
Unambiguous Interpretation of IEC 60848 GRAFCET based on a Literature Review

Robin Mroß,1 Aron Schnakenbeck,2 Marcus Völker,1 Alexander Fay,2 and Stefan Kowalewski1

1Lehrstuhl Informatik 11
RWTH Aachen University
52074 Aachen, Germany

{mross, voelker, kowalewski}@embedded.rwth-aachen.de
2Institut für Automatisierungstechnik

Helmut-Schmidt-Universität
22043 Hamburg, Germany

{aron.schnakenbeck, alexander.fay}@hsu-hh.de

IEC 60848 GRAFCET is a standardized, graphical specification language for control functions.
Because of the semiformal nature of IEC 60848, the details of specifications created with GRAFCET
can be interpreted in different ways, possibly leading to faulty implementations. These ambiguities
have been partially addressed in existing literature, but solved in different manners. Based on a
literature review, this work aims at providing an overview of existing interpretations and, based
on that, proposes a comprehensive interpretation algorithm for IEC 60848, which takes all relevant
ambiguities from the literature review into account.

I. INTRODUCTION

GRAFCET [1] is a graphical means, used in educa-
tion, research, and industry, to describe, document, and
design control behavior in the industrial automation do-
main. GRAFCET evolved from Petri nets in the 70s
and became an international standard in 1987 [2]. Al-
though GRAFCET adapts concepts of Petri nets - like
transitions and steps, connected alternately by arcs - it
provides a considerable number of additional modeling
mechanisms like hierarchical structuring of the specifica-
tion which allow for compact modeling of complex sys-
tems [3].

The unambiguous interpretation of its syntax and se-
mantics is important for:

• its usage as communication means between, e.g.,
designers and users of automation systems to pre-
vent misconceptions,

• the implementation of tools that allow for a model-
driven development to ensure the same behavior of
the specification and its implementation, as well as

• the verification of the control behavior since the
behavior can only be verified if it is unambiguously
defined.

However, because of the semiformal nature of the stan-
dard, an unambiguous definition of GRAFCET is not
given and different authors have interpreted its ambi-
guities in different ways. In particular, works describ-
ing translations from GRAFCET to formal models must
make concrete choices on several of the ambiguities dis-
cussed in this work during the transformation. To the
best of our knowledge, there exists no documented work
with a focus on interpretation of IEC 60848 GRAFCET
that is in accordance with the latest version of the stan-
dard from 2013.

For other description means from the field of indus-
try automation, there is existing work in order to specify

an unambiguous interpretation while trying to include a
broader consensus: von der Beeck [4] defined 19 syntactic
and semantic problems to compare different Statechart
variants that have historically evolved trying to refine
its semantics. Bauer et al. [5] presented an interpreta-
tion of IEC 61131-3 Sequential Function Charts (SFC)
after comparing the implementation of SFC program-
ming tools of different Programmable Logic Controller
(PLC) vendors. Wagner et al. [6] stated in their inter-
pretation of IEC 61499, that different perspectives and
backgrounds of the respective authors like analyzability,
performance or usability can lead to different interpreta-
tions.
The approach chosen in this work is the identification

of ambiguities and its interpretation based on a literature
review. The goal of this paper is to propose an interpre-
tation of IEC 60848 GRAFCET in accordance with the
latest version of the standard [1], taking the state of the
art into account to resolve its ambiguities.
For the remainder of the paper, we start by point-

ing out the methodical approach of the literature review
we used to identify ambiguities and interpretations of
GRAFCET in Sec. II. The findings are clustered and
presented in Sec. III. In Sec. IV, we have aimed towards
defining a consensus of the observed interpretation by
proposing an interpretation algorithm of GRAFCET. We
end with a conclusion in Sec. V.
Note that due to the limited space, in this publica-

tion no descriptions are given of the elements in IEC
60848 and ambiguities are illustrated by small examples,
though they also apply to larger GRAFCET instances.
For an overview, we refer to [2] and [7]. In the following,
the term Grafcet refers to an instance of GRAFCET.

II. METHODICAL APPROACH

For the interpretation of IEC 60848 we conducted a
literature review. The literature review consisted of four

ar
X

iv
:2

30
7.

11
55

6v
1

 [
ee

ss
.S

Y
]

 2
1

Ju
l 2

02
3

2

Records identified from Scopus
Identification

Screening

Eligibility

Included Yes: 58

Yes: 137

No: 42Link to industrial automation,
and publication year 1990,

and language is English?

Ambiguities or
interpretation addressed?

No: 79

179

State if ambiguity or interpretation.
State specific argument.

Cluster according related element
of the standard.

FIG. 1. Methodical approach of the literature review.

phases, as shown in Fig. 1. We identified 179 titles using
the database Scopus1 and the search terms interpret*,
synta*, semantic*, analy*, formal*, ambiguit* or con-
flict* in combination with grafcet or 60848, where one of
the latter must appear in the title, abstract, or keywords.
The titles were screened, examining the title, abstract
and keywords and were excluded if the publication year
is before 1990, the language is not English, or the domain
is not related to industrial automation. The titles were
fully read in the third phase and excluded if they ad-
dress Petri nets or Sequential Function Chart instead of
GRAFCET or no ambiguities or interpretations of IEC
60848 are addressed.

