
This is the pre-print draft manuscript for early researcher discussion. The peer-reviewed version will be published exclusively

by IEEE after the ETFA2023 conference, which is set to take place from September 12th to 15th, 2023. We've made several

critical improvements to the final version of the paper based on valuable feedback and suggestions from other researchers.

Towards autonomous system: flexible modular

production system enhanced with large language

model agents

Yuchen Xia

Institute of Industrial Automation

and Software Engineering

University of Stuttgart

Stuttgart, Germany

yuchen.xia@ias.uni-stuttgart.de

Manthan Shenoy

Institute of Industrial Automation

and Software Engineering

University of Stuttgart

Stuttgart, Germany

st175289@stud.uni-stuttgart.de

Nasser Jazdi

Institute of Industrial Automation

and Software Engineering

University of Stuttgart

Stuttgart, Germany

nasser.jazdi@ias.uni-stuttgart.de

Michael Weyrich

Institute of Industrial Automation

and Software Engineering

University of Stuttgart

Stuttgart, Germany

michael.weyrich@ias.uni-stuttgart.de

Abstract — In this paper, we present a novel framework that

combines large language models (LLMs), digital twins and

industrial automation system to enable intelligent planning and

control of production processes. We retrofit the automation

system for a modular production facility and create executable

control interfaces of fine-granular functionalities and coarse-

granular skills. Low-level functionalities are executed by

automation components, and high-level skills are performed by

automation modules. Subsequently, a digital twin system is

developed, registering these interfaces and containing

additional descriptive information about the production system.

Based on the retrofitted automation system and the created

digital twins, LLM-agents are designed to interpret descriptive

information in the digital twins and control the physical system

through service interfaces. These LLM-agents serve as

intelligent agents on different levels within an automation

system, enabling autonomous planning and control of flexible

production. Given a task instruction as input, the LLM-agents

orchestrate a sequence of atomic functionalities and skills to

accomplish the task. We demonstrate how our implemented

prototype can handle un-predefined tasks, plan a production

process, and execute the operations. This research highlights the

potential of integrating LLMs into industrial automation

systems in the context of smart factory for more agile, flexible,

and adaptive production processes, while it also underscores the

critical insights and limitations for future work. Demos at:

https://github.com/YuchenXia/GPT4IndustrialAutomation

Keywords— autonomous system, intelligent agent, GPT,

digital twin, Asset Administration Shell, smart factory

I. INTRODUCTION

Flexible production has emerged as a significant aspect of
modern manufacturing environments in response to changing
market demands and product customization requirements.
Manufacturers need to adapt quickly to market changes and to
stay competitive. This leads the manufacturer to consider
diversifying their products and providing customized
manufacturing services, which requires an agile production
system and efficient management of the complexity of the
production.

However, there are several technical challenges for
deployment of agile and flexible production in reality: First of
all, flexible production requires seamless integration of
diverse technologies solution, e.g., robotics, automation,
planning algorithms etc. Secondly, the production equipment
and manufacturing processes need to be reconfigurable
[1][2], which requires modular processes and systems as well

as reconfigurable machines. Furthermore, automated flexible
production also requires quick changeover [3] after decision-
making to adapt the production against the changing
requirements. Eventually, a highly knowledgeable
workforce in every complicated technology with high
availability to manage and supervise the complex system is
too luxurious to be true. Traditional production systems
frequently face difficulties in fulfilling these requirements due
to their inflexible [1], dedicated workflows and restricted
adaptability, as well as the absence of domain-specific
knowledge in reconfiguring the production facility.

To tackle these challenges and requirements, we propose a
novel solution: a large language model (LLM) enhanced
automated modular production system for flexible
manufacturing.

Our messages and contributions from this paper are
summarized as follows:

(1) We demonstrate with a representative use case
explaining why and how large language models can
be used to achieve a higher level of intelligence and
adaptability of industrial automation systems by
planning and controlling the production, especially in
the context of flexible production scenarios.

(2) We structure the system design according to the
automation pyramid, illustrating a feasible technical
approach to integrate LLMs into automation system.

(3) We prefer the more scalable in-context-learning
approach over the fine-tuning approach, and the task-
specific knowledge is injected into a LLM in prompt.
As prompt engineering is an emerging field with little
standardization, we devise a structured prompt
template for this use case, drawing on insights from
existing research in Natural Language Processing.

II. BACKGROUND

In this section, we start by discussing why and how

modular production systems can meet the requirements

seamless integration and reconfigurability for flexible

production. Then we emphasize the importance of modular

query and control interfaces to allow the LLM to access

information about the physical production processes and to

adapt the production to changing requirements. Last but not

least, we provide a brief overview of LLMs and the

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

fundamental reasons why they have the potential to handle

domain-specific tasks in industrial automation.

A. Modular Production Systems

Modular production systems are developed to address the
challenges of flexibility, scalability, and adaptability in
manufacturing. These systems consist of a series of modular
modules, which can be easily reconfigured, replaced, or
updated to accommodate varying production requirements. In
the following introduction, we categorize them into three
types: linear, parallel and matrix modular production.

1) Linear modular production
The production process follows a step-by-step sequence, with
each module performing its designated task before passing the
workpiece to the next module. In discrete production like
automotive assembly [4], the material can be processed
differently with variable process module. In continuous
production in the process industry, the process plants can be
designed modular to decrease efforts and cost in system
planning, integration, and configuration [5].

2) Parallel modular production
The production system enables multiple modules and lines to
operate concurrently on a variety of tasks. In comparison,
parallel modular production supports simultaneous production
operations, allowing a workpiece to be processed by multiple
modules [4], which further increases flexibility. To effectively
combine various production modules, additional
transportation systems are necessary for seamless process
automation.

