 17, 21 and
24 of Algorithm 2, this is indicated with Incremental. You can
see in lines 16, 20 and 23 of Algorithm 2 how the algorithm
distinguishes problem cases based on where the step of the
plan of the previous level is located. For example, first case
problems are generated at points C and G and solved at points
D and H in Figure 1. Similarly, last problems are generated
at points D and J and solved at points E and K, and central
problems are generated at points H and I and solved at points I
and J in Figure 1. The important thing to notice is that in each
level, problem generation and resolution happen iteratively one
after the other until all solutions have been found for that level,
or until one of the resolutions fail. This iterative generation,
inheritance and resolution can best be seen between points G
and K in Figure 1.

F. Concatenation

In each level, new planning problems are generated from the
result of the previous level. As these problems are solved, we
end up with a number of results that we have to concatenate in
order to get the complete result of that level. This concatena-
tion of plans represents the complete plan of the current level,
and it is indicated with Concatenate in line 29 of Algorithm
2, which is happening at points F and L in Figure 1.

To keep track of where results should fit in the complete
result of a level, we use a concat variable, as you can see
in line 15 of Algorithm 2. After all problems of a level are
solved, we concatenate the individual plans in the right order
using the concat variables to get the plan of the level.

G. Filtering

In some cases, the result after concatenation might contain
certain sections that are redundant. These sections lead to a
duplicate of a state that was already reached earlier in the
trace, so you can look at these sections as loops.

If loops appear in the concatenated result, the algorithm
filters them out of the plan using the Filter procedure as
you can see in line 30 of Algorithm 2. These loops appear
sometimes after concatenation as a result of solving individual
problems of a level while satisfying all specifications at that
level. In planning, it is not of our interest to visit a logical
state more than once, so if a loop appears in the concatenated
trace, the algorithm removes it. After we filter out the loops,
the plan is still consistent with all specifications at that level.

Once all parameters are activated, the problem is completely
refined. After the last check of the parameter list as seen in
line 6 of Algorithm 2, if a plan is found in the previous level,
it is returned by the algorithm in line 35.



IV. EVALUATION

Several planning problems are solved using both the com-
positional and the incremental algorithms. In this section, we
are evaluating some of the results and comparing the length
and quality of plans calculated by the incremental and the
compositional algorithm.

A. Example 1

Let’s test the algorithms on the robot example used in
this paper. For brevity, the names of partial variable sets are
shortened to one letter: s for stat, i for prod and p for pose.

For all the variations in the refinement order, the composi-
tional algorithm calculates the same 18 step long plan as the
incremental algorithm. The different benchmarks are derived
from at least 10 runs for each test and the name of the test
suggests the refinement order in the example. You can see
from the benchmarks that the refinement order influences the
plan calculation time, which is expected.

Benchmark: Time (mean ± dev):
test_1_inc 316.8 ms ± 14.3 ms
test_1_comp_isp 175.9 ms ± 8.4 ms
test_1_comp_ips 268.0 ms ± 14.1 ms
test_1_comp_sip 174.1 ms ± 11.0 ms
test_1_comp_spi 234.5 ms ± 15.2 ms
test_1_comp_psi 274.8 ms ± 4.3 ms
test_1_comp_pis 351.8 ms ± 7.7 ms

B. Example 2

Let’s extend Example 1 with several additional complica-
tions. Now, we are able to control and measure the pose
of the gripper, as well as to control and measure its status.
Additionally, in order to avoid collision, the robot has to move
through three via points. In this example, we have five partial
variable sets: s for stat, i for prod, p for pose, g for grip pose
and m for grip stat.

Provided is a short list of results that yielded the same 38
step long plan while testing this example. You can see from the
benchmarks that as much as a 20x speed-up can be achieved
with a good refinement order.

Benchmark: Time (mean ± dev):
test_2_inc 13.461 s ± 0.500 s
test_2_comp_mgsip 1.026 s ± 0.011 s
test_2_comp_gmpsi 908.4 ms ± 7.2 ms
test_2_comp_gmisp 671.3 ms ± 9.8 ms

V. DISCUSSION

We found several publications that share similar opinions
with us to be, to the best of our knowledge, state-of-the art
results in areas of compositional planning and planning with
abstraction refinement.

The authors of [12] use a counterexample guided abstrac-
tion refinement method to solve planning problem instances
encoded in SAT. They obtain a relaxed instance by removing
clauses from the model that is in conjunctive normal form and
refine it later using counterexamples found during the search.

