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Abstract—The analysis of event data from production systems
is the basis for many applications associated with Industry
4.0. However, heterogeneous and disjoint data is common in
this domain. As a consequence, contextual information of an
event might be incomplete or improperly interpreted which
results in suboptimal analysis results. This paper proposes an
approach to access a production systems’ event data based on
the event data’s context (such as the product type, process type
or process parameters). The approach extracts filtered event logs
from a database system by combining: 1) a semantic model of
a production system’s hierarchical structure, 2) a formalized
process description and 3) an OPC UA information model.
As a proof of concept we demonstrate our approach using a
sample server based on OPC UA for Machinery Companion
Specifications.

Index Terms—Ontology, OPC Unified Architecture, Semantic
Web, Cyber-Physical Production System, Formalized Process
Description

I. INTRODUCTION

One vision of Industry 4.0 are cyber-physical production
systems (CPPS) that are self-diagnosing, self-adapting and
self-optimizing [1]. During production, these systems generate
large amounts of multivariate data, which contain information
about the systems’ behaviour. In many applications, such
as bottleneck analysis, predictive maintenance or anomaly
detection, the stored data can be used to learn a model which
captures the systems’ behaviour. Often, these models take the
form of Petri nets, Markov chains or various types of automata
[2] [3].

In practice, time-annotated production data is difficult to
process [4] due to numerous reasons. The system architecture
of production systems is heterogeneous and consists of many
different interacting systems whose components are produced
by different manufacturers and may use heterogeneous data
models [5]. These components often have their own data
storage, which could be relational databases, log files or other
formats. Across these different data silos, similar concepts
might be represented in different ways. This heterogeneous
and complex character of the data is one of the biggest ob-
stacles for the exchange of knowledge in automation systems
[6] and big data applications in general [7].

Another problem encountered during the analysis of event
traces is the unavailability of prior knowledge. In analysis, this
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Fig. 1: Semantically enriching event logs with context and additional
data may result in more accurate and understandable analysis results.

lack of information can cause ”rediscovering” information that
is already known but unavailable, or lead to wrong conclusions
about the system’s behaviour. This is depicted in Figure 1. It
shows two models, one learned from the raw event stream, and
the other learned from raw events and additional knowledge
like the type of process and the type of product that was
produced. The first model might be complex and opaque to
the operator. However, it is expected that enriching the logs
with information from additional data sources can improve
the learned model both in terms of accuracy as well as
interpretability.

Semantic Web Technologies (SWT) like ontologies, the
query language SPARQL or knowledge graphs can provide
a solution to the described problems [8]. An ontology can
provide an explicit specification of the concepts and their
relationships in a domain. If this conceptualization is combined
with instances and their relations, this can be considered a
knowledge graph. This knowledge graph can provide a way
to align incompatible data that semantically refers to the
same entity. With ongoing research in the field of ontology-
based data access (OBDA), Semantic Web Technologies can
also be used to integrate information from distinct data silos.
With regard to the analysis of time-annotated event traces
from CPPS, knowledge graphs also offer a way to provide
formalized prior knowledge, i.e. a machine interpretable model
of implicit knowledge that is otherwise not available in the
analysis.
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This paper proposes a knowledge graph that allows extract-
ing time spans that correspond to the execution of production
processes at a CPPS, based on a formalized process descrip-
tion.

The extracted process time spans can then be used along
with an OPC UA information model to access a time-series
database. This makes it possible to retrieve event traces that
correspond to these processes.

The remainder of the paper is structured as follows: Section
II presents and discusses relevant research. Section III defines
an ontology to access variable values from an OPC UA
information model based on a formalized process description.
A prototypical implementation of this is shown in Section IV
and evaluated in Section V.

II. RELATED WORK

This section gives an overview of numerous works that
used Semantic Web Technologies to either model information
about sensors of a technical resource, or access this type of
information through an OPC UA server.