3) Matrix modular production
The matrix modular production [6] decouples the logistics
tasks from production and changes the rigid line structure into
matrix structure, which consist of modular production cells
and automated transportation systems (often by applying
Automated Guided Vehicle). These systems comprise
independent modules that can be reconfigured and combined
to execute a wider range of production tasks. As various

production modules with different specialties can be
rearranged, added, or removed with minimal impact on the
overall system, the matrix production has the potential to
quickly adapt to diverse requirements, customer preferences,
and market demands. Some literature also refers to this
production type as Matrix Manufacturing Systems (MMS) [7].

Despite the structural superiority of matrix modular
production for flexible reconfiguration, planning and process
orchestration for customized production tasks still rely on the
accumulated expertise within a company. Identifying a
feasible solution to a problem can be time-consuming if any
part of the required knowledge is unavailable or if there is a
lack of effective communication among experts.

Table 1 Comparison of different types of modular production

against the changing customer demand examples

Large Language Models (LLMs) possess the capability to
interpret information, generate reasoning insights, and assist
in decision-making processes. Trained on vast amounts of
data, LLMs can understand and process complex information
across various domains. By harnessing the interpretation and
reasoning abilities of LLMs, the planning and process
orchestration can be streamlined. This can lead to faster
problem-solving and better adaptation to customer demands.

B. Digital Twins

Despite the vast knowledge and reasoning capabilities of
large language models (LLMs), a critical question remains:
How can the LLMs access real-world information and
effectively address tasks in practical settings?

The current state-of-the-art automation systems are not fully
equipped to offer comprehensive descriptive information
about production and unified accessible interfaces for
querying and controlling physical processes. We developed a
digital twin system to bridge the gap between LLMs and the
physical world, as shown in Figure 2. Digital twins are
synchronized virtual representations of physical assets or
processes [8]. The digital twin system contains descriptive
information about the production and exposes unified
interfaces to LLM for manipulating the physical system. We
lay special stress on the synchronization characteristics
because it is fundamental to allow the reactive intelligent
behavior of an autonomous system.

Case examples Requirements
Linear

MP

Parallel

MP

Matrix

MP

Customer wants the

packaging material to be

paper instead of plastics.

Variation of

machine

functionalities
+ + +

Customer wants an

engraved logo on the

product instead of painted

logo.

Variation of

certain process

steps
- + +

Customer wants a special

HiL-quality test on the

product in the middle of

production process.

Variation of

ochestration of

processes
- - +

Customer returns the

product due to a quality

fault and demands

reprocessing

Variation of

problem-

solving process
- - ○

+ :

– :

○ :

Requirements fulfilled without change of production system

Requirements hardly fulfilled due to the inflexible material flows

Requirements can be fulfilled with experts intervene and effort

IN OUT

IN OUT

IN

OUT

AGV

AGV

customizable

painting
Inspection

customizable

packaging

programmable

CNC
Inspection

Inspection programmable

CNC

forming
Laser

engraving

customizable

painting
Inspection

customizable

packaging

Inspection forming

Laser

engraving

customizable

painting

programmable

CNC
customizable

packaging

Linear modular production

Parallel modular production

Matrix modular production

workpieces

Product A

Product B

Product A

Product B

Variable products

workpieces

workpieces

• Separation of module specialty

• Decoupling of transportation

→ Organization flexibility

→ Adaptability to changes

…

Figure 1 Three structure types of modular production system

Digital Twin System
Automation System Intelligent Agents

(Large Language Model)

High-Fidelity Vitual

Representation & Synchronization
Knowledge Access &

Interface Access

Mediate Interaction with Physical World
Figure 2 The overall framework of the general concepts and

their relationships

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

On one hand, automation systems are enhanced with
digital twins and LLMs to unlock the potential of data- and
AI-driven smart factories. On the other hand, LLMs interact
with physical environments by having an embodiment in
reality through the established infrastructure that combines
automation systems and digital twins. This approach equips
an artificial “brain” with mechatronic “hands” and “eyes” for
more intelligent interaction.

C. LLM in automated Production Systems

LLMs can be utilized to interpret complicated information,
generate insights, and support decision-making processes in
industrial automation systems.

As illustrated in Figure 3, LLMs are deep learning models
trained on vast amounts of text data, enabling them to generate
human-like responses and handle complex language patterns
across various NLP tasks. Recent advancements in NLP
research have uncovered a promising finding: as the neuron
size of LLMs increases, well-trained models gain the ability
to interpret the meaning conveyed through language and
demonstrate a capability of approximating human
knowledge behind the language representation—a capability
beyond the languages processing and not observed in smaller
neural networks [9][10]. This development allows LLMs to
perform general reasoning tasks effectively. Furthermore, as
the training data for LLMs includes scientific papers, books,
Q&A forums, and software code, LLMs are also informed
with diverse domain-specific knowledge, which can be
utilized for executing engineering related tasks.

By employing prompt engineering techniques [11], we
develop multiple intelligent agents at both the MES level and
the automation module level within the automation pyramid.
These agents are specifically designed to manage production
tasks within their respective scopes.

III. METHODS

In this section, we explain how we connect the LLM to the

digital twin infrastructure with prompt engineering, allowing

intelligent agents to manage and control the production

operations to solve an unforeseen problem.

A. Integrate the information and expose the service

interfaces of the digital twin

First and foremost, the large language model agent requires

high-fidelity information to accurately comprehend the

production system. Thus, a data infrastructure that houses

1 The Asset Administration Shell comprises extensive information pertaining
to an asset, and it organizes this data into sub-models based on various

aspects.

comprehensive information about the production system is

fundamental. We model the production system in a digital

twin system in a modular and cascaded manner. These

modular digital twins contain detailed information about their

represented assets.

