
Deep Reinforcement Learning Based
Networked Control with Network Delays
for Signal Temporal Logic Specifications

Junya Ikemoto
Engineering Science

Osaka University
Toyonaka, Japan

email address: ikemoto@hopf.sys.es.osaka-u.ac.jp

Toshimitsu Ushio
Engineering Science

Osaka University
Toyonaka, Japan

email address: ushio@sys.es.osaka-u.ac.jp

Abstract—We apply deep reinforcement learning (DRL) to
design of a networked controller with network delays to complete
a temporal control task that is described by a signal temporal
logic (STL) formula. STL is useful to deal with a specification
with a bounded time interval for a dynamical system. In general,
an agent needs not only the current system state but also the past
behavior of the system to determine a desired control action
for satisfying the given STL formula. Additionally, we need to
consider the effect of network delays for data transmissions.
Thus, we propose an extended Markov decision process (MDP)
using past system states and control actions, which is called a τd-
MDP, so that the agent can evaluate the satisfaction of the STL
formula considering the network delays. Thereafter, we apply a
DRL algorithm to design a networked controller using the τd-
MDP. Through simulations, we also demonstrate the learning
performance of the proposed algorithm.

Index Terms—deep reinforcement learning, signal temporal
logic, network control systems, network delays

I. INTRODUCTION

Networked control systems (NCSs) have attracted consid-
erable attention owing to the development of network tech-
nologies [1]. NCSs are systems with loops closed through
networks, as shown in Fig. 1, and have many advantages in
various control problems. However, in NCSs, network delays
are caused by data transmission between a sensor/actuator
and a controller. In conventional model-based controller de-
signs, we identify the mathematical model of a system and
network delays beforehand. However, it may be difficult to
identify them precisely in real-world problems. Subsequently,
reinforcement learning (RL) [2] is useful because we can
adaptively design a controller through interactions with the
system.

RL is a machine learning method used in various fields
to solve sequential decision-making problems, and has been
studied in the control field because it is strongly associated
with optimal control methods from a theoretical point of
view. Moreover, RL with deep neural networks (DNNs), called
Deep RL (DRL), has been developed for complicated decision-
making problems [3], such as playing Atari 2600 video games
[4] and locomotion or manipulation of complicated systems

Fig. 1. Illustration of a network control system (NCS). Although the system
has many advantages, there exist two types of network delays that may degrade
control performance.

[5]–[8]. DRL-based networked controller designs have been
proposed [9]–[11]. In [9], Baumann et al. proposed a DRL-
based event-triggered control method. In [10], Demirel et al.
proposed a control-aware scheduling algorithm to synthesize
an optimal controller for some subsystems. In [11], we pro-
posed DRL-based networked controller designs to stabilize an
uncertain nonlinear system with network delays.

On the other hand, in RL-based controller designs, we
must design a reward function for desired system behavior
beforehand, which is difficult for a temporal high-level control
task. To handle the temporal control task, temporal logic (TL)
[12] is useful. TL is a branch of formal methods and has
also been applied to several control problems [13]. Signal
temporal logic (STL) [14] is particularly useful in designing
controllers for dynamical systems as it can specify continuous
signals within a bounded time interval. STL has also been
studied in the machine learning community. In [15], Ma et al.

ar
X

iv
:2

10
8.

01
31

7v
3

 [
ee

ss
.S

Y
]

 2
8

M
ar

 2
02

2

proposed an STL-based learning framework with knowledge
of model properties. Moreover, RL-based controller design
methods using STL formulae have been proposed [16]–[19].
In [16], Aksaray et al. proposed a Q-learning-based method to
design a control policy that satisfies a given STL specification.
They introduced an extended Markov decision process (MDP),
which is called a τ -MDP, and designed a reward function to
learn a control policy satisfying the STL specification. The
extended state of the τ -MDP comprises the current state and
the past system state sequence, where the dimension of the
extended state depends on the given STL formula. In [17],
Venkataraman et al. proposed a tractable learning method
using a flag state instead of the past state sequence to mitigate
the curse of dimensionality. However, these methods cannot be
directly applied to problems with continuous state and action
spaces because they are based on tabular Q-learning. In [18],
Balakrishnan et al. introduced a partial signal and proposed
a DRL-based method. In [19], Kapoor et al. proposed a
model-based DRL method. The model of the system was
learned using a DNN, and the controller was designed using a
nonlinear model predictive control method. Li et al. proposed a
policy search algorithm using truncated linear temporal logic
(TLTL) that does not have a time bound [20], [21].