Jiskovsky et al. [5] propose a semantic big data historian that
uses Semantic Web Technologies to integrate sensor data from
a hydroelectric power plant and combines it with additional
information from other systems. It proves successful at re-
solving heterogeneity between different systems. However, the
sensor measurements are stored inside the triple store, which
can have a negative effect on the graph’s size and performance.
The knowledge graph does not consider possibilities for reuse.

Schiekofer et al. provide a formal mapping between OPC
UA and technologies of the semantic web stack [9]. This
allows for the explicit description of OPC UA semantics,
which are usually only implicitly defined in the information
models’ documentation. The authors also offer methods for
consistency checking of the OPC UA information model using
a reasoner and querying the information model using SPARQL
queries.

Hildebrandt et al. present a domain-expert-centric approach
to ontology design of CPPS, focusing on industry standards as
ontology design patterns [10]. The approach is validated on an
industrial use case encompassing system structure, processes,
states, and data elements and has a strong focus on ontology
reuse. Access to high-velocity data that should not be stored
in the ontology is not in the scope of the paper.

Kalaycı et al. use OBDA to access heterogeneous manu-
facturing data from a knowledge graph [11]. This knowledge
graph represents the concepts and properties that are relevant
for surface mounting process manufacturing, together with
important domain knowledge. Using the OBDA-tool Ontop,
SPARQL queries were executed to answer analytical queries
about the production and failures. The approach is only
applicable to relational databases, which can be accessed via
SQL queries.

Xiao et al. [8] list further use cases of OBDA, spanning
diverse domains including manufacturing, process mining and
administration, while Ekaputra et al. [12] review OBDA ap-
proaches in multi-disciplinary engineering environments.

Steindl et al. propose a different ontology-based method
to access OPC UA data through a regular SPARQL endpoint
and Custom Property Functions (CPF). These CPF extend the
SPARQL query evaluator of the Apache Jena Framework with
custom code, that gets executed whenever the CPF gets called
in a query. In order to avoid overloading the triple store, the
OPC UA data is stored in a separate database and only ac-
cessed on-demand [13]. It succeeds in accessing the recorded
values. Queries that rely on an additional knowledge outside
the extracted OPC UA information model were not in the
scope of the paper. This approach relies on OPC UA Historical
Data Access, which accesses historical values through the OPC
server itself. For read-only tasks, Mathias et al. recommend
accessing the database directly, because passing through the
OPC UA server might cause computational overhead on the
PLC [14].

Steindl et al. further evaluated the query execution times
of three different methods to integrate time series data into
knowledge graphs [15]. The authors found that both Ontop
and custom property functions were superior to storing the
time series data inside the knowledge graph. If the time series
data is already stored in a preexisting SQL database, they
recommend Ontop. Otherwise they recommend using CPFs.

While there are many approaches to model static informa-
tion about CPPS, no method of accessing segments of time-
annotated sensor data based on this information exists. This
work therefore aims to close the gap between the approach to
ontology modeling from Hildebrandt et al. [10] and the data
access to logged OPC UA data from Steindl et al. [13]. The
approach from Hildebrandt et al. [10] is used to formalize
prior knowledge about the structure and processes of a CPPS.
Based on this process description, process-based event traces
can be extracted using the approach from Steindl et al. [13].

III. ONTOLOGY OF PROCESSES, PRODUCTION SYSTEMS
AND THEIR VARIABLES

As described in Section I, the analysis of CPPS event traces
is hindered by semantic heterogeneity across data sources, sep-
arate data silos and unavailability of prior knowledge during
analysis. To overcome these issues, this section introduces an
ontology that formalizes prior knowledge about processes and
their types. It is then combined with additional information on
events and time series that were recorded at a CPPS from an
OPC UA server.

The creation of the ontology follows the domain-expert-
centric-approach to industrial ontology design outlined by
Hildebrandt et al. [10], in which suitable ontology design pat-
terns (ODP) are identified based on user-defined competency
questions (CQ) that the ontology is supposed to answer.

A. Requirements and Design Patterns

The goal of the ontology is to provide semantic access to
time-annotated data of CPPSs. Therefore, the first requirement
is that the model needs access to the full event trace of a
CPPS. This requirement can in turn be divided into two distinct
competency questions.