The descriptive information in the digital twin system is

modeled in the form of Asset Administration Shells (AAS) 1

and managed with an AAS-middleware 2. Within the AAS,

query and command services are referenced as URLs, which

are semantically annotated with interface description in the

skill sub-model. These interfaces enable the querying of asset

states and control over automation system functionalities

through RESTful service calls.

As shown in Figure 5, the digital twin of an automation

module “Transport Robot Robotino_7” contains the

cascaded information about its “skills”, the references to its

“components”, callable “functionalities” interface, and other

comprehensive information in sub-models “technical data”

“operational data” “documentation” and “software” for

further information.

Based on the descriptive knowledge about the assets and the

callable interfaces provided by the digital twin system, it is

possible to build two types of intelligent agents: A manager

2 We used Basyx AAS-middelware.

ERP

LLM enhanced MES

LLM enhanced

Automation

Modules

Sensors /

Actuators

+

Services Services Services

Human knowledge

Domain knowledge

…

Knowledge required

to perform a specific

task

Domain & task

adaptation

Context-

ualization

Artificial

General

Intelligence

Artificial

Special

Intelligence

Pre-training on a wide range of texts

encompassing knowledge from various domains

Figure 3 Integration of LLM-agents and digital twins in

automation systems for enhanced intelligence

Figure 5 Digital twin representation of the production system

modeled with asset administration shell.

Figure 4 Underlying general mechanism enabling LLMs to

address domain-specific task.

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

agent that works on the top of the automation modules,

orchestrating diverse skills of the automation modules to plan

the production; and several operator agents work within a

particular automation module, orchestrating diverse

functionalities to execute a given skill, as shown in Figure 5

and 6. Designing more than one agent is necessary to break

down the challenging task into several manageable sub-tasks.

B. Creating a LLM agent to adapt to a specific task with

prompt engineering

We create these agents by contextualizing a GPT-model with

prompts. The structure of the designed prompt and the

interactions between digital twin and GPT-agent through the

prompt are shown in Figure 7. More detailed examples are

shown in the next implementation section.

The digital twin and the GPT-agents are connected via a

prompt, which is sent to a LLM to initiate a response from

the model. The prompt also serves as a trigger for the LLM

to generate contextually appropriate text based on the given

input. As shown in Figure 7, our designed prompts are

composed of five distinct sections that target specific core

working mechanisms of the GPT models. In the following

texts, we explain them along with the design reasons. To

3 This portion of the prompt targets the zero-shot learning capability [16],

which enable large language models (LLMs) to perform previously
unencountered tasks without explicit examples, particularly when the model

has undergone instruct-fine-tuning optimization [17].
4 A token can be defined as a basic meaningful unit of the text in input and
output.
5 Attention mechanism is analyzed and visualized in [18].

increase the readability, we put further in-depth explanations

related to NLP in footnotes.

1) The role and the goal

This section of the prompt outlines the role and objective of

an agent in natural language 3 , providing the model with

clarity regarding the particular task that is expected to carry

out.

By defining the role and objective concisely, the text can

effectively convey intentions and expectations with fewer

tokens4. This offers two benefits: Firstly, it enables the model

to better align with the general requirements, producing

outputs that adhere to the desired role (e.g., operator, manager,

advisor) and goal (e.g., performing operations, finding

solutions, providing suggestions). Secondly, concise text

concentrates meaning within fewer tokens, allowing the

model to infer stronger related connections between text

elements with higher attention weight 5 while preventing the

dilution of the model’s attention.

2) Context

This section presents information derived from digital twins,

aiming to supply descriptive information about the particular

production system that the model needs for effective

reasoning. As shown in table 2 and 3 in the Implementation

Section, the knowledge should at least contain the objects

description, the skills and functions of the objects and the

mappings to the service interfaces of the executable

operations. However, as the knowledge representation in

digital twins’ software system and texts in natural language

are different, the information from the digital twin model

shall be converted in text form in natural language, e.g., with

fill-in-the-template mechanism and concatenation of text

strings.

The converted information from digital twins offered in this

context section serves two purposes: first, it enables the

model to comprehend the production system’s operations,

incorporating additional information about the particular

system. Secondly, as GPT has been trained across a wide

range of subjects, it possesses extensive general knowledge

that is implicitly stored within its model weights [12]. The

descriptive information provided in the prompt guide GPT to

“concentrate” 6 on the related knowledge embedded within

the model when generating text. In this sense, this process

actualizes the combination of the general knowledge of GPT

with the special knowledge specified in prompt to execute

reasoning for specific task.

3) Instructions

This section aims to guide the GPT-agent’s behavior by

specifying the desired output formats and establishing

boundaries for the generated content. We also encourage the

model to “think step-by-step”7, a widely adopted strategy

among researchers, to facilitate logically structured reasoning

6 This concentration is based on the mechanism of auto-regression process in

text generation [13], where predicted text is continuously generated based on
previous seen tokens.
7 Also referred to as “chain-of-thought-prompting” [19] which significantly

improves accuracy in performing complex reasoning [20][21]. Models that
trained on code generation typically exhibit superior performance in step-by-

step reasoning [19].

