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Abstract—We explore the possibility of leveraging radar-based
sensing systems to analyze vital signs for classification, user
identification, and regression tasks. Specifically, we extract time-
domain and frequency-domain features from distance, respi-
ration, and pulse signals obtained by filtering radio-frequency
signals. Our Random Forest classification models are trained
on these features to recognize scenarios in which the radar
data were collected, categorize individuals into age groups, and
classify human activities. For classification, we achieved up
to 94.7% of accuracy when distinguishing apnea and normal
breathing in the lying position. We then show the feasibility of
identifying individuals in a small group using vital signs, which
can support model fine-tuning with data acquired from new
users. Furthermore, we used a Random Forest regression model
to estimate the Body Mass Index, height, and weight of subjects.
These classification, identification, and regression models benefit
smart systems that can simultaneously identify users, recognize
their behaviours, and extract their vital signs from radar sensors.

Index Terms—radar, vital signs, user identification, signal
processing, classification

I. INTRODUCTION

We are surrounded by radio-frequency (RF) signals orig-
inating from electronic devices with wireless communication
capability (e.g. WiFi). The presence of persons along with their
body movements considerably impacts wireless signals in both
amplitude and phase. This effect can be analyzed to develop a
sensing modality for human monitoring systems: RF sensing,
which is mostly based on the Received Signal Strength Indica-
tor (RSSI), Channel State Information (CSI), Frequency Shift
for Frequency Modulated Carrier Wave (FMCW), and Doppler
Shift [1]. The analysis of RF signals enables device-free
human sensing systems that offer localization, identification,
activity recognition, and vital sign measurement. Although
these systems have achieved significant successes with both
commodity hardware (e.g., WiFi cards) and specialized equip-
ment (e.g. radar sensors), there still exist open problems
that are actively investigated, such as: dynamic environments,
human movement, and multi-user sensing.

In dynamic environments, wireless signals are usually dis-
turbed by the presence of other wireless devices and the
reflection of obstacles. This leads to the development of signal
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Fig. 1. Modules of a vital sign sensing and analysis system based on radio-
frequency signals

processing and machine learning methods to improve the
reliability of the measurements. In human movements, the
classification and estimation of human actions are challenging,
especially when the activities are dynamic and performed at
different speeds. Finally, multi-user sensing is a challenging
task due to the high variation in the received signals, which
could result in a significant degradation in the performance of
the systems.

In this work, we propose to process the RF signals for
both vital sign measurement and context recognition, including
biometrics, activities, and identification, among others. The
benefit of this approach is two fold: (i) it provides insights
of vital signs and the corresponding contexts (such as in
smart-home systems [2]), and (ii) it facilitates a logging
mechanism, which can help us to detect any issues during the
sensing (such as artifacts caused by body movements) and to
assess the quality of estimated vital signs. Figure 1 illustrates
the modules in a smart system that processes radio-frequency
signals to extract vital signs and provides applications (e.g.,
user identification and activity recognition) to users. Such a
system can also monitor its functions and users’ routines.
We vision a system that can leverage communication signals
to simultaneously perform multiple tasks: identifying users,
estimating vital signs, recognizing users’ activities, monitoring
its own operations, etc.

We leverage different biosignals extracted from radar data
to classify the different scenarios depicted during data collec-
tion, the age group of the subjects, and their activities (see
Section V-A). We evaluated Random Forest classifiers [3] on
three radar datasets, Lying [4], Sitting [5], and Children [6],



which were originally utilized to evaluate the measurement of
vital signs.

These classification and regression models can be integrated
into smart-home systems to simultaneously measure vital
signs and recognize different user behaviors and character-
istics. Compared to camera-equipped systems, the RF-based
approach is less intrusive since it does not directly access
and analyze the visual data of the users. Some RF-based
systems can work in non-line-of-sight scenarios depending on
the penetration characteristics of radio waves [7]. Compared
to wearable sensors, an RF-based system does not require
users to attach any device [8] to their bodies. Hence, it
eliminates the issue of forgetting to carry or charge the
sensors. Furthermore, the RF-based sensing capability can be
fused into the communication channel. Our work allows the
implementation of multiple tasks through analyzing the RF
signals: estimating vital signs, recognizing users’ activities,
identifying users, characterizing the user’s biometrics, and
other contextual information. The results of these tasks are
aggregated to perform further analysis. For example, we
can generate a diary of individuals or monitor the system’s
operations.