In this study, we formulate a temporal control specification
as an STL formula and propose a DRL-based networked
controller design in the presence of networked delays.

Contribution: The main contribution of this paper is the
development of a DRL-based networked controller design for
satisfying STL specifications with fixed network delays. In this
study, it is assumed that we cannot identify the mathematical
model of the system and the network delays beforehand, where
the bounds of the network delays are known. To design the
networked controller, we proposed an extended MDP, which
is called a τd-MDP, and a practical DRL-based networked
controller design using the extended MDP.

Structure: The remainder of this paper is organized as
follows. In Section II, we review STL as preliminaries. In
Section III, we formulate a networked control problem for a
stochastic discrete-time system. In Section IV, we propose a
DRL-based networked controller design to satisfy a given STL
specification in the presence of networked delays. In Section
V, using numerical simulations, we demonstrate the usefulness
of the proposed method. In Section VI, we conclude the paper
and discuss future work.

Notation: N≥0 is the set of non-negative integers. R is the
set of the real numbers. R≥0 is the set of non-negative real
numbers. Rn is the n-dimensional Euclidean space. 0n is an
n-dimensional zero vector. For a set A ⊆ R, maxA and minA
are the maximum value and the minimum value in A if they
exist, respectively.

II. SIGNAL TEMPORAL LOGIC

In this study, we describe a desired control task as an STL
formula with the following syntax.

Φ ::= G[0,Te]φ | F[0,Te]φ,

φ ::= G[ts,te]ϕ | F[ts,te]ϕ | φ ∧ φ | φ ∨ φ,
ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ,

where Te, ts, and te ∈ N≥0 are nonnegative constants for
the time bounds of temporal operators. Φ, φ, ϕ, and ψ are
STL formulae. ψ is a predicate in the form of h(x) ≤ y,
where h : X → R is a function of a system state, and
y ∈ R is a constant. The Boolean operators ¬, ∧, and ∨
are negation, conjunction, and disjunction, respectively. The
temporal operators GT and FT refer to Globally (always) and
Finally (eventually), respectively, where T denotes the time
bound of the temporal operator in the form of [ts, te], ts ≤ te.
φi = G[tis,t

i
e]
ϕi or F[tis,t

i
e]
ϕi, i ∈ {1, 2, ...,M} are called

STL sub-formulae. φ comprises multiple STL sub-formulae
{φi}Mi=1.
xt and xt1:t2 denote the state at t and the partial trajectory

for a discrete-time interval [t1, t2], where t1 ≤ t2. The Boolean
semantics of STL is recursively defined as follows:

xt:T |= ψ ⇔ h(xt) ≤ y,
xt:T |= ¬ψ ⇔ ¬(xt:T |= ψ),

xt:T |= φ1 ∧ φ2 ⇔ xt:T |= φ1 ∧ xt:T |= φ2,

xt:T |= φ1 ∨ φ2 ⇔ xt:T |= φ1 ∨ xt:T |= φ2,

xt:T |= G[ts,te]φ⇔ xt′:T |= φ, ∀t′ ∈ [t+ ts, t+ te]

xt:T |= F[ts,te]φ⇔ ∃t
′ ∈ [t+ ts, t+ te], s.t. xt′:T |= φ,

where T (≥ te) denotes the length of the trajectory.
The quantitative semantics of STL is recursively defined as

follows:

ρ(xt:T , ψ) = y − h(xt),

ρ(xt:T ,¬ψ) = −ρ(xt:T , ψ)

ρ(xt:T , φ1 ∧ φ2) = min{ρ(xt:T , φ1), ρ(xt:T , φ2)},
ρ(xt:T , φ1 ∨ φ2) = max{ρ(xt:T , φ1), ρ(xt:T , φ2)},
ρ(xt:T , G[ts,te]φ) = min

t′∈[t+ts,t+te]
ρ(xt′:T , φ),

ρ(xt:T , F[ts,te]φ) = max
t′∈[t+ts,t+te]

ρ(xt′:T , φ),

which quantifies how well the trajectory satisfies a given STL
formulae [22].

