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Abstract — In this paper, we present a novel framework that 

combines large language models (LLMs), digital twins and 

industrial automation system to enable intelligent planning and 

control of production processes. We retrofit the automation 

system for a modular production facility and create executable 

control interfaces of fine-granular functionalities and coarse-

granular skills. Low-level functionalities are executed by 

automation components, and high-level skills are performed by 

automation modules. Subsequently, a digital twin system is 

developed, registering these interfaces and containing 

additional descriptive information about the production system. 

Based on the retrofitted automation system and the created 

digital twins, LLM-agents are designed to interpret descriptive 

information in the digital twins and control the physical system 

through service interfaces. These LLM-agents serve as 

intelligent agents on different levels within an automation 

system, enabling autonomous planning and control of flexible 

production. Given a task instruction as input, the LLM-agents 

orchestrate a sequence of atomic functionalities and skills to 

accomplish the task. We demonstrate how our implemented 

prototype can handle un-predefined tasks, plan a production 

process, and execute the operations. This research highlights the 

potential of integrating LLMs into industrial automation 

systems in the context of smart factory for more agile, flexible, 

and adaptive production processes, while it also underscores the 

critical insights and limitations for future work. Demos at: 

https://github.com/YuchenXia/GPT4IndustrialAutomation 

Keywords— autonomous system, intelligent agent, GPT, 

digital twin, Asset Administration Shell, smart factory 

I. INTRODUCTION 

Flexible production has emerged as a significant aspect of 
modern manufacturing environments in response to changing 
market demands and product customization requirements. 
Manufacturers need to adapt quickly to market changes and to 
stay competitive. This leads the manufacturer to consider 
diversifying their products and providing customized 
manufacturing services, which requires an agile production 
system and efficient management of the complexity of the 
production.  

However, there are several technical challenges for 
deployment of agile and flexible production in reality: First of 
all, flexible production requires seamless integration of 
diverse technologies solution, e.g., robotics, automation, 
planning algorithms etc. Secondly, the production equipment 
and manufacturing processes need to be reconfigurable 
[1][2], which requires modular processes and systems as well 

as reconfigurable machines. Furthermore, automated flexible 
production also requires quick changeover [3] after decision-
making to adapt the production against the changing 
requirements. Eventually, a highly knowledgeable 
workforce in every complicated technology with high 
availability to manage and supervise the complex system is 
too luxurious to be true. Traditional production systems 
frequently face difficulties in fulfilling these requirements due 
to their inflexible [1], dedicated workflows and restricted 
adaptability, as well as the absence of domain-specific 
knowledge in reconfiguring the production facility.  

To tackle these challenges and requirements, we propose a 
novel solution: a large language model (LLM) enhanced 
automated modular production system for flexible 
manufacturing.  

Our messages and contributions from this paper are 
summarized as follows: 

(1) We demonstrate with a representative use case 
explaining why and how large language models can 
be used to achieve a higher level of intelligence and 
adaptability of industrial automation systems by 
planning and controlling the production, especially in 
the context of flexible production scenarios.  

(2) We structure the system design according to the 
automation pyramid, illustrating a feasible technical 
approach to integrate LLMs into automation system. 

(3) We prefer the more scalable in-context-learning 
approach over the fine-tuning approach, and the task-
specific knowledge is injected into a LLM in prompt.  
As prompt engineering is an emerging field with little 
standardization, we devise a structured prompt 
template for this use case, drawing on insights from 
existing research in Natural Language Processing. 

II. BACKGROUND 

In this section, we start by discussing why and how 

modular production systems can meet the requirements 

seamless integration and reconfigurability for flexible 

production. Then we emphasize the importance of modular 

query and control interfaces to allow the LLM to access 

information about the physical production processes and to 

adapt the production to changing requirements. Last but not 

least, we provide a brief overview of LLMs and the 
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fundamental reasons why they have the potential to handle 

domain-specific tasks in industrial automation. 

A. Modular Production Systems 

Modular production systems are developed to address the 
challenges of flexibility, scalability, and adaptability in 
manufacturing. These systems consist of a series of modular 
modules, which can be easily reconfigured, replaced, or 
updated to accommodate varying production requirements. In 
the following introduction, we categorize them into three 
types: linear, parallel and matrix modular production. 

1) Linear modular production 
The production process follows a step-by-step sequence, with 
each module performing its designated task before passing the 
workpiece to the next module. In discrete production like 
automotive assembly [4], the material can be processed 
differently with variable process module. In continuous 
production in the process industry, the process plants can be 
designed modular to decrease efforts and cost in system 
planning, integration, and configuration [5]. 