Since the goal of this paper is the interpretation of
the IEC 60848 based on the version from 2013 [1], inter-
pretations that are contradicting to the standard from
2013 were excluded from the review as well. An exam-
ple would be the distinction between an interpretation
of GRAFCET that searches for stability and one with-
out, made in works during the 1990s, while the standard
from 2013 clearly describes transient evolutions which
correspond to an interpretation with search for stability.
Note that not all identified titles are quoted individually
when their statements coincided. For example, a lot of
authors introduce GRAFCET with stating consistently
that an evolution requires no time, which we considered
some kind of interpretation.

III. RESULTS OF THE LITERATURE REVIEW
AND DISCUSSION OF AMBIGUITIES

The ambiguities identified in the literature review were
clustered and discussed according to the topics presented
in the following sections, Sec. IIIA to IIIG.

1 https://www.scopus.com

A. Evolution rules and actions

The standard [1] defines five evolution rules that de-
scribe how a Grafcet evolves from one situation to the
next in a textual way. The first rule deals with the ini-
tial situation of the Grafcet, which is identified by the
set of initial steps. The rule fails to state if these initial
steps are activated or already active at system initializa-
tion. Associated actions on step activation depend on
this definition. David et al. [2] as well as Sogbohossou et
al. [8] provide an interpretation algorithm that executes
actions on activation associated to initial steps during
the initialization. Regarding the question of the initial
situation’s stability, the standard states that initial steps
could be unstable, which is relevant, e.g., for the evalua-
tion of associated continuous actions. The interpretation
algorithm by David et al. [2] represents this behavior.
Sogbohossou et al. [8] state that the initial situation can
be transient. Additionally, it is unclear how the input
variables are initialized and whether or not any rising or
falling edge of an input variable can be true in the ini-
tial instant. In the interpretation algorithms by David et
al. [2] and Sogbohossou et al. [8] an external event can
only occur if a stable situation has been reached, and this
is also true for the initial situation. Other authors like
Bierel et al. [9] propose interpretation algorithms that
consider input changes directly after the initial situation
is set. We do not consider events before or during ini-
tialization in accordance with the immediate execution
behavior of GRAFCET, as discussed in Sec. IIIG.
The second rule defines requirements for a transition

to clear in an unambiguous way.
Evolution rule number three states that by clearing a

transition, all preceding steps are deactivated, and all
succeeding steps are activated at the same time. This
prevents the perhaps intuitive behavior, that actions on
step deactivation happen before actions on step activa-
tion, in particular in a chain of steps.

2

3

4

X1X3t1 t3

1

FIG. 2. Example of a read-write conflict in the context of
evolution rule four.

Rule number four defines that transitions that can be
cleared simultaneously are cleared at the same time. This
is reasonable on specification level, but is not feasible for
a sequential interpretation algorithm, where transitions
are cleared in a sequence. This can result in conflicts as
shown in Fig. 2. The example shows two transitions that
can be cleared simultaneously, since the step variables
X1 and X3 evaluate to true (X1 and X3 are Boolean

https://www.scopus.com

3

variables indicating the activation status of step 1 and
3, respectively). Depending on the order of execution,
this can result in different behavior. When transition t1
is cleared, first step 1 is deactivated and t3 can not be
cleared anymore. A different behavior can be observed
if t3 is cleared first. To overcome this issue, authors like
Azevedo et al. [10] and Bayó-Puxan et al. [11] sug-
gest, evaluating the evolutions based on a copy of the
system variables. A different approach is to mark transi-
tions that can be cleared before actually clearing them,
as presented by Brierel et al. [9] and Sogbohossou et
al. [8]. Based on rule three and four, one could argue
that also simultaneously executable actions, or combina-
tions of transitions and actions, should execute at the
same time, if conditioned actions and transitions con-
ditions evaluate to true at the same time. To prevent
conflicts here, it is preferable to calculate the assigned
values based on a copy of the system variables to simu-
late a simultaneous execution. The approach of marking
the elements to be executed can be problematic when
assignments of stored actions depend on each other.

Rule five aims at resolving a possible ambiguity by ex-
ecuting rule three and four: If an active step is activated
and deactivated at the same time, it remains active. This
clarifies the resulting activation status of that step, the
wording however does not resolve whether the step ac-
tually is deactivated and activated in the process. This
is important because, e.g., associated stored actions on
step (de)activation either trigger or not, depending on
this definition. Guéguen et al. [12] specify the defini-
tion of (de)activation of steps to resolve this ambiguity:
They state that an additional condition for a step being
activated is that it is not active. On the other hand, an
additional condition for a step being deactivated is that
no preceding transition can be cleared. Mallet et al. [13]
argue similarly. Therefore, when rule five is applied, no
activation or deactivation of the associated step is per-
formed.

Note that several authors agree that hierarchical ele-
ments have priority over the evolution rules (e.g., [9, 12];
cf. Sec. III C).