The horizon length of an STL formula is recursively defined
as follows:

hrz(ψ) = 0,

hrz(φ) = te, for φ = G[ts,te]ϕ, or F[ts,te], ϕ

hrz(¬φ) = hrz(φ),

hrz(φ1 ∧ φ2) = max{hrz(φ1), hrz(φ2)},
hrz(φ1 ∨ φ2) = max{hrz(φ1), hrz(φ2)},

hrz(G[ts,te]φ) = te + hrz(φ),

hrz(F[ts,te]φ) = te + hrz(φ).

hrz(φ) is the required length of the state sequence to verify
the satisfaction of the STL formula φ [23].

III. PROBLEM STATEMENT

We design a networked controller for the following stochas-
tic discrete-time dynamical system as shown in Fig. 1.

xt+1 = f(xt, ut) + ∆wwt, (1)

where xt ∈ X , ut ∈ U , and wt ∈ W are the system state,
the control input, and the system noise at the discrete-time
t ∈ {0, 1, ...}. X = Rnx , U ⊆ Rnu , and W = Rnx are
the state space, the control input space, and the system noise
space, respectively. The system noise wt is an independent
and identically distributed random variable with a probability
density pw : W → R≥0. ∆w is a regular matrix that is
a weighting factor of the system noise. f : X × U → X
is a function that describes the system dynamics. Then,
we have the transition probability density pf (x′|x, u) :=
|∆−1w |pw(∆−1w (x′ − f(x, u))). The initial state x0 ∈ X is
sampled from a probability density p0 : X → R≥0. The goal
is to design a control policy that satisfies xπ0:T |= Φ, where
xπ0:T is a system trajectory controlled by a control policy π
and Φ is a given STL specification.

In the NCS, there exist two types of network delays: a
sensor-to-controller delay dsc ∈ N caused by the transmission
of the observed state and a controller-to-actuator delay dca ∈
N caused by the transmission of a control input computed by
the controller. In this study, it is assumed that these delays
are uncertain constants bounded by the maximum delays
dmax

sc ∈ N and dmax
ca ∈ N, respectively. Then, the controller

computes the k-th control input ak based on the k-th observed
state xk at t = k+ dsc. Actually, the control input ak is input
to the system as follows:

ut =

{
ak t = k + dsc + dca,

0nu t < dsc + dca,
(2)

where 0nu is a zero-vector of Rnu , that is the actuator
inputs the control input 0nu until receiving a0. Note that
the controller cannot control the system until t = dsc + dca.
The controller computes control inputs a0, a1, ..., aT−dsc−dca to
satisfy the STL specification.

Furthermore, it is assumed that the mathematical models
f and pw are unknown. Thus, we apply RL to design a
networked controller for satisfying the given STL specification
Φ. In RL, an agent interacts with an environment and learns
its control policy using the past interaction data. In this study,
we regard the controller and everything outside the controller
as the agent and the environment for RL, respectively. A
control input determined by the agent is called a control action.
However, a standard RL algorithm cannot be directly applied
due to the following issues.

(i) The desired control action at each step in order to satisfy
the STL specification Φ is determined not only by the
current state but also by the past system behavior.

(ii) We must design a reward function to evaluate the
satisfaction of the STL specification appropriately.

(iii) The classical RL algorithm cannot deal with continuous
state and action spaces directly.

(iv) There exist uncertain network delays in the NCS.
In the next section, we propose a DRL-based controller design
that resolves the issues.

IV. DRL-BASED NETWORKED CONTROLLER
DESIGN FOR STL SPECIFICATIONS

A. τd-Markov decision process

For issue (i), Aksaray et al. introduced an extended MDP,
which is called a τ -MDP, using a finite state sequence in
[16]. For issue (ii), they designed a reward function of the
τ -MDP to satisfy a given STL specification using the log-
sum-exp approximation. They apply the classical Q-learning to
design a policy for satisfying the given STL formula. However,
their method cannot handle continuous control tasks directly.
To resolve issue (iii), we extended the method using a DRL
algorithm for problems with a continuous state-action space.
In this study, we apply the soft actor critic (SAC) algorithm,
because it has better sample efficiency and asymptotic per-
formance. Additionally, we must consider network delays.
For issue (iv), in [11], we proposed an extended state that
comprises a current system state and previously determined
control actions. As shown in Fig. 2, we consider the worst
case scenario. At t = k, the sensor observes the k-th system
state xk, which is transmitted to the agent (controller) through
the network. The agent receives the observed state xk and
determines the k-th control action ak at t = k + dmax

sc . The
action ak is sent to the actuator through the network. The
actuator receives the k-th control action ak and updates the
control input ut = ak at t = k + d (:= k + dmax

sc + dmax
ca).