2) Parallel modular production 
The production system enables multiple modules and lines to 
operate concurrently on a variety of tasks. In comparison, 
parallel modular production supports simultaneous production 
operations, allowing a workpiece to be processed by multiple 
modules [4], which further increases flexibility. To effectively 
combine various production modules, additional 
transportation systems are necessary for seamless process 
automation. 

3) Matrix modular production 
The matrix modular production [6] decouples the logistics 
tasks from production and changes the rigid line structure into 
matrix structure, which consist of modular production cells 
and automated transportation systems (often by applying 
Automated Guided Vehicle). These systems comprise 
independent modules that can be reconfigured and combined 
to execute a wider range of production tasks. As various  

production modules with different specialties can be 
rearranged, added, or removed with minimal impact on the 
overall system, the matrix production has the potential to 
quickly adapt to diverse requirements, customer preferences, 
and market demands. Some literature also refers to this 
production type as Matrix Manufacturing Systems (MMS) [7]. 

Despite the structural superiority of matrix modular 
production for flexible reconfiguration, planning and process 
orchestration for customized production tasks still rely on the 
accumulated expertise within a company. Identifying a 
feasible solution to a problem can be time-consuming if any 
part of the required knowledge is unavailable or if there is a 
lack of effective communication among experts. 

Table 1 Comparison of different types of modular production 

against the changing customer demand examples 

Large Language Models (LLMs) possess the capability to 
interpret information, generate reasoning insights, and assist 
in decision-making processes. Trained on vast amounts of 
data, LLMs can understand and process complex information 
across various domains. By harnessing the interpretation and 
reasoning abilities of LLMs, the planning and process 
orchestration can be streamlined. This can lead to faster 
problem-solving and better adaptation to customer demands. 

B. Digital Twins 

Despite the vast knowledge and reasoning capabilities of 
large language models (LLMs), a critical question remains: 
How can the LLMs access real-world information and 
effectively address tasks in practical settings? 

The current state-of-the-art automation systems are not fully 
equipped to offer comprehensive descriptive information 
about production and unified accessible interfaces for 
querying and controlling physical processes. We developed a 
digital twin system to bridge the gap between LLMs and the 
physical world, as shown in Figure 2. Digital twins are 
synchronized virtual representations of physical assets or 
processes [8]. The digital twin system contains descriptive 
information about the production and exposes unified 
interfaces to LLM for manipulating the physical system. We 
lay special stress on the synchronization characteristics 
because it is fundamental to allow the reactive intelligent 
behavior of an autonomous system.  
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On one hand, automation systems are enhanced with 
digital twins and LLMs to unlock the potential of data- and 
AI-driven smart factories. On the other hand, LLMs interact 
with physical environments by having an embodiment in 
reality through the established infrastructure that combines 
automation systems and digital twins. This approach equips 
an artificial “brain” with mechatronic “hands” and “eyes” for 
more intelligent interaction. 

C. LLM in automated Production Systems 

LLMs can be utilized to interpret complicated information, 
generate insights, and support decision-making processes in 
industrial automation systems.  

As illustrated in Figure 3, LLMs are deep learning models 
trained on vast amounts of text data, enabling them to generate 
human-like responses and handle complex language patterns 
across various NLP tasks. Recent advancements in NLP 
research have uncovered a promising finding: as the neuron 
size of LLMs increases, well-trained models gain the ability 
to interpret the meaning conveyed through language and 
demonstrate a capability of approximating human 
knowledge behind the language representation—a capability 
beyond the languages processing and not observed in smaller 
neural networks [9][10]. This development allows LLMs to 
perform general reasoning tasks effectively. Furthermore, as 
the training data for LLMs includes scientific papers, books, 
Q&A forums, and software code, LLMs are also informed 
with diverse domain-specific knowledge, which can be 
utilized for executing engineering related tasks. 

By employing prompt engineering techniques [11], we 
develop multiple intelligent agents at both the MES level and 
the automation module level within the automation pyramid. 
These agents are specifically designed to manage production 
tasks within their respective scopes. 

III. METHODS 

In this section, we explain how we connect the LLM to the 

digital twin infrastructure with prompt engineering, allowing 

intelligent agents to manage and control the production 

operations to solve an unforeseen problem. 

A. Integrate the information and expose the service 

interfaces of the digital twin 

First and foremost, the large language model agent requires 

high-fidelity information to accurately comprehend the 

production system. Thus, a data infrastructure that houses 

 
1 The Asset Administration Shell comprises extensive information pertaining 
to an asset, and it organizes this data into sub-models based on various 

aspects. 

comprehensive information about the production system is 

fundamental. We model the production system in a digital 

twin system in a modular and cascaded manner. These 

modular digital twins contain detailed information about their 

represented assets.  