In the experiments, we demonstrated the feasibility of
identifying individuals, especially for small groups, e.g., 4-
6 subjects (see Section V-C). The identification module is
essential in systems that monitor multiple users in a shared
space without relying on wearable devices. In addition, we
trained a Random Forest regression model to estimate the
Body Mass Index (BMI) ! of subjects using radar-sensing vital
signs (see Section V-D).

II. RELATED WORK

RF-based sensing facilitates contactless solutions to im-
plement human monitoring systems, including localization,
identification, activity recognition, and vital sign measurement.
Compared to other modalities, such as cameras or wearable
sensors, RF-based sensing can operate in non-line-of-sight
scenarios [7], and it does not require on-body devices [8].

The environment and humans can influence radio signals via
reflection, refraction, diffraction, and absorption. By construct-
ing an RSSI model in an area covered by a MICA2 sensor
network, Zhang et al. [9] localized a single moving object that
did not carry any RF devices. In a more challenging setting
with multiple objects, Xu et al. [10] introduced a sequential
algorithm to detect, count, and track them.

The characteristics of wireless signals propagating around
the human body depend on several factors, including body
composition and movements [11]. Zhang et al. [12] analyzed
unique perturbations in the WiFi CSI (at 2.4 GHz and 5
GHz frequency bands), which were caused by the diversity of
human gait. They extracted features from the spectrogram rep-
resentation to identify users. The effect of anthropometric mea-
surements (e.g., height and weight) on signal reflection was

'Body mass index - BMI: https://www.euro.who.int/en/health-
topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

also leveraged to build a device-free person re-identification
method [13]. This system utilized an FMCW radio operating
at frequencies between 5.4 and 7.2 GHz and could work in
the presence of occlusions and low-light scenarios. Lin et
al. [14] utilized a continuous-wave radar to implement a
cardiac motion-sensing system. They extracted geometric and
non-volitional features of the cardiac motion from the radar
signals to develop a continuous authentication method.

In wireless communication, CSI describes signal propaga-
tion with the effects of time delay, amplitude attenuation,
and phase shift. Based on human interference in the wireless
signal, Han et al. [15] implemented a device-free fall detection
system that found and classified abnormal CSI series. To
classify human activities, Sigg et al. [8] extracted time and
frequency domain features from RSSI of ambient RF signals
(e.g., 82.5 MHz FM Radio).

The implementation of RF-based vital sign measurement
methods is based mainly on the reflection of the signal from a
stationary person [16]. Small changes in the wireless signals
correlate with subtle movements in the human body caused by
breathing and cardiac activity. Various radio hardware, from
commodity WiFi to mmWave sensors, has been used for mea-
suring vital signs such as breathing volume [17], respiration
and heart rates [18], and cardiac motion [14]. These systems
assumed the scenario of one stationary human subject at a
close distance from the transmitter and receiver. Usually, hu-
man presence is detected before vital signs are estimated [19].
Monitoring multiple persons is another challenge of these RF-
based sensing systems. Ahmad et al. [20] leveraged range-
gating and beamforming and multiple receiving channels to
separate objects. In addition, body movements or speaking
may influence the estimation of vital signs [6]. The context
(e.g., body orientation, movements, and antenna positioning)
can influence the operations of RF-based vital sign sensing
systems [21]. Hence, when extracting vital signs, we propose
classifying human activities and scenarios in which sensing
data is collected to understand these systems’ operations better.

III. DESCRIPTION OF THE DATASETS

We perform experiments on three different publically avail-
able datasets, containing both radar signals and synchronized
reference signals acquired with medical devices. Although the
initial objective of these datasets is to extract vital param-
eters, all of them are stratified based in different biometric
characteristics and scenarios, a feature that could be exploited
to perform different classification and regression tasks. The
description of the datasets is depicted below.

A. Lying dataset

We called the first dataset from Schellenberger et al. [4],
the Lying dataset because each subject was positioned on
a tilt table. There were 30 healthy subjects, including 16
females and 14 males. The radar system was a six-port
interferometer. The RF signal was generated by a Keysight
PSG Analog Signal Generator E8257D at a frequency of 24.17
GHz. The reference system was the Task Force Monitor 30401



from CNSystems Medizintechnik GmbH, which could collect
electrocardiogram (ECG), impedance cardiography (ICG), and
continuous blood pressure (BP).

