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The graphical modeling language GRAFCET is used as a formal specification language in indus-
trial control design. This paper proposes a structural analysis that approximates the variable values
of GRAFCET to allow verification on specification level. GRAFCET has different elements resulting
in concurrent behavior, which in general results in a large state space for analyses like model check-
ing. The proposed analysis approach approximates that state space and takes into consideration
the entire set of GRAFCET elements leading to concurrent behavior. The analysis consists of two
parts: We present an algorithm analyzing concurrent steps to approximate the step variables and we
adapt analysis means from the field of Petri nets to approximate internal and output variables. The
proposed approach is evaluated using an industrial-sized example to demonstrate that the analysis is
capable of verifying behavioral errors and is not limited by the specification size of practical plants.

I. INTRODUCTION

In industrial automation, Programmable Logic Con-
trollers (PLC) are widely used. To design the control
code running on a PLC, a beneficial approach is to use
formal means in order to first specify the logical behavior
of the PLC before implementing the control code [1]. Us-
ing a formal specification in the design phase has multiple
advantages like using the specification as documentation
and communication tool, allowing an automatic transfor-
mation into control code and applying formal verification
at specification level [2].

In this context, IEC 60848 GRAFCET [3] can be used
as a description means. GRAFCET is a graphical, semi-
formal, domain-specific language to model, e.g., control
code of PLCs. GRAFCET is used in several industrial
domains like railway transport and the manufacturing
industry and is widely known in the respective areas [4].
This acceptance of GRAFCET might improve the accep-
tance of formal methods in the respective domains, which
is still a problem [5]. Although GRAFCET adapts con-
cepts of Petri nets - like transitions and steps, connected
alternately by arcs - it provides a considerable number of
additional modeling mechanisms like hierarchical struc-
turing of the specification which allow for compact mod-
eling of complex systems [6]. Regarding the application
of formal methods to GRAFCET specifications, there is
preliminary work by Julius et al. [7] to allow a code
generation of such hierarchical GRAFCET specifications
to PLC-code. Because the work presented by Julius et
al. does not cover verification of the Grafcets (the term
Grafcet refers to an instance of GRAFCET), we extend
the approach with formal verification. A verification on
specification level has the advantage of finding possible
design errors early in the design process, given that the
costs of correcting errors in software systems increases

exponentially as the development phase progresses [8].

The verification approach proposed in this work is a
structural analysis that approximates the variable values
of GRAFCET and takes elements into account proposed
by the standard that result in concurrent behavior. The
term structural analysis originally refers to a type of veri-
fication of Petri nets that uses algebraic tools that do not
require to build the reachability graph [9], resulting in a
linear relaxation of the reachability graph. Similarly, the
structural analysis of GRAFCET proposed in this work
approximates the GRAFCET behavior using, among oth-
ers, a linear relaxation. Further, the structural analysis of
GRAFCET is performed on the basis of its structure, i.e.,
how the steps and transitions are connected by arcs. It
does not take into account its transition conditions and,
therefore, not the internal variables. Hence, structural
analysis is a subtype of static analysis, which in general
approximates the states of a program and therefore, its
behavior without executing it [10]. The structural anal-
ysis proposed in this work is able to approximate the
reachability and concurrency of steps as well as the val-
ues of output variables. This information can be used to
identify safety critical situations or possible race condi-
tions. The resulting over-approximation leads to the fact
that false alarms can take place.

We will compare the proposed approach to other pos-
sible approaches in Sec. II, followed by the preliminaries
in Sec. III on GRAFCET and on analysis means from
the field of Petri nets that are applied to GRAFCET in
Sec. IVC. In Sec. IV we point out why concurrent struc-
tures are challenging (Sec. IVA) and present an approach
that is twofold: In Sec. IVB we present an algorithm that
calculates reachable and concurrent steps and, therefore,
approximates the values of step variables. In Sec. IVC
we present an analysis using means from the field of Petri
nets to obtain information about how often actions can
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be executed to approximate the values of internal and
output variables. We end with evaluating the proposed
analysis on a practical example (Sec. V) before giving a
conclusion (Sec. VI).

II. RELATED WORK

For verifying GRAFCET there are approaches suit-
able for model checking, such as translating hierarchical
Grafcets into time Petri nets by Sogbohossou et al. [11]
and recently transforming Grafcets into Guarded Action
Language by Mroß et al. [6]. Utilizing a model check-
ing approach allows for an exhaustive exploration of the
model but has the disadvantage of being limited by state
space explosion for practical application.