The first competency question asks for information of
which variables belong to the CPPS in question. In modern
CPPSs, this information is available in the OPC UA servers
information model. This model describes standardized nodes
and their relationships of a server’s address space. They can
be modeled according to OPC UA companion specifications,
which further specify models e.g. for specific industries.

Since queries should refer to individual machines, OPC UA
for Machinery is a suitable companion specification to use
in this work [16]. It allows clear identification of individual
machines and the variables they organize. Because OPC UA
for Machinery functions as a container for machine representa-
tions that follow other companion specifications (e.g. machine
tools or robotics), it is not restricted to a single domain. All
parts of the information model that are relevant for this use
case can be translated into OWL. To achieve this, the OPC
UA information models can be automatically extracted and
transformed into RDF-triples [10] [13].

RQ 1: Full Event trace of single machine
CQ 1.1: Which variables belong to

a certain machine?
Machine x organizes vari-
ables a, b, c

CQ 1.2: Which events and values were
recorded at a specific machine
in a specific timeframe?

Events x, y, z happened at
Variables a, b, c

ODP: OPC UA for Machinery + Companion Specification

Table I: Requirement and derived competency questions for RQ1.

The second competency question refers to the extraction
of variable value changes that were recorded in a given
time interval. This opens up the question of data storage
and access. Since these values are recorded and written at
short intervals, they are not well suited to be stored inside a
graph database. Multiple approaches for access to this type
of data exist in the literature, among them Virtual Knowledge
Graphs [11] or CPFs. For this use case a CPF was chosen
following the approach from [13]. Further information on the
implementation can be found in Section IV.

As described in Section I, similar production processes are
expected to produce similar event traces during their execution.
Therefore the access to these values should be based on
the production process that was performed at the time the
events occurred. To classify these production processes, an
ODP based on the ISA-88 model for batch control can be
used [17]. It contains three types of information: The physical
model describes physical assets and their hierarchy, while
the procedural control model describes abstract recipes and
operations that these physical assets can perform. Additionally,
it includes a process model that describes realizations of these
abstract recipes and operations.

These process realizations can be described in greater detail
using the Formalized Process Description according to the
VDI 3682 [18]. It offers a formalized and easily understand-
able description mechanism. It can be used to describe which
technical resource performed a process and which product-
s/energy/information elements were used as inputs or outputs.
Especially relevant to the use case in this paper would be

an information element regarding the start and end timestamp
of the process. Previous works that used this approach to
ontology design modeled information elements according to
the data element defined in DIN EN 61360 [19] [20]. The
data element contains a type description of the element as
well as an instance description, which can contain the value
associated with the data element.

RQ 2: Events and time series data of machines should be
accessible based on their context

CQ 2.1: Which events happened at
a machine during a spe-
cific type of production
process?

Events x, y, z happened at
Variables a, b, c

CQ 2.2: Which events happened at a
machine during production of
a certain product type?

Events x, y, z happened at
Variables a, b, c

ODP: ISA-88: Physical assets and process types
VDI3682: Description of process instances
DINEN61360: Data Elements

Table II: Requirement and derived competency questions for RQ2.

B. Lightweight Ontology

The use of three different ODPs causes semantic hetero-
geneity between some concepts of the ontology that needs to
be resolved. Between the ODPs of the ISA 88 and the VDI
3682, this heterogeneity is twofold. Any Physical Asset in the
ISA 88 model that can perform a part of a Recipe Procedure
can be considered a Technical Resource. Therefore, they can be
considered subclasses of the broader term Technical Resource
from the VDI 3682. Additionally, any Process in the ISA 88
process model can be described as a Process Operator from
the VDI 3682. These are therefore subclasses of the Process
Operator as well. This is visualized in Figure 2.
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Fig. 2: Lightweight ontology of the semantic integration of ISA 88,
VDI3682 and OPC UA for Machinery. Please note that both OPC
UA information models are very large and were therefore truncated.