The radar data was collected from the subjects in four
scenarios: Resting when the participants breathed calmly,
Valsalva-maneuvre with pauses, apnea when the subjects hold
their breath as long as possible, Tilt-up when the table was
raised, and Tilt-down which was the opposite of Tilt-up. The
tilt-up and tilt-down scenarios triggered the autonomic nervous
system of the subjects; therefore, they might affect the heart
and respiration rates.

B. Children dataset

The second dataset was provided by Yoo et al’s [5]. It
contains data from 50 children (24 boys and 26 girls) aged
less than 13 years. Hence, we called it Children dataset.

In this dataset, each participant was sitting in a chair, and
if the participant was under six years old, a child car seat was
used. The radar system was equipped with a Texas Instruments
IWR6843 mmWave sensor, operating at 60.25 GHz. A Nihon
Kohden BSM6501K patient monitor system was utilized as the
reference sensor, which provided heart rate and respiration rate
data in the corresponding signal waveforms. In addition to the
measurement of vital signs, they used the data to perform age
group classification (biometric information): children under
three years old in Group 1 (Under-3), children aged from three
to less than six years old in Group 2 (3-To-Under-6), children
aged six to less than nine years old in Group 3 (6-To-Under-
9), and children aged nine to less than 13 years old in Group
4 (9-To-Under-13).

C. Sitting dataset

The third dataset was collected by Shi et al.’s [6], and we
called it Sitting dataset. It utilized the same 24-GHz radar
system as the first one [4].

This dataset includes 11 sitting subjects (seven male and
four female) that were measured in different scenarios (nor-
mally breathing, apnea, breathing after sport, and breathing
while speaking) and in various measurement positions (e.g., at
the carotid, on the back, and several frontal positions on the
thorax). The reference sensors included a digital stethoscope,
an electrocardiography (ECG) monitor, and a respiration sen-
sor. Figure 2 visualizes data from one participant in the dataset.
We used the radar data of this dataset and its stratification of
users to perform activity recognition.

IV. METHODOLOGY

We extracted features from physiological signals acquired
with radar sensors. These features are composed of sta-
tistical, morphological, physiological, and frequency-domain
representations. These features are subsequently used to feed
machine learning-based classification and regression models
to infer certain information about the users. Figure 3 shows
the pipeline to implement the tasks in this work.
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Fig. 2. Processed radar data from one person in the Sitting dataset [6],
reproduced from [6]
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A. Feature extraction

The distance radar data is preprocessed in the original
datasets to obtain respiration and heart signals by accommo-
dating it to different frequency bands. The original datasets
have used appropriate band-pass filters of 0.05 Hz ... 1.7 Hz
for the respiration rate range, 0.7 Hz ... 15 Hz for the pulse
frequency range, and 16 Hz ...80 Hz for the heart sound
frequency range when available. This detailed process is de-
scribed in each corresponding dataset specifications [4] [5] [6].

Before feature extraction, we further filter the heart signals
to match the typical frequency bands of the heart pulse. We
filter the signal using a Butterworth band-pass filter of order
5, using a 0.65-4.0 Hz band. All three signals (distance radar,
respiration, and filtered heart) are then segmented into sliding
windows of 30 seconds with a displacement step of 0.25
seconds between consecutive windows.

From each window from all three signals, in order to form
a high-dimensional feature vector, we extracted a total of 39
features (for a total 117) including statistical, morphological
and physiological features, both in frequency and time do-
mains. In particular, the statistical features include the mean,
min, max, std, dynamic range and four percentiles (10, 25, 75
and 90) [22]. The fractal analysis features include the Katz
fractal dimension, Higuchi fractal dimension and detrended
fluctuation analysis of the entire window, and the mean of the
three fractal analysis features computed in sub-windows of 2
seconds of the whole window. The entropy analysis features



include permutation entropy, spectral entropy, approximate
entropy, sample entropy, Hjorth mobility and complexity and
number of zero-crossings of the entire window. The heart and
heart rate variability (HRV) related features include heart rate
(HR), breathing rate (BR), interbeat interval (IBI), differences
between R-R intervals (pNN20, pNN50), Poincare analysis,
frequency domain components (Very-Low-Frequency, Low-
Frequency, High-Frequency, ratio of Low-Frequency to High-
Frequency), the standard deviation of N-N intervals (SDNN),
among others [23]. To compute them, we use the Numpy
Python library to compute the statistical features, the AntroPy
Python package, a software tool for computing the complexity
of time-series, to extract both fractal and entropy features [24]
and two Python libraries, namely Neurokit2 [25] and HeartPy
[26], to compute HRV related features.