Automation Module

Manager Agent

Provide Context

Operator Agent Operator Agent

Functionalities
Orchestration

Result

…

Invoke Skill

Invoke Skill

Provide Context
& a skill objective

Provide Context
& a skill objective

Functionalities
Orchestration

Result

Skills
Orchestration

Result

MES

Automation Module

Task Input

• The role and goal

• Context
• Objects description

• Callable skills/functions

• Mapping between RESTful

interface and skills/functions

• Other information

• Instruction
• Constraints and instructions

• Illustrative examples
• Input: [an example of input that the agent gets]

• Output: [an example of output to be generated]

(… multiple examples …)

• Current task:
• Input: [a task]

• Output:

provide

context

information

Interaction

Services Services

The prompt template for stateless GPT-Agent

: Information in dynamic

interaction with digital

twin system

: Static information

……

Digital Twin System

Figure 6 Interactions between LLM-agents and digital twins of

automation modules and components

Figure 7 structure and content elements of the prompt and the

interaction between the digital twin and GPT-agent through the

prompt

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

and break down complex problems into a series of smaller

intermediate tasks.

4) Illustrative examples

This section provides verified concrete illustrative instances

that demonstrate the desired input-output pattern. This can be

beneficial in several ways: first of all, it constrains the

structure of the text to be generated. Furthermore, the model’s

performance can be improved even with a limited number of

examples8. Last but not least, the examples can help further

specify the context information and disambiguate the abstract

information provided so far, and during our experimenting,

we observed an increase in misunderstood or irrelevant

response from the model without representative instance

examples.

5) Input and Output interaction pattern

While the previous prompt sections focus on configuring the

LLM to comprehend the task, this prompt section focuses on

instructing the LLM to generate texts based on specific input.

The input can be a user request to the “manager agent” to

perform production task by orchestrating the skills, or it could

be a skill demand to an “operator agent” to perform a skill

by orchestrating the functionalities within an automation

module.

We intentionally leave the prompt incomplete, ending with

“Output:”. By this means, the GPT’s fundamental

mechanism of next-token prediction [12][13] is addressed,

upon which the model has been trained and optimized.

Essentially, the agent carries out its designated task by

completing the entire prompt and continuing writing the texts

after the cue-word “Output:”.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we first illustrate our methods with two

examples of the prompt, then explain the system components

and their interaction with diagram and show the implemented

demonstrator of a matrix modular production facility in our

laboratory.

Table 2 and 3 contain minimum prompts we specified to

prompt the GPT-model “text-davinci-003” to solve the

production planning and execution problem. Readers can

reproduce the results of agents output by sending the prompt

text to the GPT-model for text generation9.

Table 2 Prompt input example of the stateless manager-agent.

The Prompt for the manager agent:

Role and goal:
You are a manager of a production system. Your goal is to design an efficient production
process based on a given task. You should take into account the provided context, instructions,
and examples. Following these, you generate an output of a production process.

Context:
(1) A production process consists of one or more process steps.
(2) There are two types of process steps, one type is transportation process step, another

type is production process step.
(3) If the next production process is executed in a different production module,

transportation process between two production processes is necessary.
(4) The transportation step can be executed with a transport robot.
(5) Transportation step is not considered as production process step.
(6) A production process always begins with a skill of the storage module and ends with

a skill of the storage module.
(7) This production system that you manage consists of several production modules.

Each of these production modules has one or more skills to execute a production
process step.

(8) Each process step can be executed with one skill of a module.

8 This ability is also termed as termed as “few-shot learning” [22].
9 These prompts are simplified from our hardware-dependent use case, and
in order to improve the readability of the paper while retain the transferability

of the method, too detailed information is cut short, such as the long

(9) The production process should only contain the necessary steps that are necessary to
satisfy a task specified in the input.

The production modules are described as following:
(10) An inspection module. It has the following skills: (I1) check the raw material, (I2)

check the faulty material, (I3) test the quality of the material.
(11) A storage module. It has the following skills: (S1) retrieve a workpiece, (S2) store a

workpiece.
(12) A transport robot. It has the following skills: (T1) transport workpiece between

different modules. (T2) leave the production area.
(13) A CNC machine module. It has the following capabilities: (M1) drilling, (M2)

milling, (M3) polishing.
(14) A painting module. It has the following skills: (P1) coat the material, (P2) print a

pattern on the surface with paint.
(15) A laser machine module. It has the following skills: (L1) print a pattern on the

surface with laser.
Instructions:

As a manager of this production system, please arrange a production process based on the
input.
Only use the skills that are given in the context section.
Only use the skills that are necessary to carry out the task.
Give an explanation with short reason in list form.
You should think step-by-step.

Examples:
Input:
{produce a steel sheet with a hole}
Output:
{(S1) – (T1) – (I1) – (T1) – (M1) – (T1) – (I3) – (T1) – (S2)}
Explanation:
(S1) retrieve a workpiece from storage module.
(T1) transport the workpiece from storage module to inspection module.
(I1) check the raw material to make sure it's suitable for production.
(T1) transport the material to the CNC machine module.
(M1) drill a hole on the steel sheet.
(T1) transport the material back to the inspection module.
(I3) test the quality of the material to ensure the final product meets the desired specifications.
(CT1) transport the material back to storage module to store the final product.

(…)
Input: {produce a steel nameplate and there should be a painted logo.}
Output:
{(S1) – (T1) – (I1) – (T1) – (M2) – (T1) – (L1) – (T1) – (I3) – (T1) – (S2)}
Explanation:
(S1) retrieve a workpiece from storage module.
(T1) transport the workpiece from storage module to inspection module.
(I1) check the raw material to make sure it's suitable for production.
(T1) transport the material to the CNC machine module.
(M2) mill the steel sheet to create the nameplate.
(T1) transport the material to the laser machine module.
(L1) print the logo on the nameplate using laser.
(T1) transport the material back to the inspection module.
(I3) test the quality of the material to ensure the final product meets the desired specifications.
(T1) transport the material back to storage module to store the final product.