Very few approaches are presented for analyzing
GRAFCET without applying model checking. A struc-
tural analysis regarding the hierarchical dependencies be-
tween modules of the Grafcets (called partial Grafcets)
is presented by Lesage et al. [12]. The authors provide
an analysis to ensure that the hierarchical dependencies
form a partial order. Moreover, Lesage et al. [13] pro-
vide an analysis of the GRAFCET-specific expressions by
extending the Boolean algebra by events represented by
rising and falling edges of Boolean signals in GRAFCET.
This allows the user to check syntactic properties of tran-
sition conditions. Both presented approaches [12, 13] are
only capable of detecting syntactical design flaws regard-
ing the structure of the Grafcets and not design flaws
regarding the behavior of the Grafcets like the reachabil-
ity of safety critical situations. Schumacher et al. [14]
present an approach to transform the time constraints of
GRAFCET into Control Interpreted Petri nets (CIPN),
a specific kind of Petri net. They later extended the ap-
proach in [15] to normalize hierarchical Grafcets and for-
malize them as CIPN. The verification of the formalized
control specifications is not covered by Schumacher et al.
The approach, in fact, forms the groundwork for struc-
tural analyses based on methods known from the field of
Petri nets. Well established analysis tools such as those
described in [16] already exist for the structural analysis
of Petri nets and we present how to apply them to partial
Grafcets in Sec. III B, since the structural analysis known
from the fields of Petri nets have to be adapted for the
peculiarities of GRAFCET.

The normalization technique proposed in [15] is not
adopted in this work. It replaces the implicit, hierarchical
flow relations between partial Grafcets induced by enclos-
ing steps and forcing orders (cf. Sec. III A) by transitions
and steps. Therefore, the Grafcets’ hierarchical informa-
tion is lost during the process. Hierarchical information,
however, is valuable because it can be exploited during
the verification process in terms of a modular analysis of
the partial Grafcets.

All cited approaches are limited by state space explo-
sion and none of them allows for a verification of behav-
ioral design flaws which would occur during run-time.

Therefore, this work aims to present a structural analy-
sis that does not suffer from a state space explosion and
is able to detect behavioral errors.

III. PRELIMINARIES

Preliminaries on GRAFCET syntax and analytical
methods based on linear algebra are explained in this
section.

A. Syntax of IEC 60848 GRAFCET

Since the GRAFCET standard does not define the syn-
tax of GRAFCET sufficiently for formal verification, we
use the formalization proposed by Mroß et al. [6] in this
work to explain the concepts of GRAFCET that are im-
portant for this contribution.
A Grafcet G = (Vin , Vint , Vout , C) comprises a set of

partial Grafcets C ̸= ∅ with globally available sets of in-
put variables Vin , internal variables Vint and output vari-
ables Vout . Variables can either be Boolean or integral,
i.e. v is assigned a value of Z for all v ∈ Vin ∪ Vint ∪ Vout

with Boolean variables being limited to the set {0, 1}.
Given these variables, we can construct Boolean expres-
sions with usual relational symbols (such as = and ≤)
and Boolean operators (such as disjunction ∨ and nega-
tion ¬). A variable may change values caused by an
event. By CND we denote the set of all Boolean expres-
sions over variables in G. Every partial Grafcet c ∈ C is
a 6-tuple c = (S, I, E,M, T,A), where

• S is a finite set of steps, each of which is either
active or inactive,

• I ⊆ S is the set of initial steps,

• E ⊆ S × C is the set of enclosing steps,

• M ⊆ S is the set of marked steps,

• T ⊆ P(S)× P(S)× CND is the set of transitions,
where P denotes the power set, and

• A is a set of actions.

We use the notation Sc, Ic, Ec, Mc, Tc, Ac to refer to
the respective sets of a given partial Grafcet c ∈ C. The
set Mc describes the steps that are activated by the en-
closing step. Every e ∈ Ec describes an enclosing step,
which translates formally to e = (s, cenc) for a s ∈ Sc

and a partial Grafcet cenc ∈ C. If an enclosing step
becomes active, it activates all steps m ∈ Mcenc . If an
enclosing step becomes inactive, it deactivates all steps
s ∈ Scenc . We say that c is enclosed iff Mc ̸= ∅. Every
step s ∈ Sc induces a new Boolean variable xs which in-
dicates the activation status of s and is true iff the step
is active in the current situation. These variables can
be used in Boolean expressions CND . Fig. 1 shows an
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FIG. 1. Illustrative example of a Grafcet.

illustrative example of a Grafcet consisting of two partial
Grafcets C = {G0,G1}. G1 has two steps SG1 = {2, 3}
one of which is an enclosing step MG1 = {2} and two
transitions TG1 = {t1, t2} as well as two continuous ac-
tions associated to step 2 and step 3. G1 is enclosed by
step 1, indicated by the 1 at the top of G1, and therefore
EG0 = {(1,G1)}. If step 1 is activated, step 2 is acti-
vated as well and G1 can evolve freely as long as step 1
stays active.