B. Events

The standard [1] introduces the concept of input and
internal events, which is characterized by the change of at
least one value of the respective variables in the form of
a rising (↑) or falling (↓) edge. However, it is not entirely
clear from this, if one or a multitude of input events can
occur at the same time. This has an impact on, for exam-
ple, the satisfiability of transition conditions: If at most
one input event is present at a time, a condition such as
↑a AND ↑b for input variables a and b is never evaluated
to true. David et al. [2] argue that due to the immediate
processing behavior of GRAFCET, independent events
can not occur simultaneously. Further, they argue that
input events are independent of each other and, there-

fore, can not occur simultaneously. Several authors like
Cassez [14] adopt this hypothesis. On the other hand,
Guéguen et al. [12] discard this hypothesis and argue
that this constraint has no benefit on specification level
and causes difficulties on implementation level. For a dis-
cussion regarding the implementation of the immediate
processing behavior, cf. Sec. IIIG.
As an additional ambiguity regarding events, it is

pointed out by Guéguen et al. [12] that it remains unclear
if an event remains true during a transient evolution. Are
the rising and falling edges caused by an event only avail-
able to the first evolution, or until a stable situation is
reached if several subsequent evolutions are caused by
this input event? Guéguen et al. [12] point out that an
input event induces a causal chain of atomic evolutions
specified by transition clearings according to the evolu-
tion rules. A rising or falling edge of an input variable
can only be true during the first of these atomic evolu-
tions. The standard [1] provides an example of a shift
register suggesting the same interpretation, but it is not
described in detail. One could argue that internal events
caused by internal variables should have a similar behav-
ior.

1

2

↑a AND ↑y

y = true

↑a

FIG. 3. Example Grafcet with a transition condition depend-
ing on an input event ↑a and on an internal event ↑y, where
the former triggers the latter.

Regarding the definition of events via atomic evolu-
tions mentioned by Guéguen et al. [12] the question
arises, how they behave in detail: If an internal event
is triggered by an input event, can both be true at the
same time? An example of this is depicted in Fig. 3,
where the input event ↑a triggers a value change of y,
resulting in an internal event. Here it is ambiguous if ↑a
is still present when ↑y arises. A similar issue arises in
the context of step activity variables. In Fig. 4 step 2
has an action on event associated with it, such that this
action depends on the falling edge of the corresponding
step activity variable X2, it is not clear whether that
action will trigger or not if step 2 is deactivated. Like-
wise, a transition with a condition ↑X2 may or may not
be cleared, depending on the interpretation. We agree
that input events are only valid in the first evolution of
a transient run, and that internal events happen in a re-
action of input events in the context of a casual chain
[12] and thereby are true in the subsequent evolution.
Events concerning step activity variables are valid while
the respective step is active.

4

↓X2

1

a

2 y = 30

↑X2

FIG. 4. A Grafcet containing an action on event and a transi-
tion, both having possibly contradicting conditions depending
on rising/falling edges of the step activity variable X2.

C. Structuring of GRAFCET

The standard defines different notions of plans: con-
nected, partial and global Grafcets. A connected Grafcet
is a plan in which any two elements (steps or transition)
are connected by a sequence of arcs. The standard states
that a Grafcet which is not connected has no technical
meaning. However, it is not clear how such a Grafcet
would look like. Note that a partial Grafcet consists of
one or more connected Grafcets and does not contain any
further partial Grafcets [1]. The global Grafcet appears
to be unique in a plan and contains partial Grafcets. It
remains unclear if a global Grafcet can contain connected
Grafcets. Regarding this item, the standard states that
the situation of a partial Grafcet G1 can be noted as
G1{2}, provided that only its step 2 is active. This rule
talks explicitly about partial Grafcets, so it is not clear
which notation to apply for steps that are only part of
the global Grafcet, suggesting that the global Grafcet can
not contain connected Grafcets.

The standard [1] implies that forcing orders induce hi-
erarchical levels, where a superior partial Grafcet has a
higher level than an inferior partial Grafcet. Lesage et
al. [15] present the resulting hierarchical dependencies
as a graph and state that no loop should occur in this
graph. Sogbohossou et al. [16] formalize these dependen-
cies in terms of a partial order, i.e., the resulting relation
has to be transitive, irreflexive and antisymmetric. Al-
though Lesage et al. [15] do not include enclosings, it
is reasonable to ensure a partial order here as well, since
cyclic enclosures would result in every corresponding par-
tial Grafcet being active or none of them.

Algorithm 1 Possible evaluation of forcing orders I [10]

1: for all partial Grafcet (ordered by hierarchical depth) do
2: Structural evolution
3: Emit forcing orders

Algorithm 2 Possible evaluation of forcing orders II [10]

1: for all partial Grafcet (ordered by hierarchical depth) do
2: Structural evolution
3: for all partial Grafcet (ordered by hierarchical depth) do
4: Emit forcing orders