Then, it is desirable for the agent to predict the future state
xk+d with available information and determine the k-th control
action ak based on the prediction. If we are aware of the
system dynamics (1), we can predict the future state. However,
the prediction requires not only the system dynamics (1) but
also the information ut, t ∈ [k, k + d], which is the past
control action sequence ak−d:k−1 = ak−d, ak−d+1, ..., ak−1.
Thus, we use not only the extended state proposed in [16]
but also previously determined control actions. Actually, the
true network delays dsc and dca are uncertain constants. The
agent adapts the true network delays through interactions with
the system using sufficient information for predictions in the
worst case. For issues (i), (ii), (iii), and (iv), we remodel the
interactions between the agent and the system as the following
extended MDP, which is called a τd-MDP.
Definition 1 (τd-MDP): Given an STL formula Φ =
G[0,Te]φ or F[0,Te]φ, where hrz(Φ) = T and φ comprises mul-
tiple STL sub-formulae φi, i ∈ {1, 2, ...,M}. Subsequently,
we set τ = hrz(φ) + 1, that is, T = Te + τ − 1. It is assumed
that dmax

sc + dmax
ca = d. A τd-MDP is defined by a tuple

Mτ,d = 〈Z,U , pz0, pz, Rz〉, where
• Z ⊆ X τ × Ud is an extended state space. Each ex-

tended state is denoted by z = [(xτ)> (ad)>]>, where
xτ = [xτ [0]> xτ [1]> ... xτ [τ − 1]>]> and ad =

Fig. 2. Illustration of the network delays in data transmissions for the worst case, where dmax
sc = 2 and dmax

ca = 3 (d = 5). At t = k+2, the agent predicts
xk+5 and determines ak using the k-th state xk and the past actions ak−5, ..., ak−1.

[ad[0]> ad[1]> ... ad[d− 1]>]> are a past state sequence
and a previously determined control action sequence,
respectively, that is, xτ [i] ∈ X , ∀i ∈ {0, 1, ..., τ − 1}
and ad[j] ∈ U , ∀j ∈ {0, 1, ..., d− 1}.

• U is a control action space.
• pz0 is a probability density for an initial extended state
z0 = [(xτ0)> (ad0)>]> with xτ0 [i] = x0, ∀i ∈ {0, 1, ..., τ−
1} and ad0[j] = 0nu , ∀j ∈ {0, 1, ..., d − 1}, where x0 is
generated from p0.

• pz is a transition probability density for the extended state
z. In the case where the system state is updated by x′ ∼
pf (·|x, u), the extended state is updated by z′ ∼ pz(·|z, a)
as follows:

ad
′
[j] = ad[j + 1], ∀j ∈ {0, 1, ..., d− 2},

ad
′
[d− 1] = a,

xτ
′
[i] = xτ [i+ 1], ∀i ∈ {0, 1, ..., τ − 2},

xτ
′
[τ − 1] ∼ pf (·|xτ [τ − 1], ad

′
[d− 1− dsc − dca]),

where z = [(xτ)> (ad)>]> and z′ = [(xτ
′
)> (ad

′
)>]>

are the current extended state and the next extended state,
respectively.

• Rz : Z → R is a reward function. Based on [16], it is
defined by

Rz(z)

=

{
− exp(−β1(ρ(xτ , φ))) for Φ = G[0,Te]φ,

exp(β1(ρ(xτ , φ))) for Φ = F[0,Te]φ,

(3)

where β > 0 is a reward parameter. The function 1 :

R→ {0, 1} is an indicator defined by

1(y) =

{
1 if y ≥ 0,
0 if y < 0.

The reward function is designed for satisfying the given
STL specification using the log-sum-exp approximation
[16].

The agent determines a control action according to a
stochastic policy π : Z → P(U), where P(U) denotes the
set of probability distributions over U . In the SAC algorithm
[8], we use the objective with the entropy term as follows:

J(π) = Epπ

[
T−dsc−dca∑

k=0

γk(Rz(zk) + αH(π(·|zk)))

]
,

where γ ∈ [0, 1) is a discount factor, pπ is a trajectory
distribution by the policy π, H is the entropy defined by
H(π(·|z)) = Ea∼π(·|z) [− log π(a|z)], and α > 0 is an entropy
temperature. The goal is to obtain a control policy π that
maximizes the objective. We give the stochastic policy π using
a Gaussian with the mean µθπ and the standard deviation
σθπ output by a DNN with reparameterization trick [24],
which is called an actor DNN, whose parameter vector is
denoted by θπ . Additionally, we need to estimate the objective
J(π). We approximate the object J(π) as another DNN,
which is called a critic DNN, whose parameter vector is
denoted by θQ. The parameter vector θQ is updated using the
experience replay and the target network technique such as the
deep Q-network algorithm [4]. These techniques can reduce
correlation between experience data and make the learning
performance stable, respectively.