A transition t ∈ Tc is a triple t = (•t, t•, b), where
•t ⊆ Sc is the set of immediately preceding steps, t• ⊆ Sc

is the set of immediately succeeding steps, •t ̸= ∅∨t• ≠ ∅
and b ∈ CND is the transition condition. We also call
•t the upstream and t• the downstream of t. We say
that t is enabled if xs is true for every s ∈ •t. We say
that t can fire if it is enabled and b is true. Similarly
to the upstream and downstream of transitions we define
•s ⊆ Tc as the set of immediately preceding transitions
of s and s• ⊆ Tc as the set of immediately succeeding
transitions of s.

Finally, we formalize the set of actions Ac. The stan-
dard defines different types of actions: continuous ac-
tions (Acont), stored actions (Astor ) and forcing orders
(Afo). These sets are assumed to be disjoint. Let
Ac = Acont∪Astor∪Afo . Every element ofAcont is a triple
(s, v, b), where s ∈ Sc is the associated step, v ∈ Vout is
an output variable which must be Boolean and b ∈ CND
is the action condition. We say that a continuous action
is active if xs and b are true. Several partial Grafcets
in G may employ continuous actions on the same output
variable v. In this case, v is set to true if at least one of
these continuous actions is active. Note that v can not
be used by any stored action. Every element of Astor is
a tuple (s, v, val, b), where s ∈ Sc is the associated step,
v ∈ Vint ∪Vout is an internal or output variable, val is an
expression yielding a value in the respective domain, e.g.
val ∈ Z and b ∈ CND is the action condition. A stored
action sets v to val if xs and b are true. This also allows
to model actions on activation and deactivation of a step,
as introduced by the standard. Finally, every element of
Afo is a tuple (s, cforced , S), where s ∈ Sc is the associ-
ated step, cforced ∈ C is the partial Grafcet which is to
be forced and S ∈ (P(Scforced )∪{∗, init}). A forcing order
is regarded as a special kind of continuous action. It is

active while xs is true and forces cforced into the situation
specified by S. If S = ∗, then the current situation in
cforced is retained for as long as s is active. If S = init
then cforced is set to its initial situation. Otherwise, it is
set to the specified situation (element of the power set
P(Scforced )).

B. Petri net analysis means adapted for
GRAFCET

Schumacher et al. [15] have shown how a Grafcet can
be interpreted as a CIPN. We use this interpretation to
adapt analysis means from the field of Petri nets to ob-
tain structural information about each partial Grafcet.
In particular we want to adapt analysis means based on
linear algebra, so-called S- and T-invariants which are
described in more detail, e.g., in [17].
Analog to the formalization of a Petri net Schumacher

et al. define an |S| × |T | incidence matrix N of a so-
called basic Grafcet, where a basic Grafcet is a Grafcet
without hierarchical elements. The elements nij of N
are defined as nij = −1 if si ∈ •tj , nij = 1 if si ∈ tj•
and nij = 0 otherwise. Neglecting the transition con-
ditions, a linear relaxation of the dynamic behavior of
the basic Grafcet can be described by the so-called state
equation sit = sit0 + Nq, where sit is the situation of
the Grafcet (i.e., a vector of the step variables), sit0 the
initial situation and q is the firing count vector stating
how often a transition fires until sit is reached from sit0.
The incidence matrix N can be analyzed using T- and S-
invariants. A T-invariant is a vector x such that Nx = 0.
T-invariants can detect possible loops in the reachability
graph of Grafcet since Nx = 0 = sit′ − sit, where sit′

can be reached from sit when the transitions in x fire.
A S-invariant is a vector y such that yTN = 0, where T
denotes to transposed. For Petri nets S-invariants indi-
cate an upper bound for a possible number of tokens in a
place, since yT sit = yT sit0+yTNq⇔ yT sit = yT sit0,
where the firing vector q has no influence on the ratio of
tokens. This is not directly applicable to GRAFCET
since the steps induce a binary activity variable. How-
ever, S-invariants applied to GRAFCET indicate if the
number of a step’s activation in a Grafcet is bounded to
a value n ∈ N and n < |S|, where n is the maximum
value in the S-invariants for the corresponding step.
Both types of invariants are used in Sec. IVC to esti-

mate how often an action can be executed and therefore,
approximate the internal and output variables.