B. Classification and regression models

We utilized Random Forest classification models [3] to
recognize scenarios, classify activities, and categorize age
groups. Random Forest is an ensemble learning method whose
outputs are the combined results of a set of decision or regres-
sion trees. Each tree is constructed from a subset of samples
during the training time, and the training algorithm works on a
subset of features. Random forest models are also used for the
identification of users. A Random Forest regression model is
a modification of the random forest classification model that
is based on an ensemble of regression trees. It outputs the
average prediction from all individual trees. Random Forest
Regressors are used in all three regression tasks.

The input of a trained Random Forest model RFE' is a
feature vector v € RF described in Section IV-A, where
k is the number of features. In this work, depending on
the tasks, the output of RF' classifiers can be a scenario
s € {Resting, Valsava, Apnea, TiltUp, TiltDown} [4], an activ-
ity a € {Normal, Apnea, Sport, Speech} [6], an age group g €
{Under-3, 3-To-Under-6, 6-To-Under-9, 9-To-Under-13} [5].
For the identification task, the output of the model is the
identity of an individual <. For the regression tasks, the outputs
are the estimation the Body Mass Index of human body:
BMI = ;7, and individual values for the weight in kilograms
w, and the height in meters h.

V. EXPERIMENTS AND RESULTS

According to the dataset protocols described before, we
evaluated the classification, identification, and regression tasks
in all publicly-available datasets of radar signals. We per-
formed the experiments in the Leave-One-Group-of-Subjects-
Out (LOGSO) setting. We randomly selected 80% (approxi-
mately) of the users for training and used the remaining data
for testing.

Specifically, in the Lying dataset [4], 24 subjects were
in the training set for scenario classification, 40 subjects in
the Children dataset [5] were in the training set for age group
categorization, and 9 subjects in the Sitting dataset [6] were
in the training set for activity recognition. We repeated the
experiment five times for each dataset, i.e., we used 5-fold

cross-validation and reported the mean accuracy and, in some
cases, the variation between folds.

A. Classification of scenarios

The scenario classification tasks can support applications
such as recognition of positioning for smart-homes [2] or
patient monitoring [27]. The scenario classification task was
performed on the Lying [4] dataset.

The labels are scenarios s €{Resting, Valsava, Apnea,
TiltUp, TiltDown}. Since this dataset contains more diverse
subjects, 30 subjects at different age ranges, we have ex-
perimented with different class divisions. First, we show the
classification results for 5 classes, depicting all scenarios. The
results of this classification task can be seen in Figure 4.
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Fig. 4. Scenario classification for 5-class configuration [4]

In addition, we perform two binary classification tasks. In
the first one, we categorized the scenarios into normal and
abnormal cases. The results of the classification can be seen
in Figure 5. In addition, we classify the apnea scenario that
depicts an abnormal breathing that can occur spontaneously,
against all normal scenarios. We show these classification
results in Figure 6. The results show that we can recognize
different scenarios with a moderate but practical accuracy of
about 65.5%. When detecting more critical scenarios, such as
the binary classification of normal vs. abnormal respiration,
the accuracy rises to nearly 80%. For the most vital case,
recognizing the irregular apnea respiration compared to other
normal scenarios, the classification accuracy is almost 95%.
This result is acceptable for most of the possible use cases.

B. Other classification tasks

In addition to breathing scenarios, we perform two com-
plementary classification tasks: age grouping on the Children
dataset [5] and activity recognition on the Sitting dataset [6].

For the Children dataset [5], we have classified
them into different age groups. The results can be
seen in Figure 7). The labels were the age groups
g € {Under-3, 3-To-Under-6, 6-To-Under-9, 9-To-Under-13}.
Children under three years of age were in Group 1 (Under-3).
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Children aged from three to less than six years old were in
Group 2 ( (3-To-Under-6). Children aged six to less than nine
years old were in Group 3 (6-To-Under-9). The remaining
were in Group 4 (9-To-Under-13).

The activity recognition task was experimented with the
Sitting dataset [6] dataset (see Figure 8). In this datasets, the
depicted activities are a € {Normal, Apnea, Sport, Speech}.
The classification results can be seen in Figure 8.

The results show that different classification tasks are
possible with moderated accuracy. Although they could be
useful for certain use cases, further study to obtain better
classification results is still needed. However, it is known that
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the annotation quality can influence the accuracy of the classi-
fication models. We observed that some segments in the Sitting
dataset [6] were labeled as Apmnea but contained Normal-
breathing signals. For example, we visualized such a segment
in Figure 9: the first half was similar to normal respiration
while the second half was the actual apnea. We argue that some
of these annotation errors would explain the comparatively
lower accuracies for these tasks.