The descriptive information in the digital twin system is 

modeled in the form of Asset Administration Shells (AAS) 1 

and managed with an AAS-middleware 2. Within the AAS, 

query and command services are referenced as URLs, which 

are semantically annotated with interface description in the 

skill sub-model. These interfaces enable the querying of asset 

states and control over automation system functionalities 

through RESTful service calls.  

As shown in Figure 5, the digital twin of an automation 

module “Transport Robot Robotino_7” contains the 

cascaded information about its “skills”, the references to its 

“components”, callable “functionalities” interface, and other 

comprehensive information in sub-models “technical data” 

“operational data” “documentation” and “software” for 

further information. 

Based on the descriptive knowledge about the assets and the 

callable interfaces provided by the digital twin system, it is 

possible to build two types of intelligent agents: A manager 

2 We used Basyx AAS-middelware. 
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Figure 3 Integration of LLM-agents and digital twins in 

automation systems for enhanced intelligence 

Figure 5 Digital twin representation of the production system 
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agent that works on the top of the automation modules, 

orchestrating diverse skills of the automation modules to plan 

the production; and several operator agents work within a 

particular automation module, orchestrating diverse 

functionalities to execute a given skill, as shown in Figure 5 

and 6. Designing more than one agent is necessary to break 

down the challenging task into several manageable sub-tasks. 

B. Creating a LLM agent to adapt to a specific task with 

prompt engineering 

We create these agents by contextualizing a GPT-model with 

prompts. The structure of the designed prompt and the 

interactions between digital twin and GPT-agent through the 

prompt are shown in Figure 7. More detailed examples are 

shown in the next implementation section. 

The digital twin and the GPT-agents are connected via a 

prompt, which is sent to a LLM to initiate a response from 

the model. The prompt also serves as a trigger for the LLM 

to generate contextually appropriate text based on the given 

input. As shown in Figure 7, our designed prompts are 

composed of five distinct sections that target specific core 

working mechanisms of the GPT models. In the following 

texts, we explain them along with the design reasons. To 

 
3 This portion of the prompt targets the zero-shot learning capability [16], 

which enable large language models (LLMs) to perform previously 
unencountered tasks without explicit examples, particularly when the model 

has undergone instruct-fine-tuning optimization [17]. 
4 A token can be defined as a basic meaningful unit of the text in input and 
output. 
5 Attention mechanism is analyzed and visualized in [18]. 

increase the readability, we put further in-depth explanations 

related to NLP in footnotes.  

1) The role and the goal 

This section of the prompt outlines the role and objective of 

an agent in natural language 3 , providing the model with 

clarity regarding the particular task that is expected to carry 

out.  

By defining the role and objective concisely, the text can 

effectively convey intentions and expectations with fewer 

tokens4. This offers two benefits: Firstly, it enables the model 

to better align with the general requirements, producing 

outputs that adhere to the desired role (e.g., operator, manager, 

advisor) and goal (e.g., performing operations, finding 

solutions, providing suggestions). Secondly, concise text 

concentrates meaning within fewer tokens, allowing the 

model to infer stronger related connections between text 

elements with higher attention weight 5 while preventing the 

dilution of the model’s attention. 

2) Context 

This section presents information derived from digital twins, 

aiming to supply descriptive information about the particular 

production system that the model needs for effective 

reasoning. As shown in table 2 and 3 in the Implementation 

Section, the knowledge should at least contain the objects 

description, the skills and functions of the objects and the 

mappings to the service interfaces of the executable 

operations. However, as the knowledge representation in 

digital twins’ software system and texts in natural language 

are different, the information from the digital twin model 

shall be converted in text form in natural language, e.g., with 

fill-in-the-template mechanism and concatenation of text 

strings. 

The converted information from digital twins offered in this 

context section serves two purposes: first, it enables the 

model to comprehend the production system’s operations, 

incorporating additional information about the particular 

system. Secondly, as GPT has been trained across a wide 

range of subjects, it possesses extensive general knowledge 

that is implicitly stored within its model weights [12]. The 

descriptive information provided in the prompt guide GPT to 

“concentrate” 6 on the related knowledge embedded within 

the model when generating text. In this sense, this process 

actualizes the combination of the general knowledge of GPT 

with the special knowledge specified in prompt to execute 

reasoning for specific task. 