The parameter vector θQ is updated by reducing the follow-
ing critic loss function.

J(θQ) = E(z,a,z′,r)∼D

[
(QθQ(z, a)− (r + γVθ−Q

(z′)))2
]
. (4)

The agent selects some experiences from a replay buffer D
randomly for updates of θQ. The value Vθ−Q (z′) is computed
by

Vθ−Q
(z′) = Ea′∼πθπ

[
Qθ−Q

(z′, a′)− α log πθπ (a′|z′)
]
,

where Qθ−Q is the target critic DNN. The parameter vector θ−Q
is slowly updated by the following soft update.

θ−Q ← ξθQ + (1− ξ)θ−Q, (5)

where ξ > 0 is a sufficiently small positive constant. The
parameter vector θπ is updated by decreasing the following
actor loss function.

J(θπ) = Ez∼D,a∼πθπ
[
α log(πθπ (a|z))−QθQ(z, a)

]
. (6)

The entropy temperature α is updated by decreasing the
following loss function.

J(α) = Ez∼D [α(− log(πθπ (a|z))−H0)] , (7)

where H0 is a lower bound. For example, in [8], H0 is set to
−dim(U), where dim(U) denotes the dimension of the control
action space U . Actually, to keep α nonnegative after updates,
we exponentiate the parameter.

B. Preprocessing for extended states

As τ becomes larger, the dimension of the extended state z
also increases. Thereafter, it is difficult for an agent to learn
its policy because of the curse of dimensionality. Thus, we
use a preprocess to decrease the dimension of the extended
state [17]. Although the preprocess is proposed for grid world
problems, it can also be applied to continuous control tasks.
We introduce the flag value f i for each STL sub-formula φi.
Definition 2: For an extended state z = [(xτ)> (ad)>]>, the
flag value f i of an STL sub-formula φi is defined as follows:
(i) For φi = G[tis,t

i
e]
ϕi,

f i = max

{
tie − l + 1

tie − tis + 1

∣∣∣∣ l ∈ {tis, ..., tie}
∧(∀l′ ∈ {l, ..., tie}, xτ [l′] |= ϕi)

}
. (8)

(ii) For φi = F[tis,t
i
e]
ϕi,

f i = max

{
l − tis + 1

tie − tis + 1

∣∣∣∣
l ∈ {tis, ..., tie} ∧ xτ [l] |= ϕi

}
. (9)

Note that max ∅ = −∞ and the flag value represents
the normalized time lying in (0, 1] ∪ {−∞}. Intuitively, for
φi = G[tis,t

i
e]
ϕi, the flag value indicates the time duration in

which ϕi is always satisfied, whereas for φi = F[tis,t
i
e]
ϕi, the

flag value indicates the instant when ϕi is satisfied. The flag

Algorithm 1 Preprocessing of the extended state z
1: Input: The extended state z = [(xτ)> (ad)>]> and the

STL sub-formulae {φi}Mi=1.
2: for i = 1, ...,M do
3: if φi = G[tis,t

i
e]
ϕi then

4: Compute the flag value f i by Eq. (8).
5: end if
6: if φi = F[tis,t

i
e]
ϕi then

7: Compute the flag value f i by Eq. (9).
8: end if
9: end for

10: Set the flag state f̂ = [f̂1 f̂2 ... f̂M] by Eq. (10).
11: Output: The preprocessed state

ẑ = [xτ [τ − 1]> f̂> (ad)>]>.

Algorithm 2 SAC-based algorithm to design a networked
controller with network delays satisfying an STL specification

1: Initialize the parameter vectors of main critic DNNs
θQ, θπ .

2: Initialize the parameter vector of a target critic DNN θ−Q.