IV. STRUCTURAL ANALYSIS OF GRAFCET

A static analysis of GRAFCET based on its control
flow without building the state space or part of it is chal-
lenging since concurrent actions can change the global
variable values, but the concurrency is not directly vis-
ible from an arbitrary point in the control flow. To ap-
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FIG. 2. Different structures in GRAFCET [3] resulting in concurrent behavior indicated by actions a and b.

proach this challenge, we first consider the different el-
ements in GRAFCET resulting in concurrent behavior
in Sec. IVA, before we present a structural analysis of
GRAFCET in Sec. IVB that identifies concurrent steps
along the control flow to make the concurrency visible
at arbitrary points in the control flow. In Sec. IVC we
present an analysis that approximates the internal and
output variable values taking the concurrent behavior
into account.

A. Problem definition for the structural analysis of
GRAFCET

Before applying a control flow based analysis we need
to define the control flow of GRAFCET. In GRAFCET,
instructions that read variable values are connected to
conditions associated with transitions, and instructions
that write variable values are connected to actions associ-
ated with steps. Therefore, the statements of the control
flow correspond to steps and transitions which are con-
nected by arcs forming the flow relations (in Sec. III A
formalized via •t and t•). This relation we want to use
to analyze the behavior of the GRAFCET. Besides the
arcs, Grafcets can have additional flow relations induced
by hierarchical elements like enclosing steps and forcing
orders. Those relations are always between different par-
tial Grafcets.

In comparison to sequential programs (i.e., programs
written for example in C running on a single thread)
statements of the Grafcet’s control flow can be executed
concurrent to each other. This is a problem when the
statements depend on each other and their execution or-
der is non-deterministic. Particularly steps can be acti-
vated in parallel and their associated actions are executed
concurrently in a non-deterministic order due to changes
of input variables. An example of two such actions could
be the execution of the value assignments x := 0 and
x := x + 1 where the execution order has an influence
on the resulting value of x. Therefore, analysis means

from the field of sequential programs are not applicable
to GRAFCET.
The GRAFCET standard [3] presents different struc-

tures resulting in concurrent behavior as shown in the
partial Grafcets G1 to G8 in Fig. 2:

• Multiple conditional actions (graphically repre-
sented by a flag, followed by an expression like ↑x,
where ↑ is called a rising edge of x and occurs when
x changes from 0 to 1) associated to a single step
(G1)

• Multiple initially active steps in a sequence (G2) or
in parallel (G3)

• Elements producing active steps like source tran-
sitions (•t = ∅ in G5) or its equivalence using an
activation of parallel sequences (G4) as introduced
by the standard [3]

• Activation of parallel sequences activating multiple
steps at the same time (|t•| > 1 in G6)

• Concurrently activated partial Grafcets (G7 and
G8)

All these structures can result in a non-deterministic fir-
ing order of transitions and a non-deterministic execution
order of actions. The latter is indicated in Fig. 2 by ac-
tions a and b in concurrent parts of the Grafcet. Only
the last structure containing G7 and G8 occurs in rela-
tion to a hierarchical structuring indicated by the Global
Grafcet notation enclosing the partial Grafcets G7 and
G8.
Besides the fact that the order of firings and execu-

tions is non-deterministic, their number of executions
(i.e., how often a transition or action is executed) is
non-deterministic as well. E.g., source transitions can
non-deterministically generate multiple active steps in
a subsequent sequence due to the non-deterministic
change of input variables. Structures like shown in G4
in Fig. 2 have a similar behavior.
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B. Analysis of the reachability and concurrency of
steps

To analyze the presented behavior of GRAFCET, we
propose an algorithm (in which A ◁ B is short for A ←
A ∪ B) that approximates the reachability (Alg. 1) and
concurrency (Alg. 2) of steps. Both algorithms only take
the structure of the Grafcet into account, i.e., assuming
the transition conditions evaluate to true. Because of
this approximation, the analysis is independent of vari-
able values affected by potential race conditions which al-
lows to take the concurrent elements of GRAFCET into
account.