3) Instructions 

This section aims to guide the GPT-agent’s behavior by 

specifying the desired output formats and establishing 

boundaries for the generated content. We also encourage the 

model to “think step-by-step”7, a widely adopted strategy 

among researchers, to facilitate logically structured reasoning 

6 This concentration is based on the mechanism of auto-regression process in 

text generation [13], where predicted text is continuously generated based on 
previous seen tokens. 
7 Also referred to as “chain-of-thought-prompting” [19] which significantly 

improves accuracy in performing complex reasoning [20][21]. Models that 
trained on code generation typically exhibit superior performance in step-by-

step reasoning [19]. 
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and break down complex problems into a series of smaller 

intermediate tasks. 

4) Illustrative examples 

This section provides verified concrete illustrative instances 

that demonstrate the desired input-output pattern. This can be 

beneficial in several ways: first of all, it constrains the 

structure of the text to be generated. Furthermore, the model’s 

performance can be improved even with a limited number of 

examples8. Last but not least, the examples can help further 

specify the context information and disambiguate the abstract 

information provided so far, and during our experimenting, 

we observed an increase in misunderstood or irrelevant 

response from the model without representative instance 

examples.  

5) Input and Output interaction pattern 

While the previous prompt sections focus on configuring the 

LLM to comprehend the task, this prompt section focuses on 

instructing the LLM to generate texts based on specific input. 

The input can be a user request to the “manager agent” to 

perform production task by orchestrating the skills, or it could 

be a skill demand to an “operator agent” to perform a skill 

by orchestrating the functionalities within an automation 

module.  

We intentionally leave the prompt incomplete, ending with 

“Output:”. By this means, the GPT’s fundamental 

mechanism of next-token prediction [12][13] is addressed, 

upon which the model has been trained and optimized. 

Essentially, the agent carries out its designated task by 

completing the entire prompt and continuing writing the texts 

after the cue-word “Output:”. 

IV. IMPLEMENTATION AND EXPERIMENTS 

In this section, we first illustrate our methods with two 

examples of the prompt, then explain the system components 

and their interaction with diagram and show the implemented 

demonstrator of a matrix modular production facility in our 

laboratory.   

Table 2 and 3 contain minimum prompts we specified to 

prompt the GPT-model “text-davinci-003” to solve the 

production planning and execution problem. Readers can 

reproduce the results of agents output by sending the prompt 

text to the GPT-model for text generation9. 

Table 2 Prompt input example of the stateless manager-agent. 

The Prompt for the manager agent: 

Role and goal: 
You are a manager of a production system. Your goal is to design an efficient production 
process based on a given task. You should take into account the provided context, instructions, 
and examples. Following these, you generate an output of a production process. 

 

Context: 
(1) A production process consists of one or more process steps. 
(2) There are two types of process steps, one type is transportation process step, another 

type is production process step. 
(3) If the next production process is executed in a different production module, 

transportation process between two production processes is necessary.   
(4) The transportation step can be executed with a transport robot.  
(5) Transportation step is not considered as production process step. 
(6) A production process always begins with a skill of the storage module and ends with 

a skill of the storage module. 
(7) This production system that you manage consists of several production modules. 

Each of these production modules has one or more skills to execute a production 
process step. 

(8) Each process step can be executed with one skill of a module. 

 
8 This ability is also termed as termed as “few-shot learning” [22]. 
9 These prompts are simplified from our hardware-dependent use case, and 
in order to improve the readability of the paper while retain the transferability 

of the method, too detailed information is cut short, such as the long 

(9) The production process should only contain the necessary steps that are necessary to 
satisfy a task specified in the input. 

The production modules are described as following: 
(10) An inspection module. It has the following skills: (I1) check the raw material, (I2) 

check the faulty material, (I3) test the quality of the material. 
(11) A storage module. It has the following skills: (S1) retrieve a workpiece, (S2) store a 

workpiece. 
(12) A transport robot. It has the following skills: (T1) transport workpiece between 

different modules. (T2) leave the production area. 
(13) A CNC machine module. It has the following capabilities: (M1) drilling, (M2) 

milling, (M3) polishing. 
(14) A painting module. It has the following skills: (P1) coat the material, (P2) print a 

pattern on the surface with paint. 
(15) A laser machine module. It has the following skills: (L1) print a pattern on the 

surface with laser. 
Instructions: 

As a manager of this production system, please arrange a production process based on the 
input.  
Only use the skills that are given in the context section. 
Only use the skills that are necessary to carry out the task.  
Give an explanation with short reason in list form. 
You should think step-by-step. 

 

Examples: 
Input:  
{produce a steel sheet with a hole} 
Output:  
{(S1) – (T1) – (I1) – (T1) – (M1) – (T1) – (I3) – (T1) – (S2)} 
Explanation:  
(S1) retrieve a workpiece from storage module.  
(T1) transport the workpiece from storage module to inspection module.  
(I1) check the raw material to make sure it's suitable for production.  
(T1) transport the material to the CNC machine module.  
(M1) drill a hole on the steel sheet.  
(T1) transport the material back to the inspection module.  
(I3) test the quality of the material to ensure the final product meets the desired specifications.  
(CT1) transport the material back to storage module to store the final product. 