Further semantic heterogeneity exists between the OPC UA
for Machinery information model and the physical model from



the ISA 88. While the ISA 88 model describes a machine with
regards to the kinds of operations it can perform, the OPC
UA for Machinery model describes a machine along with the
data that it generates. The machine itself should however be
represented in the ISA 88 model as well. Since the machines
in the OPC UA for Machinery model are individually capable
of performing processes, they correspond to Units in the ISA
88 model.

IV. USE CASE: PROCESS-BASED ACCESS TO EVENT LOGS
OF AN OPC UA SERVER

In order to validate the functionality of the described ap-
proach, the ontology described in Section III was implemented
and filled with data describing a machine and process hierar-
chy according to ISA88. The knowledge about the production
facility was modeled in OWL and stored in a knowledge graph.
The graph was then stored in Apache Jena1, which is an open
source framework to build applications based on Semantic
Web Technologies (s. Figure 3).

Time Series
DB

Jena Fuseki

Ontology

Physical Model &
Process Description

OPC UA Server

<<extend>>

Information 
Model

Storage

Storage

Storage

queries  
variable  
values

writes  
variable values

Custom Property
Function:  

opcua:histValues

Transformation: 
OPC UA Information

Model to OWL

Fig. 3: Storage and access setup that was used in the validation
experiment. Ontology, physical model and process description were
materialized along with the OWL-representation of the OPC UA
information model.

For this validation, a simulated OPC UA sample server from
UMATI was used [21]. Its information model follows the OPC
UA for Machinery companion specifications [16]. Inside its
Machines-folder, it contains various machines (eg. machine
tools [22], woodworking tools, robots etc.) that follow their re-
spective OPC UA Companion Specifications. These machines
were considered part of a physical model according to ISA88.,
i.e. a ISA88:Unit that can perform ISA88:UnitProcedures. The
OPC UA information model was extracted via an automated
node crawler and transformed into OWL using the Open
Source Tool Lion2.

In order to log the events and time series data from the OPC
UA server, multiple approaches exist. The different events
and time series values can be materialized inside the triple
store. Due to the high volume and velocity of measurements
however, this approach would result in inefficient query times
[15] and data processing in general [5]. Because of these lim-
itations, a dedicated time series database was favored instead.

1https://jena.apache.org/
2https://github.com/hsu-aut/lion

For this task, InfluxDB3 was chosen since it is well suited for
high write loads. All variable value changes from the machines
on the OPC UA server were logged using the open source
server agent Telegraf 4 and its OPC UA plugin5. The time
series is stored in InfluxDB according to the variable’s nodeId,
so that all information necessary for the query can be extracted
from the ontology. This way, all value changes of variables that
have an OPC UA type definition of BaseDataVariableType,
AnalogUnitRangeVariableType or FiniteStateVariableType are
logged in the database.

To allow direct access from the ontology, the approach by
Steindl et al. [13] was modified. As in [13], a custom property
function was registered as an extension in Apache Jena’s
SPARQL processor ARQ. If executed, the custom property
function queries the node’s variable value changes from a
database for any nodes that match the graph pattern specified
in the rest of the SPARQL query. The historical values can
therefore be accessed by calling the custom property function
?node histValues(?time ?value ?starttime ?endtime) with node
being the selected node from the OPC UA information model
and histValues() being the parametrized custom property func-
tion. For the given case, a connector to InfluxDB was imple-
mented that automatically queries a variables historical data
between two timestamps using InfluxDB’s query language.

The knowledge graph was filled with descriptions of pro-
cesses using an OWL representation of the formalized process
description. These descriptions contain information on the
technical resource that was assigned to the process, the ISA88-
type of process that was executed, as well as its inputs, outputs
and start- and end times. This information could usually be
found in an MES system. The lower part of Figure 4 shows
some of the process information that is available.
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Fig. 4: Data access principle for a single machine: Processes can be
selected based on various criteria. Using the start and end time of
the processes, individual event traces can be extracted.