Regarding forcing orders, the standard states that they
have priority over the evolution rules. As presented by
Azevedo et al. [10] this results in an interpretation al-
gorithm that has to take the hierarchical depth of the
partial Grafcet into account (e.g., Lesage et al. [15]
present an algorithm for the calculation of the hierarchi-
cal depth). Further, Azevedo et al. [10] point out that
two interpretations of this ambiguous statement are pos-
sible: I) ordered by their hierarchical depth, the new situ-
ation of the partial Grafcets is calculated and the forcing
orders are immediately applied (cf. Alg. 1), or II) in a
two-step approach, the new situation is first calculated
for all partial Grafcets and then the forcing orders are
applied for all partial Grafcets again with respect to the
hierarchical depth (cf. Alg. 2). The difference regarding
the behavior can be illustrated using the example in Fig.
5, adapted from [10]. With the interpretation I) if ↑a ap-
pears, G2 is immediately forced into the situation {21},
while with interpretation II) t21 can be cleared before G2
is forced. Further, assuming a current situation {12, 22}
with the first interpretation I) t22 can be cleared and
with interpretation II) t22 can not be cleared, resulting
in a situation {13, 22}. Azevedo et al. [10] state that the
second approach II), seems to be more comprehensible
from the user perspective. However, from our point of
view the first approach I) has the advantage of a pre-
emptive behavior which is beneficial to, e.g., implement
an emergency stop. Similar arguments can be made for
enclosures. We prefer the first approach I), for both hi-
erarchical elements because of the benefits of preemptive
behavior.

G1 G2

12

1111 21

22

13 23

G2{*}

↑a ↑a

↑b ↑bt12

t11

t22

t21

FIG. 5. A partial Grafcets G1, G2, with ambiguous behavior
regarding G1 forcing G2 into its current situation (adapted
from [10]).

It is not clear if enclosed partial Grafcets can be con-
trolled by forcing orders, but the standard seems to sug-
gest that they can (cf. Sec. 6.2.2 in [1]). However, the

5

designer of the Grafcet should ensure that no conflicts
can arise. Possible conflicts are discussed in Sec. III F.

D. Macro-steps

IEC 60848 introduces macro-steps as an element to
structure the Grafcet by means of hiding implementation
details of a specification’s part in a so-called macro-step
expansion chart, e.g., as shown in Fig. 6. The stan-
dard explicitly allows the usage of initial steps within
the macro-step expansion chart. Following the rules pro-
vided in the standard [1], the macro-step itself would be
active in that case. However, an initial macro-step, with
a similar symbol to the initial enclosing step, is not pro-
posed by the standard, as pointed out by Sogbohossou et
al. [16].

The concept suggests that a macro-step is exited at
some point, such that no step within the expansion chart
is active until reactivation of the macro-step. However,
this is not enforced: It is possible to construct a macro-
step expansion chart such that other steps remain active
even if the exit step is already activated and the macro-
step can thereby be deactivated by its following transi-
tion. See for example Fig. 6, where the entry step E10
is activated when M1 is activated. The sole exit step
S13 can be active only if step 12 is active as well, and
it is unclear if that step remains active when the macro-
step M1 is exited. In this context, Sogbohossou et al.
[16] and Årzén et al. [17] suggest a memory functionality
such that these steps regain their previous activity status
once the macro-step is reactivated, while being turned off
when the macro-step is inactive. Other authors like Wies-
mayr et al. [18] seem to suggest that expansion charts
can only be a sequence of steps, circumventing that sce-
nario. In other works, e.g. [8], it is said that macro-steps
can simply be replaced with their respective expansion
charts, indicating that macro-steps are merely syntactic
sugar. The interpretation that macro-steps are elements
that can be substituted with their corresponding expan-
sions without semantic loss, as presented in [8], appears
reasonable. The behavior regarding steps being active
in parallel to the exit step is ambiguous (cf. Fig. 6)
and should be avoided by the designer. In regard to the
suggested memory functionality [16, 17], there are no ref-
erences in the standard that support this interpretation.

The standard does not forbid the usage of a source
transition in an expansion chart. Such a construct could
lead to an expansion chart being activated by itself, rais-
ing the question of whether this also activates the macro-
step. An analog question arises concerning the usage of,
e.g., sink transitions, possibly deactivating the entire ex-
pansion chart. However, these constructions seem inap-
propriate for expansion charts and are subsequently not
considered.

Another unclarity arises when dealing with nested
macro-steps. While it is explicitly allowed to have ex-
pansion charts that themselves contain macro-steps, it is

1

↑a

M1

2

11 12

E10

S13

↑b

↑c

↑d

FIG. 6. A macro-step and its associated expansion chart,
where step 12 and step S13 can be active simultaneously.

not clear whether an entry or exit step can be a macro-
step. The naming convention can not be followed as a
step name can not begin with an M and an E or S at
the same time, so one can argue that this construction
is implicitly forbidden. It is further not clear if stored or
continuous actions can be associated to macro-steps, as
pointed out by Sogbohossou et al.[16]. From our point
of view, these issues do not result in different behaviors
and the choice made here is of little importance.