Input: {the customer returned a wood nameplate and said there should be a painted customer logo
on the backside. The wood nameplate is now in the storage module.}
Output:

The generated output by the agent:

{(S1) – (T1) – (P2) – (T1) – (I3) – (T1) – (S2)}
Explanation:
(S1) retrieve the wood nameplate from storage module.
(T1) transport the workpiece from storage module to painting module.
(P2) print the customer logo on the backside of the nameplate with paint.
(T1) transport the material back to the inspection module.
(I3) test the quality of the material to ensure the final product meets the desired specifications.
(T1) transport the material back to storage module to store the final product.

Table 3 Prompt input example of the stateless operator-agent for

the transport robot

The Prompt for an operator agent (a transport robot):

Role and goal:
You are an operator of a transport robot of a production system that performs skills to fulfill a
transportation task. Your goal is to orchestrate the functionalities of this robot to perform a
skill. You should take into account the provided context, instructions, and examples.
Following these, you generate an output of a series of functionalities and provide the correct
URLs to these functionalities.

Context:
There are several production modules in this production system, and they are storage module,
inspection module, painting module, CNC machine module and laser machine module.
The transport robot only transports workpiece between two of the following modules: the
inspection module, the painting module, the CNC machine module and the laser machine
module.
The transport robot can perform the following skill(s): (T1) Transport workpiece.
A component named "functionality handler" is a logical component, and it is identified as
"functionality_handler_001". It can control the actions of the transport robot.
This component "functionality_handler_001" can execute the following functionalities of
Robotino_7:
(1) Functionality "move_dock" will move the transport robot to a module and dock it to the
module. This functionality can be called using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock".
(2) Functionality "load" will take a workpiece from a module and load it to the transport robot.
This functionality can be called using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/load".
(3) Functionality "unload" will unload a workpiece from the transport robot and give it to a
module. This functionality can be called using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/unload".
(4) Functionality "undock" will detach the transport robot from a module, if the transport
robot is docked to a module. This functionality can be called using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/undock".

Instructions:
As an operator of this transport robot, please arrange a series of functionalities to solve the
task specified in the input.
Only use the functionalities that are given.
Only use the functionalities that are necessary to carry out the task.
Specify the start module and target module in the output steps when necessary.
Give an explanation with short reason in list form.
You shall think step-by-step.
Follow the text structure and syntax in the examples.

Examples:
Input:

(T1) Transport the workpiece from laser machine module to the CNC module.
Output:

To transport the workpiece from the laser machine module to the CNC module, the following
steps shall be executed:

identifiers and the amount of examples. The most convenient way to

reproduce the generated results could be using the ChatGPT web-application
and paste the prompt input into the conversation. Demos at:

https://github.com/YuchenXia/GPT4IndustrialAutomation

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

(1) Move the transport robot to the laser machine module and dock it. Call the functionality
"move_dock" using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the robot to the
laser machine module and dock it.
(2) Load the workpiece from the laser machine module onto the transport robot. Call the
functionality "load" using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/load" to load the workpiece onto the
robot.
(3) Undock the transport robot from the laser machine module. Call the functionality
"undock" using the URL "http://129.69.102.129:5010/robotino_7/functionalities/undock" to
detach the robot from the laser machine module.
(4) Move the transport robot to the CNC module and dock it. Call the functionality
"move_dock" using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the robot to the
CNC module and dock it.

(5) Unload the workpiece from the transport robot onto the CNC module. Call the
functionality "unload" using the URL

"http://129.69.102.129:5010/robotino_7/functionalities/unload" to unload the workpiece from the
robot onto the CNC module.

Input: {(T1) Transport the workpiece from the storage module to the painting module.}
Output:

The generated output by the agent:

To transport the workpiece from the storage module to the painting module, the following steps
shall be executed:
(1) Move the transport robot to the storage module and dock it. Call the functionality "move_dock"
using the URL "http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the
robot to the storage module and dock it.
(2) Load the workpiece from the storage module onto the transport robot. Call the functionality
"load" using the URL "http://129.69.102.129:5010/robotino_7/functionalities/load" to load the
workpiece onto the robot.
(3) Undock the transport robot from the storage module. Call the functionality "undock" using the
URL "http://129.69.102.129:5010/robotino_7/functionalities/undock" to detach the robot from the
storage module.
(4) Move the transport robot to the painting module and dock it. Call the functionality "move_dock"
using the URL "http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the
robot to the painting module and dock it.

(5) Unload the workpiece from the transport robot onto the painting module. Call the
functionality "unload" using the URL
"http://129.69.102.129:5010/robotino_7/functionalities/unload" to unload the workpiece from
the robot onto the painting module.

The parsed result in JSON-file for control services invocation:
(by using regular expression to convert the texts into JSON in python)10

[{"step": 1, "description": "Move the transport robot to the storage module and dock it", "action":
"move_dock", "url": "http://129.69.102.129:5010/robotino_7/functionalities/move_dock"},{"step":
2, "description": "Load the workpiece from the storage module onto the transport robot", "action":
"load", "url": "http://129.69.102.129:5010/robotino_7/functionalities/load"},{"step": 3,
"description": "Undock the transport robot from the storage module", "action": "undock", "url":
"http://129.69.102.129:5010/robotino_7/functionalities/undock"},{"step": 4, "description": "Move
the transport robot to the painting module and dock it", "action": "move_dock", "url":
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock"},{"step": 5, "description":
"Unload the workpiece from the transport robot onto the painting module", "action": "unload", "url":
"http://129.69.102.129:5010/robotino_7/functionalities/unload"}]

In the prompts, we allow updates to the information in the

context section in accordance with the descriptive

information and semantic annotations in the digital twin

system. This is implemented in a python program with query-

based template-filling and text string concatenation (cf.

Figure 8). The program sends the prompt to GPT-model and

parses the returned text into structured production steps with

identifiers.