Algorithm 1 Analysis of reachable steps

1: function ReachAnalysis(initial Worklist W , partial
Grafcet c ∈ C, initially concurrent steps S)

2: while ∃t ∈W do
3: W ←W\{t}
4: S ′ ← S
5: if s′ ∈ SR holds for all s′ ∈ •t then
6: for all s ∈ t• do
7: if s /∈ SR then
8: SR ◁ {s}
9: W ◁ s•

10: S ◁ConcurrAnalysis(c, S, t, s)
11: for all s′′ ∈ Sc do
12: if SC

s′′
′ ∈ S ′ ̸= SC

s′′ ∈ S then
13: W ◁ s′′•
14: return SR,S

To analyze the reachable steps, we propose a work-
list algorithm, presented in Alg. 1. The algorithm ana-
lyzes the flow along the transitions and calculates a set
SR ⊆ Sc of reachable steps for a given partial Grafcet
c ∈ C and its initial situation SI ⊆ Sc which will be de-
fined in a moment. For a transition t from the worklist
the algorithm examines if all upstream steps s′ ∈ •t are
reachable (line 5). This is an over-approximation of a
transition being enabled. The downstream steps s ∈ t•
are marked as reachable and in turn their downstream
transitions s• are put on the worklist until the analysis
stabilizes. For every step s that is reached this way we
calculate its concurrent steps SC

s using ConcurrAnal-
ysis which is discussed below. Since the sets of concur-
rent steps S can still change after the respective steps
are marked as reachable, the stabilization has a second
criteria: If the algorithm calculates additional concurrent
steps SC

s′′ to a step s′′ its downstream transitions are put
on the worklist (line 11-13) to propagate them along the
transitions as discussed below.

The initialization of W covers the control flow caused
by enclosing steps and forcing orders. As presented in
[12], hierarchical dependencies form a partial order. Each
of these dependencies yields an initial situation SI ⊆ Sc

in the inferior partial Grafcet c. Therefore, every partial
Grafcet might have multiple initial situations SI : initial
steps induce SI ← Ic, for enclosings the initial situation
are the steps activated by the enclosing step (SI ←Mc)

2 3

4 5

6

1

t1

t2 t3

t4

t5

FIG. 3. Example partial Grafcet c with the initial situation
{s3, s4, s5} and the possible concurrent steps SC

s marked in
blue for every step s ∈ Sc, which is the final result of Alg. 1
and 2.

and for forcings the initial situation is the situation that is
enforced by the forcing order (SI ← Sa which holds for all
a ∈ Afo and Sa ⊆ Sc). The worklist is initialized with the
initially enabled transitions which are the downstream
transitions s• of the initially active steps (W ← {s• |s ∈
SI}).

Algorithm 2 Analysis of concurrent steps

1: function ConcurrAnalysis(partial Grafcet c, set of
concurrent steps for every step S = {SC

s }s∈Sc , current
transition t, current step s ∈ t•)

2: SC
s ◁ t•\{s}

3: SC
s ◁

⋂
s′∈•t S

C
s′

4: for all s′′ ∈ SC
s do

5: SC
s′′ ◁ {s}

6: return S

To analyze concurrent steps, we extend Alg. 1 by
Alg. 2. It calculates for every step s ∈ Sc a set SC

s of
steps concurrent to s called S = {SC

s }s∈Sc
. The basic

assumption is that the downstream steps t• of a transi-
tion t have the same concurrent steps as the upstream
steps •t. This is true for basic sequences without activa-
tion of parallel sequences like e.g., in G6 in Fig. 2. When
a parallel sequence is activated (i.e., |t•| > 1) all down-
stream steps s ∈ t• become concurrent to each other (line
2). With synchronizations (i.e., |•t| > 1) the opposite is
the case. Therefore, in line 3 we intersect the concurrent
steps SC

s′ of the upstream steps s′ ∈ •t of t. This prop-
agates the concurrent steps along the transitions except
for synchronized steps. Since concurrency is a symmetric
relation, the algorithm adds the current step s to all its
concurrent steps s′′ in lines 4 - 5.
To initialize the concurrency analysis, we set all ini-

tially active steps concurrent to each other (SC
s ←

SI\{s} if s ∈ SI , ∅ otherwise).
Source transitions are a special case since they can ac-
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FIG. 4. Overview of approximation of internal and output variables.

tivate the downstream steps concurrently to all other ac-
tive steps in every possible situation. To model this be-
havior we calculate SR as presented above and run Alg. 1
again with an initial S that represents this behavior (i.e.,
SC
s ◁SR if s is a downstream step of a source transition).