E. Forcing orders

While it is said for enclosures that an enclosed partial
Grafcet can only be associated to one enclosing step, this
is not the case for forcing orders. A consequence is, that
multiple forcing orders can be used to control the same
partial Grafcet. In scenarios where the mutual exclusion
of the steps associated to the orders is ensured, this is no
issue. However, in complex Grafcets, it might not be easy
to determine whether this is guaranteed and the question
arises, what happens to the forced partial Grafcet if two
of such forcing orders are active at the same time. The hi-
erarchical ordering mentioned in Sec. III C can be used to
resolve some of these conflicts. When the conflicting forc-
ing orders are emitted from partial Grafcets on different
hierarchical levels, the superior one could be prioritized.
However, this would lead to a more complex interpreta-
tion algorithm, and a possible conflict remains for forcing
orders emitted from the same hierarchical level. For this
reason, we assume that a Grafcet is designed in a way
that no such conflict arises.
Further, the standard [1] states that forcing orders are

similar to continuous actions. Therefore, the question
arises if the behavior regarding transient runs is simi-
lar as well: Is a forcing order influencing the associated
partial Grafcet if the associated step is unstable in the
current sequence of evolutions? An example is depicted
in Fig. 7 where step 12 is unstable if a evaluates to true.
For example, Wiesmayr et al. [18] suggest that forcing
orders should be executed in a transient evolution. The
authors describe how this mechanism can then be used

6

11

12

13

G1

21

22

a

a

bG2{21}

G2

FIG. 7. A partial Grafcets G1, G2, with step 12 being unsta-
ble if a evaluates to true.

to initialize a partial Grafcet without freezing its situa-
tion, allowing it to evolve independently. We prefer this
behavior since it can be a useful modeling strategy.

F. Enclosing steps

The standard states that within each enclosed Grafcet
at least one step is active while the enclosing step is as
well. This statement concerns the question of what can
happen to the enclosed Grafcet if the enclosing step is
active. This seemingly implies that this plan can not
contain a structure that would make the whole plan in-
active, such as sink transitions as shown in Fig. 8, where
G2 is deactivated when ↑c occurs. The standard does
not provide syntactical rules to prevent this behavior.
The reverse imposes interesting questions of similar na-
ture: If an enclosed Grafcet is being activated due to,
e.g., a source transition, the partial Grafcet would be ac-
tive. It remains unclear if this is allowed and, if so, if
the enclosing step gets activated. An example is shown
in Fig. 8, assuming steps 1 and 11 are inactive and ↑b
occurs. Guéguen et al. [12] state that an enclosed step
can not be active if its enclosing step is not. From our
point of view, structures that raise this question should
be avoided by the designer.

1

↑a

2

11

↑b

↑c

*

G2

1

FIG. 8. An enclosed partial Grafcet featuring a source and a
sink transition.

Another problem stated by Guéguen et al. [12] is the

possible reactivation of the enclosing step, according to
evolution rule five, as discussed in Sec. III A: It remains
unclear if an already active enclosing step will, upon ap-
plication of the fifth evolution rule, reset the enclosed
partial Grafcet to the situation described by activation
links (graphically marked with an asterisk) or if it will
remain unaffected. Guéguen et al. [12] define additional
rules for enclosings specifying that no reactivation of en-
closings happens when rule five is applied, similarly to the
absent execution of actions on (de)activation as discussed
in Sec. IIIA. One rule defined by Guéguen et al. [12] de-
fines that the enclosed partial Grafcet can not evolve in
the same evolution as the succeeding transition of the
enclosing step is cleared. An example is shown in Fig.
9, adapted from [12]. If ↑a arises, evolution rule five is
applied to step 2 and therefore, it stays active. However,
according to the additional rule defined by Guéguen et
al. [12] t3 can not be cleared in the same evolution as t2
is cleared. From our point of view, this restriction seems
counterintuitive, since the enclosing step is not deacti-
vated, and the authors do not state why it is necessary.
To ensure preemption, the rule could be adjusted so that
the enforced partial Grafcet can not evolve if the enclos-
ing step is indeed deactivated, as discussed in Sec. III E.

↑a

↑a

↑a

G1 G2

2

1

3
2

t1

t2
t3

FIG. 9. Example regarding ambiguous behavior of enclosings
(adapted from [12]).

The standard states that forcing orders have priority
with respect to the evolution rules. Such a statement is
not made for enclosures, which raises a similar question of
how to evaluate the transitions properly. Considering the
Grafcet in Fig. 10, it is not clear whether the action on
activation of step 12 will execute upon a rising edge of the
input variable a, or if the enclosed partial Grafcet will be
deactivated before. The concepts of preemptive behavior,
as discussed for forcing orders by, e.g., employing the Alg.
1 or Alg. 2, could also be applied to enclosures, since
Guéguen et al. [12] state that preemption also applies
here, with which we agree.

7

1

↑a

2

* 11

12

↑a

G2

x = 5

1

FIG. 10. Example Grafcet with ambiguous behavior regard-
ing the preemption of enclosings.

G. Remarks regarding synchronicity, determinism
and algebraic notations

In GRAFCET, evolutions require no time and the
number of intermediate step activations and executions
of actions required is not bounded. This leads to an issue
when such a specification is implemented in a program-
ming language for PLCs. The execution mode of PLCs
follows the cyclic behavior of reading inputs, executing
code and writing outputs. All of these parts take longer
than zero time, resulting in a discrepancy between the
specification and the implementation. For example, two
issues are, that the implementation can miss an input
signal, or it reacts too late to it. Zaytoon et al. [19]
discuss different notions of time in that context. Other
works point out issues regarding implementing a system
that has to react to external events, e.g. [20]. They fur-
ther state that this can be unproblematic if the execution
time is considered fast in comparison to occurrences of
events in the environment.