(…) 
Input: {produce a steel nameplate and there should be a painted logo.} 
Output:  
{(S1) – (T1) – (I1) – (T1) – (M2) – (T1) – (L1) – (T1) – (I3) – (T1) – (S2)} 
Explanation: 
(S1) retrieve a workpiece from storage module. 
(T1) transport the workpiece from storage module to inspection module. 
(I1) check the raw material to make sure it's suitable for production. 
(T1) transport the material to the CNC machine module. 
(M2) mill the steel sheet to create the nameplate. 
(T1) transport the material to the laser machine module. 
(L1) print the logo on the nameplate using laser. 
(T1) transport the material back to the inspection module. 
(I3) test the quality of the material to ensure the final product meets the desired specifications. 
(T1) transport the material back to storage module to store the final product. 

Input: {the customer returned a wood nameplate and said there should be a painted customer logo 
on the backside. The wood nameplate is now in the storage module.} 
Output:  

The generated output by the agent: 

{(S1) – (T1) – (P2) – (T1) – (I3) – (T1) – (S2)} 
Explanation:  
(S1) retrieve the wood nameplate from storage module.  
(T1) transport the workpiece from storage module to painting module.  
(P2) print the customer logo on the backside of the nameplate with paint.  
(T1) transport the material back to the inspection module.  
(I3) test the quality of the material to ensure the final product meets the desired specifications.  
(T1) transport the material back to storage module to store the final product. 

Table 3 Prompt input example of the stateless operator-agent for 

the transport robot 

The Prompt for an operator agent (a transport robot): 

Role and goal: 
You are an operator of a transport robot of a production system that performs skills to fulfill a 
transportation task. Your goal is to orchestrate the functionalities of this robot to perform a 
skill. You should take into account the provided context, instructions, and examples. 
Following these, you generate an output of a series of functionalities and provide the correct 
URLs to these functionalities.    

Context: 
There are several production modules in this production system, and they are storage module, 
inspection module, painting module, CNC machine module and laser machine module. 
The transport robot only transports workpiece between two of the following modules: the 
inspection module, the painting module, the CNC machine module and the laser machine 
module. 
The transport robot can perform the following skill(s): (T1) Transport workpiece. 
A component named "functionality handler" is a logical component, and it is identified as 
"functionality_handler_001". It can control the actions of the transport robot. 
This component "functionality_handler_001" can execute the following functionalities of 
Robotino_7: 
(1) Functionality "move_dock" will move the transport robot to a module and dock it to the 
module. This functionality can be called using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock". 
(2) Functionality "load" will take a workpiece from a module and load it to the transport robot. 
This functionality can be called using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/load". 
(3) Functionality "unload" will unload a workpiece from the transport robot and give it to a 
module. This functionality can be called using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/unload". 
(4) Functionality "undock" will detach the transport robot from a module, if the transport 
robot is docked to a module. This functionality can be called using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/undock". 

Instructions: 
As an operator of this transport robot, please arrange a series of functionalities to solve the 
task specified in the input. 
Only use the functionalities that are given. 
Only use the functionalities that are necessary to carry out the task. 
Specify the start module and target module in the output steps when necessary. 
Give an explanation with short reason in list form. 
You shall think step-by-step. 
Follow the text structure and syntax in the examples. 

Examples: 
Input:  

(T1) Transport the workpiece from laser machine module to the CNC module. 
Output:  

To transport the workpiece from the laser machine module to the CNC module, the following 
steps shall be executed: 

identifiers and the amount of examples. The most convenient way to 

reproduce the generated results could be using the ChatGPT web-application 
and paste the prompt input into the conversation. Demos at: 

https://github.com/YuchenXia/GPT4IndustrialAutomation 
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(1) Move the transport robot to the laser machine module and dock it. Call the functionality 
"move_dock" using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the robot to the 
laser machine module and dock it. 
(2) Load the workpiece from the laser machine module onto the transport robot. Call the 
functionality "load" using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/load" to load the workpiece onto the 
robot. 
(3) Undock the transport robot from the laser machine module. Call the functionality 
"undock" using the URL "http://129.69.102.129:5010/robotino_7/functionalities/undock" to 
detach the robot from the laser machine module. 
(4) Move the transport robot to the CNC module and dock it. Call the functionality 
"move_dock" using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the robot to the 
CNC module and dock it. 