C. Identification

The identification task aims to recognize individuals in a
group, which is useful when multiple users share a common
place (e.g., an apartment or office [2]). We used the Random
Forest classifier to identify the users in the group. We split the
sequence data into two parts in the middle for each subject:
the first half for training and the second for testing. Figure 10
summarize our results.

Following the procedure of Zhang et al. [12], we evaluated
the identification task on all three datasets and varied the
number of subjects to explore the limit of the identification
models. On the Schellenberger et al.’s Lying dataset [4] (see
Figure 10a), we varied the number of subjects to be identified
n € {4,6,8,10,30}. Note that m = 30 is the total number of
subjects in the dataset [4].

Similarly, we varied the number of subjects to be iden-
tified n € {4,6,8,10,50} in the Children dataset [5] (see
Figure 10b), in which m = 50 is the total number of subjects.
Lastly, Figure 10c displayed the identification result on the
Sitting dataset [6]. In this case, we varied the number of
subjects to be identified n € {4,6, 8,10, 11}, since there were
only m = 11 participants.

We conclude that it is feasible to identify users using radar
data in a small group (e.g., 4-6 users). As expected, the task
becomes more challenging when there are more users. One
possible direction to tackle the challenge is to develop specific
models for a group of users based on their body characteristics
(e.g., age, height, and weight).

D. Estimation of BMI values

Human body characteristics, such as the BMI, correlate
with the micro-Doppler signature of the subject [28], and it is
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TABLE 1
METRICS OF THE ESTIMATED BMI VALUES
MAE MAPE RMSE
Lying [4]: 30 subjects 3.75 (1.04) | 0.16 (0.04) | 4.82 (1.3)
Children [5]: 50 subjects | 2.16 (0.4) 0.13 (0.02) | 2.8 (0.6)
Sitting [6]: 11 subjects 3.67 (1.2) 0.18 (0.07) | 4.23 (1.13)

expected that a radar signal should be able to discern it to some
extent. In this context, we trained a Random Forest regressor
to predict the BMI values of the subjects in all three datasets
in a Leave-One-Group-of-Subjects-Out (LOGSO) setting. The
model was trained with 80% of the subjects and the remaining
data was used for testing. We repeated the experiment five
times and collected the predicted BMI values of all subjects,
in a typical 5-fold validation scheme.

Table I summarizes the metrics of the regression model, in-
cluding Mean Absolute Error (MAE), Mean Absolute Percent-
age Error (MAPE), and Root Mean Squared Error (RMSE),
while the numbers in parentheses are the standard deviation.

In our results, we obtain an MAE for the Children dataset,
whose subjects were all healthy, which is 2.16. This is in
line with recent results in similar datasets that are calculated
using different modalities, such as facial images with an MAE
of 2.23 [29], or whole-body images with an MAE of 1.66
[30]. Results with wearable motion sensors in normal persons
also show similar errors, ranging from MAEs of 1.701 to
2.181 [31]. We visualized the mean predicted BMI values for
all subjects of the three datasets in Figure 11, Figure 12, and
Figure 13.

VI. ADDITIONAL EXPERIMENTS

In addition to classification, identification, and regression
tasks, we have studied the impact of using different window
sizes and machine learning models on the total accuracy. We
perform these complementary studies in the classification tasks
of the Lying dataset [4].

1) Experiments on Window Size: Since we extracted fea-
tures from each sliding window of the radar data, the window
size can influence the results. Table II shows the results with
varying window sizes. Since the Lying dataset is unbalanced
(e.g., apnea samples are fewer than others), we also calculated
the balanced accuracy [32].

TABLE I
SCENARIO CLASSIFICATION ACCURACY IN VARIOUS SETTINGS [4]

Settings Window (s) Accuracy Acc. (balanced)
5 classes 8 61.9% (4.9%) 57.5% (5.1%)
5 classes 15 62.8% (4.7%) 59.1% (4.9%)
5 classes 30 65.5% (5.1%) 62.8% (4.6%)
Apnea vs Normal 8 93.1% (2.7%) 75.2% (4.1%)
Apnea vs Normal 15 93.4% (3.3%) 79.0% (3.1%)
Apnea vs Normal 30 94.7% (3.1%) 84.7% (2.6%)
Abnormal vs Normal 8 72.5% (2.8%) 64.8% (2.2%)
Abnormal vs Normal 15 74.0% (3.6%) 67.5% (1.2%)
Abnormal vs Normal 30 79.9% (5.4%) 74.5% (3.1%)

The optimal result was obtained with the window size of
30 seconds. However using shorter windows such as, e.g., 8
seconds, does not degrade the performance in a very significant
manner.