3: Initialize a replay buffer D.
4: for Episode = 1, ...,MAX EPISODE do
5: Initialize the system state x0 ∼ p0.
6: for Discrete-time step t = 0, ..., T do
7: if t ≥ dsc then
8: Receive the (t− dsc)-th observed state xt−dsc .
9: Construct the extended state zt−dsc .

10: Compute the next preprocessed state ẑt−dsc by
Algorithm 1.

11: if t > dsc then
12: Compute the reward rt−dsc−1 = Rz(zt−dsc−1).
13: Store the experience

(ẑt−dsc−1, at−dsc−1, ẑt−dsc , rt−dsc−1)

in the replay buffer D.
14: end if
15: Determine the action at−dsc based on the state

ẑt−dsc .
16: Send the (t − dsc)-th control action at−dsc to the

actuator.
17: end if
18: Sample I experiences

{(ẑ(i), a(i), ẑ′(i), r(i))}i=1,...,I

from the replay buffer D randomly.
19: Update the main DNNs θQ, θπ by Eqs. (4) and (6).
20: Update the target critic DNN θ−Q by Eq. (5).
21: Update the entropy temperature α by Eq. (7).
22: end for
23: end for

TABLE I
DIMENSION OF EXTENDED STATE SPACES

Without Preprocessing z With Preprocessing ẑ

Dimension τnx + dnu nx +M + dnu

values f i, i ∈ {1, 2, . . . ,M} calculated by Eqs. (8) or (9) are
transformed into f̂ i as follows:

f̂ i =

{
f i − 1

2 if f i 6= −∞,
− 1

2 otherwise. (10)

The transformed flag values f̂ i are used as inputs to DNNs
to avoid positive biases of the flag values and inputting −∞
to DNNs. We compute the flag value for each STL sub-
formula and construct a flag state f̂ = [f̂1 f̂2 ... f̂M]>,
which is called preprocessing. We use the preprocessed state
ẑ = [xτ [τ − 1]> f̂> (ad)>]> instead of the extended state
z = [(xτ)> (ad)>]>. If M � τ , we can decrease the dimen-
sion of the extended state as shown in Table I. Algorithm 1
summarizes the above preprocessing.

C. Algorithm

We propose an SAC-based algorithm presented in Algo-
rithm 2. From lines 1 to 3, we initialize the parameter vectors
of DNNs and a replay buffer D. In line 5, we initialize the
state of the system. From lines 6 to 22, the agent interacts
with the system and learns its policy for an episode. In line 8,
at t (≥ dsc), the agent receives the state xt−dsc . In line 9, the
extended state zt−dsc is constructed using xt−dsc , zt−dsc−1, and
at−dsc−1. In line 10, the preprocessed state ẑt−dsc is computed
by Algorithm 1. In line 12, if t > dsc, the reward rt−dsc−1 is
computed by Eq. (3). In line 13, the agent stores the experience
(ẑt−dsc−1, at−dsc−1, ẑt−dsc , rt−dsc−1) to the replay buffer D. In
line 15, the agent determines an exploration action at−dsc based
on the preprocessed state ẑt−dsc . In line 16, the agent sends
at−dsc to the actuator. From lines 18 to 21, the agent updates
the DNNs. In line 18, the agent samples I past experiences
{(ẑ(i), a(i), ẑ′(i), r(i))}Ii=1 from the replay buffer D randomly.
From lines 19 to 21, the agent updates the parameter vectors
of the DNNs based on the SAC algorithm.

V. EXAMPLE

Consider a two-wheeled mobile robot in the environment
shown in Fig. 3. A discrete-time model of the robot is
described byx

(0)
t+1

x
(1)
t+1

x
(2)
t+1

 =

x
(0)
t + ∆u

(0)
t cos(x

(2)
t)

x
(1)
t + ∆u

(0)
t sin(x

(2)
t)

x
(2)
t + ∆u

(1)
t

+ ∆w

w
(0)
t

w
(1)
t

w
(2)
t

 , (11)

where xt = [x
(0)
t x

(1)
t x

(2)
t]> ∈ R3, ut = [u

(0)
t u

(1)
t]> ∈

R2, and wt = [w
(0)
t w

(1)
t w

(2)
t]> ∈ R3. w(i)

t , i ∈ {0, 1, 2}
is sampled from a standard normal distribution N (0, 1). In
the simulation, we assume that ∆ = 0.1 and ∆w = 0.01I ,
where I is the identity matrix. The initial state of the system

Fig. 3. Environment of the example. The agent learns the optimal policy for
the two-wheeled mobile robot under the STL constraint.

is sampled randomly in the region 0 ≤ x(0) ≤ 2.5, 0 ≤ x(1) ≤
2.5, −π/2 ≤ x(2) ≤ π/2.