(5) Unload the workpiece from the transport robot onto the CNC module. Call the 
functionality "unload" using the URL 

"http://129.69.102.129:5010/robotino_7/functionalities/unload" to unload the workpiece from the 
robot onto the CNC module. 

Input: {(T1) Transport the workpiece from the storage module to the painting module.} 
Output:  

The generated output by the agent: 

To transport the workpiece from the storage module to the painting module, the following steps 
shall be executed: 
(1) Move the transport robot to the storage module and dock it. Call the functionality "move_dock" 
using the URL "http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the 
robot to the storage module and dock it. 
(2) Load the workpiece from the storage module onto the transport robot. Call the functionality 
"load" using the URL "http://129.69.102.129:5010/robotino_7/functionalities/load" to load the 
workpiece onto the robot. 
(3) Undock the transport robot from the storage module. Call the functionality "undock" using the 
URL "http://129.69.102.129:5010/robotino_7/functionalities/undock" to detach the robot from the 
storage module. 
(4) Move the transport robot to the painting module and dock it. Call the functionality "move_dock" 
using the URL "http://129.69.102.129:5010/robotino_7/functionalities/move_dock" to move the 
robot to the painting module and dock it. 

(5) Unload the workpiece from the transport robot onto the painting module. Call the 
functionality "unload" using the URL 
"http://129.69.102.129:5010/robotino_7/functionalities/unload" to unload the workpiece from 
the robot onto the painting module. 

The parsed result in JSON-file for control services invocation: 
(by using regular expression to convert the texts into JSON in python)10 

[{"step": 1, "description": "Move the transport robot to the storage module and dock it", "action": 
"move_dock", "url": "http://129.69.102.129:5010/robotino_7/functionalities/move_dock"},{"step": 
2, "description": "Load the workpiece from the storage module onto the transport robot", "action": 
"load", "url": "http://129.69.102.129:5010/robotino_7/functionalities/load"},{"step": 3, 
"description": "Undock the transport robot from the storage module", "action": "undock", "url": 
"http://129.69.102.129:5010/robotino_7/functionalities/undock"},{"step": 4, "description": "Move 
the transport robot to the painting module and dock it", "action": "move_dock", "url": 
"http://129.69.102.129:5010/robotino_7/functionalities/move_dock"},{"step": 5, "description": 
"Unload the workpiece from the transport robot onto the painting module", "action": "unload", "url": 
"http://129.69.102.129:5010/robotino_7/functionalities/unload"}] 

In the prompts, we allow updates to the information in the 

context section in accordance with the descriptive 

information and semantic annotations in the digital twin 

system. This is implemented in a python program with query-

based template-filling and text string concatenation (cf. 

Figure 8). The program sends the prompt to GPT-model and 

parses the returned text into structured production steps with 

identifiers. 

Several software components are implemented to realize our 

system design. The sequence diagram in Figure 8 shows the 

essential software components in our prototypical 

demonstrator and their interactions. 

At the beginning of the process, a task input is handled by the 

manager agent. It queries a digital twin system (AAS-System) 

to retrieve the skills description of the automated production 

 
10 Used regular expression in Python code: 

\((\d+)\) (.+)\. Call the functionality "(\w+)" using the URL "(.+)" 

system and uses this data to update the context information in 

the specified prompt. The specified prompt is transmitted to 

the service API of a GPT-Model 11 , and the GPT-model 

returns with the generated output texts. By parsing the 

generated texts, the manager agent obtains a sequence of 

skills to fulfill the task. The orchestrated skills are passed to 

the MES-System, based on which the MES-system invokes 

the skill service calls on one or more operator agent(s). On 

receiving the skill service calls, the operator agent retrieves 

the necessary information about the functionalities in an 

automation module from the digital twin system (AAS-

System), and then orchestrates the functionalities to execute 

the requested skill. The orchestrated process is finally 

executed by the automation modules, as shown in Figure 9. 

V. DISCUSSION 

In the previous sections, we introduced a novel framework 

that integrates large language models (LLMs) with digital 

twin systems to enable intelligent management and control in 

industrial automation. Our method leverages prompt 

engineering to create LLM agents capable of adapting to 

specific tasks based on the information provided by digital 

twins. Through a case study involving a matrix modular 

production facility demonstrator, we showcased how our 

approach can address unforeseen problem tasks, 

autonomously orchestrate a production plan, and execute 

them to provide customizable production services. 

Several key insights emerged from our study, and we explain 

them in three parts: positive insights, difficulties and lessons 

learned, as well as limitations and future works. 