Using this information, it is possible to select process
instances based on various selection criteria e.g. the article
that was produced or the procedure that was realized in this
process via SPARQL queries. Since the technical resource of
the process is known, the variables of that resource can be
extracted from the OPC UA information model. Variables and
timestamps are then passed to the Custom Property Function

3https://portal.influxdata.com/downloads/
4https://www.influxdata.com/time-series-platform/telegraf/
5https://www.influxdata.com/integration/opcua/



opcua:histValues(), which queries the variable values from the
time series database. Figure 5 describes the information flow
for one of these queries.

Time
Series DB

SPARQL-Query:
Select Processes,

Variables V with CPF

Application

StarTime t1,
EndTime t2,
Variables V

Jena
Fuseki

Values of V with
t1<t<t2

Flux Query for V
with t1<t<t2

Values of V with
t1<t<t2

Values of V with
t1<t<t2 + 

Process Information 

Custom Property
Function:  

opcua:histValues

Fig. 5: Information flow of a query including the CPF.

Technical resource, start time and end time of the process
are the only required process description elements to access the
recorded OPC UA variable values. However, a more granular
description of the process (e.g. only processes that were passed
a specific parameter as an input) would allow for more precise
filtering.

V. VALIDATION

In order to assess whether the knowledge graph and the
access to the time series database meets the requirements
from Section III, SPARQL queries were written to answer the
competency questions from Table I and Table II.

The first query (s. Listing 1) provides a list of all variables,
which belong to a certain machine in the ISA88 information
model (CQ1.1).

SELECT ?NodeId ?BrowseName ?Time ?Value
WHERE {
# 1. Selecting Machine in OPC UA-Information Model
?urnid owl:sameIndividualAs OpcSS:FullMachineTool.

# 2. Selecting Variables from OpcUa-Model
?urnid OpcUa:hasComponent* ?node.
?node OpcUa:browseName ?BrowseName.
?node OpcUa:nodeId ?NodeId.
?node OpcUa:typeDefinition ?nodeclass.
FILTER( ?nodeclass = "BaseDataVariableType" ||

?nodeclass = "FiniteStateVariableType" ||
?nodeclass = "AnalogUnitRangeType" ).

# 3. Extracting Variable Values via CPF
?node OpcUa:histValues ( ?Time ?Value

"2022-02-28T09:00:00Z"
"2022-02-28T09:10:00Z").

}
ORDER BY ASC(?time)

Listing 1: SPARQL query to answer CQ 1.1 and 1.2 for a machine
that follows OPC UA for Machine Tools Companion Specifications.
Prefix declaration was ommited for brevity.

To do this, it navigates the OPC UA information model and
extracts all variables whose type description fits the proper
categories. If the line ?node OpcUa:histValues (?Time ?Value
”starttime” ”endtime”) is included, the query will also trigger
the custom property function described in Section IV. Once
executed, it constructs a query and sends it to InfluxDB to
access all variable value changes by any variable that fits the
selection criteria defined in the first part of the query. This
way, the query also answers CQ1.2.

Time Value NodeId BrowseName
2022-02-28T09:00:54Z true ”ns=7;i=56510” ”IsRotating”
2022-02-28T09:01:26Z true ”ns=7;i=56519” ”Locked”
2022-02-28T09:01:73Z false ”ns=7;i=56510” ”IsRotating”
2022-02-28T09:01:70Z ”H²” ”ns=7;i=56600” ”UtilityName”
... ... ... ...

Table III: Exemplary SPARQL response to CQ 1.2.

It then returns the recorded value changes of all variables
along with the timestamps, NodeIds and human readable
BrowseName as shown in Table III. It should be noted that
in the example the query accesses events. However, since
InfluxDB does not differentiate between time series and events,
the approach is equally valid for both types of time based data.

The queries for CQ 2.1 and 2.2 (see Listings 2 and 3) build
upon the functionality shown in Listing 1.

SELECT ?Time ?Value ?NodeId ?BrowseName ?Process
WHERE {

# 1. selecting ISA88-Procedure and -Unit:
?proc ISA88:isRealizedInProcessStage ?Process.
?unit VDI3682:isAssignedTo ?Process.
FILTER( ?proc = OpcSS:UnitProcedure1).
FILTER( ?unit = OpcSS:FullMachineTool).