Several software components are implemented to realize our

system design. The sequence diagram in Figure 8 shows the

essential software components in our prototypical

demonstrator and their interactions.

At the beginning of the process, a task input is handled by the

manager agent. It queries a digital twin system (AAS-System)

to retrieve the skills description of the automated production

10 Used regular expression in Python code:

\((\d+)\) (.+)\. Call the functionality "(\w+)" using the URL "(.+)"

system and uses this data to update the context information in

the specified prompt. The specified prompt is transmitted to

the service API of a GPT-Model 11 , and the GPT-model

returns with the generated output texts. By parsing the

generated texts, the manager agent obtains a sequence of

skills to fulfill the task. The orchestrated skills are passed to

the MES-System, based on which the MES-system invokes

the skill service calls on one or more operator agent(s). On

receiving the skill service calls, the operator agent retrieves

the necessary information about the functionalities in an

automation module from the digital twin system (AAS-

System), and then orchestrates the functionalities to execute

the requested skill. The orchestrated process is finally

executed by the automation modules, as shown in Figure 9.

V. DISCUSSION

In the previous sections, we introduced a novel framework

that integrates large language models (LLMs) with digital

twin systems to enable intelligent management and control in

industrial automation. Our method leverages prompt

engineering to create LLM agents capable of adapting to

specific tasks based on the information provided by digital

twins. Through a case study involving a matrix modular

production facility demonstrator, we showcased how our

approach can address unforeseen problem tasks,

autonomously orchestrate a production plan, and execute

them to provide customizable production services.

Several key insights emerged from our study, and we explain

them in three parts: positive insights, difficulties and lessons

learned, as well as limitations and future works.

A. Positive Insights

1) Enhanced reasoning and decision-making capabilities

for flexible/agile production

By contextualizing the LLM agents using prompt engineering,

we observed the human-like problem-solving capabilities in

domain-specific tasks of production management and control.

Based on an instruct-finetuned model “text-davinci-003”, we

iteratively refined the proposed prompt template, which

consists of five distinct sections. Using this template and the

information provided by the digital twins, the defined LLM-

agent effectively generates contextually appropriate

responses to plan and control the production system

autonomously. This reduces the need for human effort and

11 We used the API of OpenAI’s GPT-Model “text-davinci-003” for text

generation in our prototypical implementation.

Painting StationPainting StationPainting StationTransport RobotModule

./print_pattern./print_pattern./print_pattern./transport_workpieceSkill

./print./robot_arm_move./position_workpiece./unload

Transport RobotTransport RobotTransport RobotTransport RobotModule

./transport_workpiece./transport_workpiece./transport_workpiece./transport_workpieceSkill

./move_dock./undock./load./move_dock
Funct-

ionality

Funct-

ionality

 Figure 9 Sequence diagram illustrating the interaction between

different components of the prototype, from task input to

operations execution.

Figure 8 Execution of production following the orchestrated

processes directed by LLM-agents.

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

can lead to increased productivity, reduced operational costs,

and minimized delay time in production processes.

2) Digital twin system bridges the information gaps for

LLM-agent.

As the traditional automation systems are not designed to host

comprehensive information and knowledge about the

production and the automation system itself, the development

of a digital twin system (implemented with AAS) is necessary

to provide the missing knowledge for the intelligent agents.

The proposed architecture demonstrates the feasibility of

establishing a bridge between LLMs and the physical

production infrastructure with digital twin system. The

modular and cascaded digital twins enable scalable

communication, allowing the LLM-agents to access

comprehensive information about the production system and

interact with the physical world through service interfaces.

3) Scalability, reuse of modular functionalities/skills to

achieve adaptability

Our approach demonstrates the necessities of developing

scalable services interface of atomic functionalities/skills of

automation components/modules. These interfaces are

indispensable to enable intelligent LLM-agents to interact

with the physical world. By dynamically orchestrating those

atomic functionalities and skills, a higher level of adaptability

of the production system can be achieved to meet the

customized production demand.

B. Difficulteis and Lessons Learned

1) Retrofitting the system to acquire modular interfaces.

Retrofitting existing production facilities to accommodate

modular interfaces can be a challenging process,

necessitating time-consuming engineering efforts. While

creating query interfaces is typically straightforward,

developing control interfaces demands a higher level of

caution due to the complexity involved. In comparison to

coarse-granular skill, fine-granular functionalities exhibit

more dependencies and require a closer examination of

hardware-related aspects. Some required interfaces for our

use case have application-level dependencies and cannot be

executed independently without using the delivered vendor-

specific software application. The modularity of the

functionalities might not have been considered during the

design phase when the system was developed. These

dependencies across different components and on different

system levels are preventing us from easily creating scalable

interaction interfaces for our intelligent agents.

In order to solve this problem, we are looking into the code

modularization on the device level to create the functionality

interfaces from the bottom. By building from the bottom up,

these “atomic” code-level functionalities can be orchestrated

to create the modular skills of an automation module,

allowing for greater reusability, flexibility and adaptability in

system integration.

2) Knowledge representation and conversion in prompts

The conversion between knowledge representation in digital

twins’ software systems and natural language is a challenging

task. Inaccurate or lossy conversion might result in inaccurate

interpretation of the LLM agents for the production system

and negatively affect their performance. Moreover, it is

difficult to assess whether the LLM agents have accurately

interpreted the context information provided in the prompt.

How to determine the point at which refining the prompt

would no longer yield significant performance improvement

remains an open question. In our case study, we refined our

prompts until the agents could generate effective results

repeatedly (confer section C.3.).

When working on the iterative refinement of the prompts, we

believe that the essential task is to “translate the languages”

(e.g., translate the code and information models into text in

natural language). In the translation, the knowledge conveyed

by both representation forms shall pertain. Notably, we also

use our own domain knowledge in automation and production

engineering to design and additionally guide the LLM-agents.