A. Positive Insights 

1) Enhanced reasoning and decision-making capabilities 

for flexible/agile production 

By contextualizing the LLM agents using prompt engineering, 

we observed the human-like problem-solving capabilities in 

domain-specific tasks of production management and control. 

Based on an instruct-finetuned model “text-davinci-003”, we 

iteratively refined the proposed prompt template, which 

consists of five distinct sections. Using this template and the 

information provided by the digital twins, the defined LLM-

agent effectively generates contextually appropriate 

responses to plan and control the production system 

autonomously. This reduces the need for human effort and 

11 We used the API of OpenAI’s GPT-Model “text-davinci-003” for text 

generation in our prototypical implementation.  
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 Figure 9 Sequence diagram illustrating the interaction between 

different components of the prototype, from task input to 

operations execution. 

Figure 8 Execution of production following the orchestrated 

processes directed by LLM-agents. 
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can lead to increased productivity, reduced operational costs, 

and minimized delay time in production processes. 

2) Digital twin system bridges the information gaps for 

LLM-agent.  

As the traditional automation systems are not designed to host 

comprehensive information and knowledge about the 

production and the automation system itself, the development 

of a digital twin system (implemented with AAS) is necessary 

to provide the missing knowledge for the intelligent agents. 

The proposed architecture demonstrates the feasibility of 

establishing a bridge between LLMs and the physical 

production infrastructure with digital twin system. The 

modular and cascaded digital twins enable scalable 

communication, allowing the LLM-agents to access 

comprehensive information about the production system and 

interact with the physical world through service interfaces. 

3) Scalability, reuse of modular functionalities/skills to 

achieve adaptability 

Our approach demonstrates the necessities of developing 

scalable services interface of atomic functionalities/skills of 

automation components/modules. These interfaces are 

indispensable to enable intelligent LLM-agents to interact 

with the physical world. By dynamically orchestrating those 

atomic functionalities and skills, a higher level of adaptability 

of the production system can be achieved to meet the 

customized production demand.  

B. Difficulteis and Lessons Learned 

1) Retrofitting the system to acquire modular interfaces. 

Retrofitting existing production facilities to accommodate 

modular interfaces can be a challenging process, 

necessitating time-consuming engineering efforts. While 

creating query interfaces is typically straightforward, 

developing control interfaces demands a higher level of 

caution due to the complexity involved. In comparison to 

coarse-granular skill, fine-granular functionalities exhibit 

more dependencies and require a closer examination of 

hardware-related aspects. Some required interfaces for our 

use case have application-level dependencies and cannot be 

executed independently without using the delivered vendor-

specific software application. The modularity of the 

functionalities might not have been considered during the 

design phase when the system was developed. These 

dependencies across different components and on different 

system levels are preventing us from easily creating scalable 

interaction interfaces for our intelligent agents.  

In order to solve this problem, we are looking into the code 

modularization on the device level to create the functionality 

interfaces from the bottom. By building from the bottom up, 

these “atomic” code-level functionalities can be orchestrated 

to create the modular skills of an automation module, 

allowing for greater reusability, flexibility and adaptability in 

system integration. 

2) Knowledge representation and conversion in prompts 

The conversion between knowledge representation in digital 

twins’ software systems and natural language is a challenging 

task. Inaccurate or lossy conversion might result in inaccurate 

interpretation of the LLM agents for the production system 

and negatively affect their performance. Moreover, it is 

difficult to assess whether the LLM agents have accurately 

interpreted the context information provided in the prompt. 

How to determine the point at which refining the prompt 

would no longer yield significant performance improvement 

remains an open question. In our case study, we refined our 

prompts until the agents could generate effective results 

repeatedly (confer section C.3.). 

When working on the iterative refinement of the prompts, we 

believe that the essential task is to “translate the languages” 

(e.g., translate the code and information models into text in 

natural language). In the translation, the knowledge conveyed 

by both representation forms shall pertain. Notably, we also 

use our own domain knowledge in automation and production 

engineering to design and additionally guide the LLM-agents. 

To be accurate in detail, LLM-agents don’t understand the 

knowledge, but rather they approximate the knowledge 

conveyed by the representation. 

3) High-quality data and high-fidelity digital twins 

Supplying high-quality data and accurate knowledge 

representation in digital twin is essential to allow the LLM-

agents to perform correct decision. However, creating high-

fidelity digital twins can be labor-intensive and time-

consuming, which also requires a comprehensive 

understanding of the system’s architecture, behavior, and 

dependencies. 