Existing work establishes notions of synchronous,
asynchronous and parallel execution models, for exam-
ple [21] and [22], and compares GRAFCET to or pro-
vides translation schemes for synchronous or reactive lan-
guages [14, 20, 23, 24]. Provost et al. state in [7] that
the evolution rules together with the action definitions
of continuous and stored actions on step (de)activations
of the standard ensure that determinism of the model is
guaranteed. The subject of determinism is brought up
in other literature as well, in particular in the context of
transient runs. For example, Carré-Ménétrier et al. [25]
assume that orders are only performed when a stable sit-
uation is reached, which is not clarified in the standard.
Cassez [14] suggests that outputs are undefined if a sta-
ble situation is not present and will not be reached. Le
Parc [20] et al. state that such transient cycles should
not be accepted. They should instead be detected by, for
example, means of verification. Several authors propose
algebraic notations for GRAFCET and describe aspects
of its behaviors by equations, for example in [7, 24, 26].

- Mark initial steps to be activated
- Initialize internal variables and outputs
- Set a value to inputs

Copy internal and step variables

- Evaluate continuous actions
- Set an evolution to inputs

Stable?

- Calculate clearable transitions
- Mark steps to be (de)activated
- Execute actions on event

All PG covered?

- Evaluate step (de)activation
- (De)Activate forcings and
 enclosings
- Execute associated stored
 actions

For each PG:

a)

b)

c)

d)

e)

f)

g)

no

no

yes

yes

FIG. 11. Interpretation algorithm for IEC 60848 GRAFCET
(where PG stands for partial Grafcet).

IV. INTERPRETATION OF AMBIGUITIES

Several authors present interpretation algorithms for
GRAFCET [8–11, 26–29], the contents of which have
been discussed in Section III. Based on this discussion, we
present an interpretation algorithm for IEC 60848 shown
in Fig. 11, which addresses the identified ambiguities
and solves them in a way respecting the most convincing
arguments of the discussion in Sec. III.

The initial situation is set in step a) in Fig. 11 and can
be unstable, i.e., continuous actions are set after a stable
situation is reached even for the initial situation as dis-
cussed in Sec. III A and in accordance with the referenced
interpretations. No events can occur in the initial situ-
ation, since an evolution to inputs happens again after
a stable situation is reached in the presented algorithm.
This interpretation is in accordance with the initial sit-
uation being unstable, since events do not occur during
transient runs due to the immediate execution behavior
of GRAFCET (cf. Sec. III B and IIIG). Finally, because
the initial steps are marked as activated, later in step
d) the corresponding stored actions on activation will be
executed in the first possible evolution. This is in accor-
dance to the findings in Sec. IIIA.

In the second step b), the system variables are copied
to prevent read-write conflicts as suggested in [10, 11] and
discussed in Sec. IIIA and therefore, simulate the behav-
ior that everything happens at the same time in Grafcet
as implied by evolution rule four. Note that in the fol-
lowing steps c) and d), all variable values are read from
the copied values and written to the original variables.

Steps c) to e) are executed for every partial Grafcet,

8

ordered by their hierarchical depth, beginning with the
hierarchical highest level as presented in, e.g., [10] (cf.
Sec. III C) to ensure preemption.

In c) a transition can be cleared if all preceding steps
are active, the condition evaluates to true and the partial
Grafcet is not forced according to evolution rule two [1].
As discussed in Sec. III F by means of the example in
Fig. 9, the additional rule presented in [12] regarding
the clearing of the succeeding transition of an enclosing
step is not implemented.

If a transition can be cleared, the steps are marked
in order to evaluate evolution rule five in the next step
d), and to execute the associated actions, forcing orders
and enclosings properly, i.e., to avoid multiple executions
or a wrongful activation if the step is already active as
discussed in Sec. III A. This immediate (de)activation
of forcing orders and enclosings results in a preemptive
interruption and corresponds to the behavior described
in Alg. 1 (cf. Section III C and the discussion regard-
ing [10]). When a forcing is applied, the inferior partial
Grafcet has to be somehow marked as forced to prevent
the clearing of transitions as demanded by the standard
[1]. In order to ensure the priority of forcing and enclos-
ing, the respective steps have to be (de)activated directly
instead of using the marker variables. Further, associ-
ated stored actions on activation have to be executed. If
a step is deactivated by a forcing or enclosing, it remains
ambiguous if a possible associated action on deactiva-
tion should be executed due to the preemptive manner
of forcing and enclosing. Note that conflicts concerning
actions, forcing or enclosing emitted by partial Grafcets
with a different hierarchical depth (cf. Sec. III E) are
not solved because this would lead to a more complex
algorithm. Since the hierarchically lower partial Grafcet
are executed last in this algorithm, they are preferred be-
cause they would overwrite values. We suggest prevent-
ing such conflicts entirely using means like verification.