2) Experiments on different classification algorithms: For
comparative purposes, we performed the scenario classification
on 23 different machine learning models, as implemented
in scikit-learn 2. We summarized the experimental results in
Table III. From the results, it can be seen that the Random
Forest Classifier model [3] achieved the highest accuracy
(65.5%) for the 5-class configuration [4], while its training
time is still reasonable.

A. Regression of height and weight

We performed additional experiments to estimate the height
and weight of subjects in the Lying dataset [4], using a
Random Forest regression model. BMI, height, and weight
are important measurements to assess health conditions. We
trained the regression model on 24 subjects and estimated the
height and weight of the remaining ones. Then, we calculated
the BMI values from the estimated height and weight. The
error metrics are showed in Table IV. The calculated BMI
(computed from the estimated height and weight) and the
estimated BMI (directly regressed from vital signs) were
compared to the ground-truth BMI.

VII. CONCLUSION

We implemented user identification, scenario and activity
classification, and biometric feature regression using physio-
logical signals collected with radar sensors [4] [5] [6]. We

Zhttps://scikit-learn.org/stable/
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leveraged both time-domain and frequency-domain, morpho-
logical, physiological, and statistical features (117 features)
with the widely used Random Forest models.

For scenario and activity classification, we show that us-
ing Leave-One-Group-of-Subjects-Out (LOGSO) validation,
we were able to recognize among the five scenarios with a
reasonable accuracy, which increased for critical cases such
as recognizing abnormal vs. normal respiration.

For user identification, we showed that we could identify an
individual using only radar data in controlled environments.
We offer the results for 4, 6, 8, 10, and the total number
of subjects in each dataset. Although the accuracy decreases
when the number of individuals increases, the result is useful
with reasonably-sized groups.

We argue that training or fine-tuning of subject-specific

TABLE III
SCENARIO CLASSIFICATION ACCURACY IN VARIOUS ALGORITHMS [4]

Classifiers Acc | Time (s)
AdaBoostClassifier 0.46 | 27.05
BaggingClassifier 047 | 37.25
BernoulliNB 0.37 | 0.32
CalibratedClassifierCV 0.50 | 383.88
DecisionTreeClassifier 043 | 6.21
DummyClassifier 034 | 0.2
ExtraTreeClassifier 0.39 | 0.28
ExtraTreesClassifier 0.53 | 7.65
GaussianNB 0.30 | 0.34
KNeighborsClassifier 0.40 | 13.30
LGBMClassifier 0.52 | 2.66
LinearDiscriminantAnalysis 0.49 | 1.18
LinearSVC 0.50 | 103.03
LogisticRegression 049 | 2.32
NearestCentroid 0.34 | 0.26
PassiveAggressiveClassifier 0.40 | 1.01
Perceptron 0.40 | 0.85
QuadraticDiscriminantAnalysis | 0.31 | 0.48
RandomForestClassifier 0.65 | 36.97
RidgeClassifier 048 | 0.30
RidgeClassifierCV 048 | 0.70
SGDClassifier 048 | 3.85
SvC 0.48 | 272.90
XGBClassifier 0.54 | 53.38

models is still needed for accurate context classification. In
this context, users’ identification and body characteristics
estimation could support the collection of new data and the
creation of personalized models. In particular, we showed the



TABLE IV

ESTIMATION OF HEIGHT & WEIGHT AND CALCULATION OF BMI [4]

Height (cm) | Weight (kg) | Calculated BMI | Estimated BMI
MAE 9.15 (4.54) 14.93 (8.0) 3.72 (2.56) 3.75 (1.04)
MAPE | 0.05 (0.02) 0.22 (0.15) 0.16 (0.10) 0.16 (0.04)
RMSE | 9.80 (4.47) 15.76 (7.6) 4.02 (2.47) 4.82 (1.3)

potential of Random Forest models to identify users in a small
group and estimate their BMI values and other biometric traits.

Our results show that the classification of the context using
only radar signals is feasible, even when using datasets not
directly intended for these tasks that are prone to annotation
problems. Future studies should focus on incorporating better
machine learning models and preprocessing schemes, possibly
more tolerant to label noise.
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