# 2. selecting Timestamps of Processes
?Process VDI3682:hasInput ?stimeDE.
?stimeDE DINEN61360:hasTypeDescription

OpcSS:StartTimeProcess;
DINEN61360:hasInstanceDescription /
DINEN61360:Value ?starttime.

?Process VDI3682:hasOutput ?etimeDE.
?etimeDE DINEN61360:hasTypeDescription

OpcSS:EndTimeProcess;
?etimeDE DINEN61360:hasInstanceDescription /

DINEN61360:Value ?endtime.
?Process a VDI3682:Process.

# 3. selecting Variables from OpcUa-Model
?urnid owl:sameIndividualAs ?unit.
?urnid OpcUa:hasComponent* ?node.
?node OpcUa:browseName ?BrowseName;

OpcUa:typeDefinition ?nodeclass;
OpcUa:nodeId ?NodeId.

FILTER( ?nodeclass = "BaseDataVariableType" ||
?nodeclass = "FiniteStateVariableType" ||
?nodeclass = "AnalogUnitRangeType").

# 4. Extracting Variable Values via CPF
?node OpcUa:histValues (?Time ?Value

?starttime ?endtime).
}
ORDER BY ASC(?Time)

Listing 2: SPARQL query to answer CQ 2.1 by filtering for Unit
Procedure. Prefix declaration was ommited for brevity.



They expanded by a query that extracts start and end
timestamps from processes that can then be passed to the
OpcUa:histValues-function. This way, only variables between
the timestamps are returned.

The query can be adapted to filtering processes by any
type of input, output or Technical Resource. This would also
allow to filter by different information elements (e.g. process
parameters) that function as input or output of the process.

The ISA88-information model offers another possibility to
filter the selected processes by certain conditions with regards
to its physical or procedural model. Since the information
model contains explicit information about the type of process,
it is possible to only select realizations of specific Unit
Procedures or Operations.

The SPARQL query in Listing 2 extracts the start and end
time from any process that is a realization of a specific Unit
Procedure and executed by a specific Unit. It then retrieves
the Units’ variables via the OPC UA information model and
queries the variable value changes from InfluxDB through the
Custom Property Function OpcUa:histValues().

With minor alterations in the first part, the same query can
be used to answer CQ 2.2. As shown in Listing 3, only three
lines in the first part need to be changed , while the remaining
part of the query stays the same.

SELECT ?Time ?Value ?NodeId ?BrowseName ?Process
WHERE {

# 1. selecting Article and -Unit:
?proc ISA88:isRealizedInProcessStage ?Process.
?unit VDI3682:isAssignedTo ?Process.
?Process VDI3682:hasOutput ?Product.
?Product OpcSS:hasProductType ?article.
FILTER( ?article = OpcSS:Article1).
FILTER( ?unit = OpcSS:FullMachineTool).

# 2. selecting Timestamps of Processes
?Process VDI3682:hasInput ?stimeDE.
?stimeDE DINEN61360:hasTypeDescription

OpcSS:StartTimeProcess;
DINEN61360:hasInstanceDescription /
DINEN61360:Value ?starttime.

?Process VDI3682:hasOutput ?etimeDE.
?etimeDE DINEN61360:hasTypeDescription

OpcSS:EndTimeProcess;
?etimeDE DINEN61360:hasInstanceDescription /

DINEN61360:Value ?endtime.
?Process a VDI3682:Process.

# 3. selecting Variables from OpcUa-Model
?urnid owl:sameIndividualAs ?unit.
?urnid OpcUa:hasComponent* ?node.
?node OpcUa:browseName ?BrowseName;

OpcUa:typeDefinition ?nodeclass;
OpcUa:nodeId ?NodeId.

FILTER( ?nodeclass = "BaseDataVariableType" ||
?nodeclass = "FiniteStateVariableType" ||
?nodeclass = "AnalogUnitRangeType").

# 4. Extracting Variable Values via CPF
?node OpcUa:histValues (?Time ?Value

?starttime ?endtime).
}
ORDER BY ASC(?Time)

Listing 3: SPARQL query to answer CQ 2.2 by filtering for Product
Type. Query sections 2., 3., and 4. remain the same as in Listing 2.