In step f) an evolution is completed. If transitions can
still be cleared due to internal events, the evolution is
transient as described in [1] and the algorithm proceeds
with the next evolution in step b). Regarding the discus-
sion about how long events remain true in Sec. III B, in

this interpretation, an input event is caused by a value
change in step g), or for transient runs an internal event
is caused by a value change in steps c) or d) and they
remain true during the subsequent evolution (indicated
by the outer gray box in Fig. 11) between steps b) to f).
In case of a stable situation (step g)), the output vari-

ables associated to continuous actions are evaluated and
with the next input event the algorithm starts again.

V. CONCLUSION

IEC 60848 provides a semiformal language for spec-
ifying control functions. Serving as a communication
tool, ambiguities in the standard can lead to different
interpretations and thereby to divergences in the imple-
mentation. This issue is also present when verification
approaches tailored to GRAFCET need to be designed,
which require some specific interpretation of the stan-
dard. The results obtained with these methods can then
be subject to an identical understanding of the standard
by the users and the engineers of the tool. The stan-
dard has been updated to address some unclarities in
2013, providing a more detailed classification of variables.
However, literature has pointed out further aspects ad-
mitting different interpretations and, in the context of
the respective works, the authors have made decisions.
In this work we have summarized unclarities in the cur-
rent version of IEC 60848 GRAFCET and have gath-
ered, where applicable, interpretations in existing litera-
ture. Based on this, we have proposed an interpretation
algorithm, which again makes decisions on the ambigu-
ous parts of the standard, now based on a review of the
body of existing literature and carefully selected inter-
pretations and choices made therein.

ACKNOWLEDGMENTS

This research is part of the project Analysis Of
GRAFCET Specifications To Detect Design Flaws
(project number 445866207) funded by the Deutsche
Forschungsgemeinschaft.

[1] IEC, “GRAFCET specification language for sequential
function charts,” International Electrotechnical Commis-
sion, IEC 60848, 2013.

[2] R. David, “Grafcet: a powerful tool for specification of
logic controllers,” IEEE Transactions on Control Systems
Technology, vol. 3, no. 3, pp. 253–268, 1995.

[3] R. Mross, A. Schnakenbeck, M. Völker, A. Fay, and
S. Kowalewski, “Transformation of GRAFCET Into GAL
for Verification Purposes Based on a Detailed Meta-
Model,” IEEE Access, vol. 10, pp. 125 652–125 665, 2022.

[4] M. von der Beeck, “A comparison of statecharts vari-
ants,” in Formal Techniques in Real-Time and Fault-

Tolerant Systems, H. Langmaack, W.-P. de Roever, and
J. Vytopil, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, pp. 128–148.

[5] N. Bauer, R. Huuck, B. Lukoschus, and S. Engell, A Uni-
fying Semantics for Sequential Function Charts. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 400–
418.

[6] F. Wagner, J. Bohl, and G. Frey, “An IEC 61499 inter-
pretation and implementation focused on usability,” in
2008 IEEE International Conference on Emerging Tech-
nologies and Factory Automation, 2008, pp. 184–191.

9

[7] J. Provost, J.-M. Roussel, and J.-M. Faure, “Translating
Grafcet specifications into Mealy machines for confor-
mance test purposes,” Control Engineering Practice,
vol. 19, no. 9, pp. 947–957, 2011. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S0967066110002108

[8] M. Sogbohossou and A. Vianou, “Formal Modeling of
Grafcets With Time Petri Nets,” IEEE Transactions on
Control Systems Technology, vol. 23, no. 5, pp. 1978–
1985, 2015.

[9] E. Bierel, O. Douchin, and P. Lhoste, “Grafcet :
from theory to implementation,” Journal Européen des
Systèmes Automatisés (JESA), vol. 31, no. 3, pp. 543–
559, May 1997.

[10] J. Azevedo and J. de Oliveira, “The Grafcet’s macro-
action concept: an implementation view,” in 1999 7th
IEEE International Conference on Emerging Technolo-
gies and Factory Automation, vol. 2, 1999, pp. 1275–
1279.

[11] O. Bayó-Puxan, J. Rafecas-Sabaté, O. Gomis-Bellmunt,
and J. Bergas-Jané, “A GRAFCET-compiler methodol-
ogy for C-programmed microcontrollers,” Assembly Au-
tomation, vol. 28, no. 1, pp. 55–60, 2008.

[12] H. Guéguen and N. Bouteille, “Extensions of Grafcet to
structure behavioural specifications,” Control Engineer-
ing Practice, vol. 9, no. 7, pp. 743–756, 2001.

[13] F. Mallet, D. Gaffé, and F. Boéri, “Concurrent
control system: from Grafcet to VHDL,” in Euromicro
2000. Maastricht, Netherlands: IEEE Comput. Soc,
Sep. 2000, pp. 230–234. [Online]. Available: https:
//hal.science/hal-00973434

[14] F. Cassez, “Formal semantics for reactive grafcet,” Jour-
nal Europeen des Systemes Automatises, vol. 31, no. 3,
pp. 581–603, 1997.

[15] J.-J. Lesage and J.-M. Roussel, “Hierarchical approach
to GRAFCET using forcing order,” Automatique Produc-
tique Informatique Industrielle, vol. 27, no. 1, pp. 25–38,
Mar. 1993.