To be accurate in detail, LLM-agents don’t understand the

knowledge, but rather they approximate the knowledge

conveyed by the representation.

3) High-quality data and high-fidelity digital twins

Supplying high-quality data and accurate knowledge

representation in digital twin is essential to allow the LLM-

agents to perform correct decision. However, creating high-

fidelity digital twins can be labor-intensive and time-

consuming, which also requires a comprehensive

understanding of the system’s architecture, behavior, and

dependencies.

In our implementation, the digital twin system provides the

asset information and exposes the updated interfaces

description. The dynamic operational data are not replicated

in digital twins to avoid data-inconsistency issues. The

operational data should be provided by the MES system and

the reverse-engineered RESTful-interfaces. In this sense, the

digital twin system supplies descriptive information and

annotations about the production system and components to

help the LLMs to interpret how the production works and

how to control it. However, we have not included the

operational data into the prompt so far, because the GPT-

agent has difficulty interpreting the dynamic numeric data

and it would require extra memory for the model to cache the

time series data. It is also due to the fact that we designed the

LLM-agent to perform stateless interactions.

C. Limitation and Future Work

1) Stateless interaction

One notable limitation of our approach is the stateless

interaction of the LLM agents because we only give all the

context information at once through the API-call. The agent

itself does not know how its output affects the production

system. In order to keep track of the dynamic effects on

environment and to perform more informed decision, the

agent need to maintain a memory of the data about the

production, which could require an extra software component

(e.g., a database) or new mechanism to merge the LLM

agents into the digital twin system.

2) Non-deterministic results

Another limitation of utilizing large language models (LLMs)

is the inherent non-deterministic nature of the generated

results. LLMs, such as GPT, are designed to predict the most

probable next token in a sequence based on the input prompt

and their extensive training data. Consequently, the outputs

produced by LLMs can vary each time, even when the input

remains the same. Although it is possible to set the model

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

temperature to 0 to let the model generate more invariable

output when given the same input, a decision-making process

that only based on unexplained probability estimation would

still be unreliable. As the task for customized production

planning inherently involves non-deterministic input,

additional mechanisms (extra constraints or guidance) are

required to ensure a deterministic output and the

predictability of the results.

3) Data dilema for comprehensive testing and evaluation

In contrast to general NLP tasks, where standard benchmarks

and datasets are openly available, industrial automation tasks

often involve heterogeneous data from specific components,

complex hardware-level dependencies, a wide range of use

cases, limited data collections, diversity of knowledge

representation, and compliance with safety and reliability

standards. Consequently, developing benchmarks for

performance evaluation of LLM agents in these tasks

necessitates future collaborative efforts. At this stage, we

have not yet established an evaluation benchmark to

comprehensively quantify the performance of LLMs in

industrial automation tasks and can only provide a use-case-

level proof-of-concept. For the given manager agent example

in the implementation section, we evaluated 50 generated

samples by the model “text-davinci-003”: 96% of all the skill

sequences are executable without error, 88% can solve the

particular task and are able to produce the right product,

however, only 6% of all the generated skills sequences use

the minimal required steps to solve the task efficiently

without unnecessary steps.

4) The computational complexity of LLM models

The most capable LLMs often come with considerable size

and computational requirements, which can pose challenges

for their local deployment in real-world industrial settings.

Fine-tuning a smaller model with dedicated data for a specific

domain could be a potential solution. However, we

hypothesize that well-trained larger models with more

neurons and trained on data from diverse knowledge domains

possess a stronger general intelligence, which benefits the

interpretation and reasoning in specialized domains and tasks.

In other words, we assume that the larger models that perform

better in general tasks may also yield better outcomes in

domain-specific tasks. For simpler tasks, such as identifying

semantic similarity in search queries or providing auto-

completion recommendations [14][15], smaller embedding

models are sufficient for functions with lower complexity.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have presented a novel framework that

integrates large language models (LLMs) with digital twin

systems for intelligent management and control in industrial

automation. Our approach demonstrates the potential of LLM

agents in making informed decisions based on the

information provided by digital twins, leading to improved

productivity, reduced operational costs, and minimized delay

time in production planning processes.

Our study highlighted several positive insights, such as using

LLMs to enhance the intelligence of the automation system,

integrating of the LLMs into production system via digital

twin systems, and the necessity of scalable and modular

interfaces to increase the adaptability of production system.

We also encountered challenges, including retrofitting

existing systems, translating knowledge representation in

prompts, and accommodating high-quality data and high-

fidelity models with digital twins.

Last but not least, we identified limitations and future work

directions, such as stateless interaction, non-deterministic

results, data dilemma for benchmarking, and the

computational requirements of LLMs. As the field of AI and

industrial automation technology advances, we believe that

integrating LLMs into industrial automation systems will

lead to more efficient, flexible, and adaptive production

systems. To further uncover and realize the potential of

application of large language models in autonomous systems

for industrial applications, it is crucial to engage in

collaborative research efforts spanning across

interdisciplinary fields.

ACKNOWLEDGMENT

This work was supported by Stiftung der Deutschen

Wirtschaft (SDW) and the Ministry of Science, Research and

the Arts of the State of Baden-Wuerttemberg within the

support of the projects of the Exzellenzinitiative II.