In this example, we consider the following STL formula.

Φ = G[0,900](F[0,99]ϕ1 ∧ F[0,99]ϕ2), (12)

where

ϕ1 = ((3.75 ≤ x(0) ≤ 5) ∧ (3.75 ≤ x(1) ≤ 5)),

ϕ2 = ((3.75 ≤ x(0) ≤ 5) ∧ (1.25 ≤ x(1) ≤ 2.5)),

that is, the length of xτ is τ = 100. It is assumed that
dsc = 3 and dca = 4, where these values are unknown, but
we know that dsc ≤ 5 and dca ≤ 5 beforehand. Then, the
length of the past control action sequence ad is d = 10. In all
simulations, the DNNs have two hidden layers, all of which
have 256 units, and all layers are fully connected. To mitigate
the positive bias in the update of θπ , the clipped double Q-
learning technique [7] is adopted for QθQ(ẑ, a). The activation
functions for the hidden layers and the outputs of the actor
DNN are the rectified linear unit functions and hyperbolic
tangent functions, respectively. We normalize x(0) and x(1)

as x(0) − 2.5 and x(1) − 2.5, respectively. The size of the
replay buffer D is 1.0 × 105, and the size of the mini-batch
is I = 64. We use Adam [25] as the optimizers for all main
DNNs and the entropy temperature. The learning rates of all
optimizers multiplier are 3.0×10−4. The soft update rate of the
target network is ξ = 0.01. The discount factor is γ = 0.99.
The target for updating the entropy temperature H0 is −2. The
STL-reward parameter is β = 100. The agent learns its control
policy for 6.0 × 105 steps. The initial entropy temperature is

1.0. For performance evaluation, we introduce the following
two indices:
• a learning curve shows the mean of returns∑T−dsc−dca

k=0 γkRz(zk) for 100 trajectories, and
• a success rate shows the number of trajectories satisfying

the given STL constraint for 100 trajectories.
We prepare 100 initial states sampled from p0 and generate
100 trajectories using the learned policy for each evaluation.
All simulations are run on a computer with AMD Ryzen
9 3950X 16-core processor and 32GB of memory and are
conducted using the Python software.

A. Effect of network delays

In this section, we demonstrate the effect of using past
control actions as a part of an extended state, where we use
the preprocessing introduced in Section IV. B. The learning
curves and the success rates for the τ -MDP case (without
past determined actions) and the τd-MDP case (with past
determined actions) are shown in Figs. 4 and 5, respectively.
If we do not use past determined actions, the obtained returns
become high as the agent updates its policy, as shown in
Fig. 4, but the success rate of the learned policy is not
increasing as shown in Fig. 5. Conversely, if we use past
determined actions, the agent can learn the policy that has a
high success rate for the given STL specification. This result
concludes that the agent needs not only past states but also past
determined actions to learn the policy satisfying the given STL
specification with network delays.

Fig. 4. Learning curves for the τ -MDP case and τd-MDP case. The solid
curve and the shade represent the average results and standard deviations over
15 trials with different random seeds, respectively.

B. Effect of preprocess

In this section, we show the improvement in the learning
performance by preprocessing. In the case without prepro-
cessing, the dimension of the extended state is 320 and, in
the case with preprocessing, the dimension of the extended
state is 25. As shown in Fig. 6, the agent cannot improve

Fig. 5. Success rates for the τ -MDP case and the τd-MDP case. The solid
curve and the shade represent the average results and the standard deviations
over 15 trials with different random seeds, respectively.

the performance of its policy without preprocessing. Then,
the learned policy has a low success rate as shown in Fig.
7. Conversely, in the case with preprocessing, the agent can
learn a policy that obtains high returns and a high success rate.
The result concludes that preprocessing is necessary for our
proposed method under the STL specification with a large τ
to mitigate curse of dimensionality.

Fig. 6. Learning curves for the cases with and without preprocessing. The
solid curve and the shade represent the average results and the standard
deviations over 15 trials with different random seeds, respectively.