In [13], the authors distinguish between planning problems
with and without symmetries. They decompose a planning
problem with symmetries into a set of abstracted, isomorphic
subproblems. After solving each abstraction, they concatenate
the results together to yield a solution for the original problem.

This paper is our first contribution in a series that tries to
tackle the problem of safe and non-blocking online planning,
and as such, it only focuses on computing a plan faster.
Safety and non-blocking properties are well known problems,
however they will be addressed in future papers in order to
limit the scope of this work.

What we show is that there are cases when the composi-
tional algorithm clearly outperforms the well known incremen-
tal algorithm in terms of computation time. However, there are
a few known shortcomings which we will mention now.

A. Refinement order matters

As you can see from the benchmarks in Examples 1 and 2,
defining a good refinement order can influence the planning
time quite much. Solving the same problem with a different
refinement order gives quite different plans before filtering out
the loops.

Usually, after filtering out the loops, the plans calculated
after these two refinement orders are the same. However, it
happens sometimes that the refinement order influences the
final plan length as well. In these cases, the yielded plan is
still correct, however it is not of the minimal length.

B. No optimality guarantee

If there are several valid plans of different lengths that can
be calculated at a certain step, a shortest one will be yielded.
However, this doesn’t mean that this will yield the shortest
plan of a level. In some cases, the compositional algorithm can
provide a plan in a level that is short, however after refinement
it would turn out that the solution after the last refinement is
longer than the result the incremental algorithm would yield.
This happens because of the breadth-first search nature of the
incremental algorithm.

VI. CONCLUSION

This paper presents a high-level compositional implemen-
tation that utilizes the an incremental SAT-based planning
algorithm as its solving engine to perform automated planning.
This is achieved by generating abstracted problems from the
main parameterized planning problem, solving them using the
incremental solver and concatenating the results in order to
achieve a complete plan. We show that in a majority of cases,
a significant speed-up is achieved.

Primarily, our plan for the future is to research the influence
of the refinement order in this approach. We would like to
develop a rule about defining a good refinement order, since
solving a problem for all refinement order variations is not
feasible, even for a small number of activation parameters.

Secondly, we will investigate safety and non-blocking prop-
erties of compositional planning and lastly, we would like to
test the algorithm on standard planning benchmarks.



REFERENCES

[1] A. Hanna, K. Bengtsson, M. Dahl, E. Erős, P. Götvall, and M. Ekström,
“Industrial challenges when planning and preparing collaborative and
intelligent automation systems for final assembly stations,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2019, pp. 400–406.

[2] A. Azizi, Applications of Artificial Intelligence Techniques in Industry
4.0, 1st ed. Springer Publishing Company, Incorporated, 2018.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, p. 269–271, Dec. 1959. [Online]. Available:
https://doi.org/10.1007/BF01386390

[4] S. Akers, “Binary decision diagrams,” Computers, IEEE Transactions
on, vol. C-27, pp. 509 – 516, 07 1978.

[5] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
the 10th European Conference on Artificial Intelligence, ser. ECAI ’92.
USA: John Wiley & Sons, Inc., 1992, p. 359–363.

[6] J. Rintanen, “Planning as satisfiability: Heuristics,” Artificial
Intelligence, vol. 193, pp. 45 – 86, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370212001014

[7] ——, “Madagascar: Scalable planning with sat,” Proceedings of the 8th
International Planning Competition (IPC-2014), vol. 21, 2014.

[8] ——, “Search methods for classical and temporal planning,” Tutorials
of the 21th European Conference on Artificial Intelligence (ECAI 2014),
vol. 21, 2014.

[9] ——, “Evaluation strategies for planning as satisfiability,” in Proceed-
ings of the 16th European Conference on Artificial Intelligence, ser.
ECAI’04. NLD: IOS Press, 2004, p. 682–686.

[10] S. Gocht and T. Balyo, “Accelerating sat based planning with incremen-
tal sat solving,” in ICAPS, 2017.

[11] J. Li, K. Rozier, G. Pu, Y. Zhang, and M. Vardi, “Sat-based explicit
ltlf satisfiability checking,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 2946–2953, 07 2019.

[12] N. Froleyks, T. Balyo, and D. Schreiber, “Pasar - planning as satisfia-
bility with abstraction refinement,” in Proceedings of the 12th Annual
Symposium on Combinatorial Search (SoCs 2019), Napa, CA, July 16-
17, 2019. AAAI Press, Menlo Park, CA, 2019, pp. 70–78.

[13] M. Abdulaziz, C. Gretton, and M. Norrish, “A verified compositional
algorithm for ai planning,” in ITP, 2019.