REFERENCES

[1] T. Müller, B. Lindemann, T. Jung, N. Jazdi, and M. Weyrich,

“Enhancing an Intelligent Digital Twin with a Self-organized

Reconfiguration Management based on Adaptive Process
Models,” Procedia CIRP, vol. 104, pp. 786–791, Jan. 2021, doi:

10.1016/J.PROCIR.2021.11.132.
[2] T. Müller, N. Jazdi, J. P. Schmidt, and M. Weyrich, “Cyber-

physical production systems: enhancement with a self-organized

reconfiguration management,” Procedia CIRP, vol. 99, pp. 549–

554, Jan. 2021, doi: 10.1016/J.PROCIR.2021.03.075.
[3] M. Müller, T. Müller, B. Ashtari Talkhestani, P. Marks, N. Jazdi,

and M. Weyrich, “Industrial autonomous systems: A survey on

definitions, characteristics and abilities,” At-
Automatisierungstechnik, vol. 69, no. 1, pp. 3–13, Jan. 2021.

[4] P. Foith-Förster and I. Thomas Bauernhansl, “Changeable and

reconfigurable assembly systems – A structure planning approach
in automotive manufacturing,” pp. 1173–1192, 2015, doi:

10.1007/978-3-658-08844-6_81.

[5] A. Markaj, A. Fay, N. Schoch, K. Stark, and M. Hoernicke,
“Intention-based engineering for the early design phases and the

automation of modular process plants,” IEEE International

Conference on Emerging Technologies and Factory Automation,
ETFA, vol. 2022-September, 2022, doi:

10.1109/ETFA52439.2022.9921599.

[6] P. Greschke, “Matrix-Produktion als Konzept einer

taktunabhängigen Fließfertigung,” 2016.

[7] M. Trierweiler and T. Bauernhansl, “Reconfiguration of
Production Equipment of Matrix Manufacturing Systems,” pp. 20–

27, 2021, doi: 10.1007/978-3-662-62962-8_3.

[8] D. Dittler, P. Lierhammer, D. Braun, T. Müller, N. Jazdi, and M.
Weyrich, “An Agent-based Realisation for a continuous Model

Adaption Approach in intelligent Digital Twins,” 2022, Accessed:

Mar. 21, 2023. [Online]. Available:
https://arxiv.org/abs/2212.03681v1

[9] G. Jawahar, B. Sagot, and D. Seddah, “What Does BERT Learn

about the Structure of Language?,” ACL 2019 - 57th Annual
Meeting of the Association for Computational Linguistics,

Proceedings of the Conference, pp. 3651–3657, 2019, doi:

10.18653/V1/P19-1356.
[10] J. Wei et al., “Emergent Abilities of Large Language Models,” Jun.

2022, Accessed: Mar. 21, 2023. [Online]. Available:

https://arxiv.org/abs/2206.07682v2
[11] T. Gao, A. Fisch, and D. Chen, “Making Pre-trained Language

Models Better Few-shot Learners,” ACL-IJCNLP 2021 - 59th Ann.

Meet. Assoc. Comput. Linguist. & 11th Int. Joint Conf. Nat. Lang.
Process., Proceedings of the Conference, pp. 3816–3830, 2021,

doi: 10.18653/V1/2021.ACL-LONG.295.

This is the pre-print draft manuscript. The completed peer-reviewed version will be published exclusively by IEEE.

[12] A. Radford and K. Narasimhan, “Improving Language
Understanding by Generative Pre-Training,” 2018.

[13] A. Vaswani et al., “Attention Is All You Need,” Adv Neural Inf

Process Syst, vol. 2017-December, pp. 5999–6009, Jun. 2017,
Accessed: Mar. 21, 2023. [Online]. Available:

https://arxiv.org/abs/1706.03762v5

[14] M. Both, J. Muller, and C. Diedrich, “Reducing configuration
efforts in energy management systems based on natural language

processing methods and asset administration shells,” IEEE

International Conference on Emerging Technologies and Factory
Automation, ETFA, vol. 2022-September, 2022, doi:

10.1109/ETFA52439.2022.9921479.

[15] Y. Xia, N. Jazdi, and M. Weyrich, “Automated generation of Asset
Administration Shell: a transfer learning approach with neural

language model and semantic fingerprints,” IEEE International

Conference on Emerging Technologies and Factory Automation,
ETFA, vol. 2022-September, 2022, doi:

10.1109/ETFA52439.2022.9921637.

[16] V. Sanh et al., “Multitask Prompted Training Enables Zero-Shot

Task Generalization,” Oct. 2021, Accessed: Mar. 21, 2023.

[Online]. Available: https://arxiv.org/abs/2110.08207v3

[17] J. Wei et al., “Finetuned Language Models Are Zero-Shot
Learners,” Sep. 2021, Accessed: Mar. 21, 2023. [Online].

Available: https://arxiv.org/abs/2109.01652v5

[18] J. Vig, Y. Belinkov, H. John, and A. Paulson, “Analyzing the
Structure of Attention in a Transformer Language Model,” pp. 63–

76, Jun. 2019, doi: 10.18653/v1/w19-4808.

[19] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models,” Jan. 2022, Accessed: Mar. 21, 2023.

[Online]. Available: https://arxiv.org/abs/2201.11903v6

[20] T. Kojima, S. Shane Gu, M. Reid Google Research, Y. Matsuo,
and Y. Iwasawa, “Large Language Models are Zero-Shot

Reasoners,” May 2022, Accessed: Apr. 11, 2023. [Online].

Available: https://arxiv.org/abs/2205.11916v4
[21] B. Prystawski and N. D. Goodman, “Why think step-by-step?

Reasoning emerges from the locality of experience,” Apr. 2023,

Accessed: Apr. 11, 2023. [Online]. Available:
https://arxiv.org/abs/2304.03843v1

[22] T. B. Brown et al., “Language Models are Few-Shot Learners,”

Adv Neural Inf Process Syst, vol. 2020-December, May 2020,

Accessed: Mar. 21, 2023. [Online]. Available:

https://arxiv.org/abs/2005.14165v4