Other filter criteria like selecting all sub processes that
belong to a specific recipe are possible as well. This has the
added benefit that filtering can be applied using the ODPs
of the Formalized Process Description and ISA88, which are
easily understandable for end users.

An example of the SPARQL response to either query can
be seen in Table IV. It contains the value and timestamp of
a node along with the process that was executed during the
event. Grouping the result by process would allow for an easy
creation of event traces for a process.

Time Value NodeId BrowseName Process
2022-02-28T09:00:54Z true ”ns=7;i=56510” ”IsRotating” Process 1
2022-02-28T09:01:26Z true ”ns=7;i=56519” ”Locked” Process 1
2022-02-28T09:02:73Z false ”ns=7;i=56510” ”IsRotating” Process 1
... ... ... ... ...
2022-02-28T10:03:36Z true ”ns=7;i=56510” ”IsRotating” Process 4
2022-02-28T10:04:11Z true ”ns=7;i=56519” ”Locked” Process 4
... ... ... ... ...

Table IV: Exemplary SPARQL response to CQ 2.1 and CQ 2.2.

VI. CONCLUSION

In this paper, a semantic model was presented that allows
access to all recorded variable value changes from an OPC
UA server based on a Formalized Process Description. To
achieve this, the variable changes are logged in a time series
data base and can then be accessed through a custom property
function in a SPARQL query to the graph data base. Since the
knowledge graph contains information about the production
assets, the procedures they can perform and the processes that
were realized (i.e. from an MES), this allows for the extraction
of individual event traces of specific processes. The extracted
event traces can then be used to analyse the timing infor-
mation of processes down to the level of individual variable
value changes. The approach was successfully validated on
exemplary competency questions, which were answered by a
number of SPARQL queries.

While the approach can answer the competency questions,
some directions for future work remain. So far the prior
knowledge is modeled based on the ISA 88 industry standard
for batch control. The connection between process types,
process instances and Technical Resources are described using
other terminology in other domains. To broaden the scope of
this approach, this information could also be modeled using
skill based approaches [23] or the information models outlined
in the VDI 5600 - Manufacturing Execution Systems [24].

The knowledge about the processes that were executed are
currently materialized in the triple store. At a production
facility that has an MES, this kind of data would usually
be stored inside a dedicated relational database. To avoid
duplication of data, this database could be directly accessed
using an OBDA-tool like Ontop.
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[13] G. Steindl, T. Frühwirth, and W. Kastner, “Ontology-based opc ua
data access via custom property functions,” in 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
2019, pp. 95–101.

[14] S. G. Mathias, S. Schmied, and D. Großmann, “An investigation on
database connections in opc ua applications.” Elsevier, 2020, pp. 602–
609.

[15] G. Steindl and W. Kastner, “Query performance evaluation of sensor data
integration methods for knowledge graphs,” in Big Data, Knowledge and
Control Systems Engineering (BdKCSE), 2019, pp. 1–8.

[16] OPC Foundation, “OPC UA for Machinery Part 1: Basic Building
Blocks,” OPC Foundation, Scottsdale, AZ, Standard, May 2022.

[17] International Society of Automation, “Ansi/isa–88.00.01: Batch control
part 1: Models and terminology,” Standard, May 2010.

[18] VDI/VDE—Verein Deutscher Ingenieure e.V./Verband der Elektrotech-
nik, Elektronik, Informationstechnik, “VDI/VDE 3682-1: Formalised
process descriptions - Concept and graphic representation,” Verein
Deutscher Ingenieure, Düsseldorf, D, Standard, May 2015.

[19] Deutschen Institut für Normung DIN, “Standard data element types
with associated classification scheme Part 1: Definitions - Principles
and methods,” Deutschen Institut für Normung DIN, Düsseldorf, D,
Standard, Jul. 2017.

[20] C. Hildebrandt, A. Scholz, A. Fay, T. Schröder, T. Hadlich, C. Diedrich,
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