[16] M. Sogbohossou and A. Vianou, “Translation of
hierarchical GRAFCET charts into time Petri nets,”
Sep. 2020, working paper or preprint. [Online]. Available:
https://hal.science/hal-02934113

[17] K.-E. Årzén, “Integrated Control and Diagnosis of
Sequential Processes,” IFAC Proceedings Volumes,
vol. 28, no. 12, pp. 95–100, 1995. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S1474667017454073

[18] B. Wiesmayr, A. Zoitl, O. Miguel-Escrig, and J.-A.
Romero-Pérez, “Distributed Implementation of Hierar-
chical Grafcets through IEC 61499,” in 2021 26th IEEE
International Conference on Emerging Technologies and
Factory Automation, 2021, pp. 1–8.

[19] J. Zaytoon, V. Carré-Ménétrier, M. Niclet, and P. De
Loor, “On the Recent Advances in Grafcet,” IFAC

Proceedings Volumes, vol. 30, no. 1, pp. 387–392,
1997. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1474667017446635

[20] P. Le Parc, D. L’Her, J.-L. Scharbarg, and L. Marce,
“Grafcet revisited with a synchronous data-flow lan-
guage,” IEEE Transactions on Systems, Man, and Cy-
bernetics - Part A: Systems and Humans, vol. 29, no. 3,
pp. 284–293, 1999.

[21] J. Zaytoon, “A Contribution to the Validation of
Grafcet Controlled Systems,” European Journal of Con-
trol, vol. 6, no. 6, pp. 488–506, 2000.

[22] N. Zaidi and A. Kheder, “A Novel Electronic throttle
control strategy based on Grafcet formalism under real
vehicle engine operating conditions,” in 2022 8th Interna-
tional Conference on Control, Decision and Information
Technologies (CoDIT), vol. 1, 2022, pp. 944–949.

[23] P. Le Parc and L. Marce, “Synchronous definition of
GRAFCET with SIGNAL,” in Proceedings of IEEE Sys-
tems Man and Cybernetics Conference - SMC, vol. 2,
1993, pp. 675–680 vol.2.

[24] H. Panetto, P. Lhoste, J.-F. Petin, and E. Bon, “Con-
tribution of the Grafcet model to synchrony in discrete
events systems modelling,” in Proceedings of IECON’94 -
20th Annual Conference of IEEE Industrial Electronics,
vol. 3, 1994, pp. 1527–1532 vol.3.

[25] V. Carré-Ménétriér and J. Zaytoon, “Grafcet: Be-
havioural Issues and Control Synthesis,” European
Journal of Control, vol. 8, no. 4, pp. 375–401,
2002. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0947358002702331

[26] M. Perin and J.-M. Faure, “Building meaningful
timed models of closed-loop DES for verification
purposes,” Control Engineering Practice, vol. 21,
no. 11, pp. 1620–1639, 2013. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S0967066112001050

[27] R. Boissier, B. Dima, D. Razafindramary, and T. So-
riano, “Hybrid systems modelling and validating using
Statecharts and Grafcet,” Annual Review in Automatic
Programming, vol. 18, pp. 73–79, 1994.

[28] A. Guignard and J.-M. Faure, “Formal models for confor-
mance test of programmable logic controllers,” Journal
Européen des Systèmes Automatisés (JESA), vol. 47, no.
4-8, pp. 423–446, 2013.

[29] R. Julius, T. Trenner, J. Neidig, and A. Fay, “A model-
driven approach for transforming GRAFCET specifica-
tion into PLC code including hierarchical structures,”
IFAC-PapersOnLine, vol. 52, no. 13, pp. 1767–1772,
2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2405896319314387

https://www.sciencedirect.com/science/article/pii/S0967066110002108
https://www.sciencedirect.com/science/article/pii/S0967066110002108
https://hal.science/hal-00973434
https://hal.science/hal-00973434
https://hal.science/hal-02934113
https://www.sciencedirect.com/science/article/pii/S1474667017454073
https://www.sciencedirect.com/science/article/pii/S1474667017454073
https://www.sciencedirect.com/science/article/pii/S1474667017446635
https://www.sciencedirect.com/science/article/pii/S1474667017446635
https://www.sciencedirect.com/science/article/pii/S0947358002702331
https://www.sciencedirect.com/science/article/pii/S0947358002702331
https://www.sciencedirect.com/science/article/pii/S0967066112001050
https://www.sciencedirect.com/science/article/pii/S0967066112001050
https://www.sciencedirect.com/science/article/pii/S2405896319314387
https://www.sciencedirect.com/science/article/pii/S2405896319314387

	 Unambiguous Interpretation of IEC 60848 GRAFCET based on a Literature Review
	Abstract
	Introduction
	Methodical approach
	Results of the literature review and discussion of ambiguities
	Evolution rules and actions
	Events
	Structuring of GRAFCET
	Macro-steps
	Forcing orders
	Enclosing steps
	Remarks regarding synchronicity, determinism and algebraic notations

	Interpretation of ambiguities
	Conclusion
	Acknowledgments
	References