VI. CONCLUSION

We proposed a DRL-based networked controller design for
a given STL specification with network delays. Subsequently,
we introduced an extended MDP, which is called a τd-MDP,
and proposed a DRL algorithm to design the networked
controller. Through numerical simulations, we demonstrated
the performance of the proposed method. On the other hand,

Fig. 7. Success rates for the cases with and without preprocessing. The solid
curve and the shade represent the average results and the standard deviations
over 15 trials with different random seeds, respectively.

for some STL specifications, the reward may be sparse. Ad-
ditionally, the syntax in this study is the restrictive compared
with the general STL syntax [14]. Solving these issues is an
interesting direction for future work. As a practical problem,
an extension of the proposed method to a system with network
delays that fluctuate randomly is also a future work.

ACKNOWLEDGMENT

This work was partially supported by JST-ERATO HASUO
Project Grant Number JPMJER1603, Japan and JSPS KAK-
ENHI Grant Number JP21J10780, Japan

REFERENCES

[1] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C.
Peng, “Networked control systems: A survey of trends and techniques,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 1–17, Jul.
2019.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Second Edition), MIT Press, 2018.

[3] H. Dong, Z. Ding, and S. Zhang, Deep Reinforcement Learning Funda-
mentals, Research and Applications, Springer, 2020.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[5] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” arXiv Preprint, arXiv:1502.05477, 2015.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv Preprint, arXiv:1509.02971, 2015.

[7] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in Proc. of ICML 2018, pp. 1587–
1596, July 2018.

[8] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V.
Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic
algorithms and applications,” arXiv Preprint, arXiv:1812.05905, 2018.

[9] D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforcement
learning for event-triggered control,” in Proc. IEEE 58th Conf. Decis.
Control (CDC), pp. 943–950, 2018.

[10] B. Demirel, A. Ramaswamy, D. E. Quevedo, and H. Karl, “DEEPCAS:
A deep reinforcement learning algorithm for control-aware scheduling,”
IEEE Control Syst. Lett., vol. 2, no. 4, pp. 737–742, Jun. 2018.

[11] J. Ikemoto and T. Ushio, “Application of deep reinforcement learning to
networked control systems with uncertain network delays,” Nonlinear
Theory and Its Applications, IEICE, vol. 11, no. 4, pp. 480–500, Oct.
2020.

[12] C. Baier and J.-P. Katoen, Principles of Model Checking, MIT Press,
2008.

[13] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-Time
Dynamical Systems, Springer, 2017.

[14] O. Maler and D. Nickovic, “Monitoring temporal property of continuous
signals,” Formal Techniques, Modeling and Analysis of Timed and Fault-
Tolerant Systems, pp. 71–76, Jan. 2004.

[15] M. Ma, J. Gao, L. Feng, and J. Stankovic, “STLnet: Signal temporal
logic enforced multivariate recurrent neural networks,” in Proc. NeurIPS
2020, 2020.

[16] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning
for robust satisfaction of signal temporal logic specifications,” in Proc.
IEEE 55th Conf. Decis. Control (CDC), pp. 6565–6570, 2016.

[17] H. Venkataraman, D. Aksaray, and P. Seiler, “Tractable reinforce-
ment learning of signal temporal logic objectives,” arXiv preprint,
arXiv:2001.09467, 2020.

[18] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using
signal temporal logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), pp. 3481–3486, 2019.

[19] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh, “Model-based re-
inforcement learning from signal temporal logic specifications,” arXiv
preprint, arXiv:2011.04950, 2020.

[20] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
pp. 3834–3839, 2017.

[21] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic
specified reinforcement learning tasks,” in Proc. IEEE Amer. Control
Conf. (ACC), pp. 240–245, 2018.

[22] G. E. Fainekos and G. J. Pappas, “Robust of temporal logic specifications
for continuous-time signals,” Theoretical Computer Science, vol. 410,
no. 42, pp. 4262–4291, 2009.

[23] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in Proc. of International Conference on
Runtime Verification, pp. 231–246, 2014.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint, arXiv:1312.6114, 2013.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint, arXiv: 1412.6980, 2014.

http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/2001.09467
http://arxiv.org/abs/2011.04950

	I INTRODUCTION
	II Signal Temporal Logic
	III Problem Statement
	IV DRL-BASED NETWORKED CONTROLLER DESIGN FOR STL SPECIFICATIONS
	IV-A d-Markov decision process
	IV-B Preprocessing for extended states
	IV-C Algorithm

	V Example
	V-A Effect of network delays
	V-B Effect of preprocess

	VI Conclusion
	References