In our implementation, the digital twin system provides the 

asset information and exposes the updated interfaces 

description. The dynamic operational data are not replicated 

in digital twins to avoid data-inconsistency issues. The 

operational data should be provided by the MES system and 

the reverse-engineered RESTful-interfaces. In this sense, the 

digital twin system supplies descriptive information and 

annotations about the production system and components to 

help the LLMs to interpret how the production works and 

how to control it. However, we have not included the 

operational data into the prompt so far, because the GPT-

agent has difficulty interpreting the dynamic numeric data 

and it would require extra memory for the model to cache the 

time series data. It is also due to the fact that we designed the 

LLM-agent to perform stateless interactions. 

C. Limitation and Future Work 

1) Stateless interaction 

One notable limitation of our approach is the stateless 

interaction of the LLM agents because we only give all the 

context information at once through the API-call. The agent 

itself does not know how its output affects the production 

system. In order to keep track of the dynamic effects on 

environment and to perform more informed decision, the 

agent need to maintain a memory of the data about the 

production, which could require an extra software component 

(e.g., a database) or new mechanism to merge the LLM 

agents into the digital twin system.  

2) Non-deterministic results 

Another limitation of utilizing large language models (LLMs) 

is the inherent non-deterministic nature of the generated 

results. LLMs, such as GPT, are designed to predict the most 

probable next token in a sequence based on the input prompt 

and their extensive training data. Consequently, the outputs 

produced by LLMs can vary each time, even when the input 

remains the same. Although it is possible to set the model 
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temperature to 0 to let the model generate more invariable 

output when given the same input, a decision-making process 

that only based on unexplained probability estimation would 

still be unreliable. As the task for customized production 

planning inherently involves non-deterministic input, 

additional mechanisms (extra constraints or guidance) are 

required to ensure a deterministic output and the 

predictability of the results.  

3) Data dilema for comprehensive testing and evaluation 

In contrast to general NLP tasks, where standard benchmarks 

and datasets are openly available, industrial automation tasks 

often involve heterogeneous data from specific components, 

complex hardware-level dependencies, a wide range of use 

cases, limited data collections, diversity of knowledge 

representation, and compliance with safety and reliability 

standards. Consequently, developing benchmarks for 

performance evaluation of LLM agents in these tasks 

necessitates future collaborative efforts. At this stage, we 

have not yet established an evaluation benchmark to 

comprehensively quantify the performance of LLMs in 

industrial automation tasks and can only provide a use-case-

level proof-of-concept. For the given manager agent example 

in the implementation section, we evaluated 50 generated 

samples by the model “text-davinci-003”: 96% of all the skill 

sequences are executable without error, 88% can solve the 

particular task and are able to produce the right product, 

however, only 6% of all the generated skills sequences use 

the minimal required steps to solve the task efficiently 

without unnecessary steps. 

4) The computational complexity of LLM models 

The most capable LLMs often come with considerable size 

and computational requirements, which can pose challenges 

for their local deployment in real-world industrial settings. 

Fine-tuning a smaller model with dedicated data for a specific 

domain could be a potential solution. However, we 

hypothesize that well-trained larger models with more 

neurons and trained on data from diverse knowledge domains 

possess a stronger general intelligence, which benefits the 

interpretation and reasoning in specialized domains and tasks. 

In other words, we assume that the larger models that perform 

better in general tasks may also yield better outcomes in 

domain-specific tasks. For simpler tasks, such as identifying 

semantic similarity in search queries or providing auto-

completion recommendations [14][15], smaller embedding 

models are sufficient for functions with lower complexity.  

VI. CONCLUSION AND OUTLOOK 

In conclusion, we have presented a novel framework that 

integrates large language models (LLMs) with digital twin 

systems for intelligent management and control in industrial 

automation. Our approach demonstrates the potential of LLM 

agents in making informed decisions based on the 

information provided by digital twins, leading to improved 

productivity, reduced operational costs, and minimized delay 

time in production planning processes. 

Our study highlighted several positive insights, such as using 

LLMs to enhance the intelligence of the automation system, 

integrating of the LLMs into production system via digital 

twin systems, and the necessity of scalable and modular 

interfaces to increase the adaptability of production system.  

We also encountered challenges, including retrofitting 

existing systems, translating knowledge representation in 

prompts, and accommodating high-quality data and high-

fidelity models with digital twins. 

Last but not least, we identified limitations and future work 

directions, such as stateless interaction, non-deterministic 

results, data dilemma for benchmarking, and the 

computational requirements of LLMs. As the field of AI and 

industrial automation technology advances, we believe that 

integrating LLMs into industrial automation systems will 

lead to more efficient, flexible, and adaptive production 

systems. To further uncover and realize the potential of 

application of large language models in autonomous systems 

for industrial applications, it is crucial to engage in 

collaborative research efforts spanning across 

interdisciplinary fields.  
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