To illustrate the algorithm, cf. Fig. 3, with an ini-
tial situation SI = {s3, s4, s5} indicated by the black
dots induced, e.g., by a forcing order. Therefore, we
initialize W ← {t3, t4} and S ← {SC

s1, · · · , SC
s6}, where

SC
s3 = {s4, s5}, SC

s4 = {s3, s5}, SC
s5 = {s3, s4} and SC

s1 =
SC
s2 = SC

s6 = ∅. Assuming we withdraw t = t4 from the
worklist in the first iteration of Alg. 1, we mark s = s6 as
reachable in line 8. Executing Alg. 2 we have t•\{s} = ∅
and

⋂
s′∈•t S

C
s′ = {s3, s5} ∩ {s3, s4} = {s3}. In line 5 of

Alg. 2 we add s6 to SC
s3. t5 (due to line 9 in Alg. 1) and

t3 (due to line 13 in Alg. 1) are added to the worklist
and the algorithm iterates along the transitions as long
as S does change. This results in values for S indicated
in Fig. 3 by the sets next to the steps.

C. Approximation of internal variables and
conditions

In the previous Sec. IVB, we proposed an analysis to
approximate the step variables of GRAFCET. In this sec-
tion, we propose an analysis to approximate the internal
and output variables written by stored actions. Fig. 4
shows an overview of the proposed analysis. To evalu-
ate the variable values, we over-approximate the action’s
number of executions and assume the order to be non-
deterministic. The number of executions is influenced by
multiple structural elements of GRAFCET. Those are: 1)
source transitions (Fig. 2, G5) and the equivalent with
an activation of parallel sequences (Fig. 2, G4), 2) loops
as well as 3) multiple active steps in a sequence (Fig. 2,
G2). The influence of the different structural elements
on how often an action might be executed is covered by
the respective steps 1) - 3) of the analysis (cf. Fig. 4).

First, we calculate the S-invariants of the Grafcet. If
the Grafcet is covered with S-invariants (i.e., for every
step there is at least one S-invariant with a value n ∈ N
for the corresponding step) it is a sufficient condition
that the number of how often a step can be activated
is bounded by n (without taking loops and multiple ini-
tially active steps into account, which are covered in steps
2) and 3)). Otherwise the possible number of the steps’
activation is considered to be infinite and therefore, all
actions not covered with S-invariants (i.e., there is no
S-invariant with a value n ̸= 0 for the corresponding

5

t1

t5

t4

1

2

3 4

t2

k = k + 1

t3

FIG. 5. Example partial Grafcet with SI = {s1, s2} that is
n-bounded with n = 2.

step sa of the action a) can be executed infinitely of-
ten. This detects structures like in G4 (with a S-invariant
yG4 = (1, 0, 0) that does not cover steps 2 and 3) and G5
(with no existing S-invariant) in Fig. 2. On the other
hand structures like in G6 are covered with S-invariants
(yG6,1 = (1, 1, 0, 1, 0) and yG6,2 = (1, 0, 1, 0, 1)). How-
ever, even if a Grafcet is n-bounded, loops can cause
actions to execute infinitely often. Therefore, in the n-
bounded case we calculate the T-invariants (step 2) in
Fig. 4) to detect loops to approximate the number of
executions further (e.g. the structure in G7, Fig. 2 has
a T-invariant xG7 = (1, 1)). In case of a loop we assume
the associated actions to be executed infinitely often. In
step 3) in Fig. 4 we consider the number of initially active
steps SI that can cause a multiple executions of actions
as well. If the actions’ number of executions is not infi-
nite it is calculated with n · |SI |. The approach can be
illustrated using the partial Grafcet in Fig. 5. It has one
S-invariant y = (2, 2, 1, 1, 1) and is therefore n-bounded
with n = 2. The partial Grafcet has no T-invariant and
therefore, no loop. Due to the two initial steps 1 and 2
in combination with the Grafcet being 2-bounded, step
5 can be activated four times since n · |SI | = 2 · 2 = 4.
Note that a value of n > 1 could be considered a design
error by itself.

To calculate the input and output variable values
(step 4) in Fig. 4) and to take into account the non-
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deterministic order of the action’s execution, we select
the order resulting in the largest result to guarantee
over-approximation and therefore soundness. We cal-
culate all possible values Xcalc for every variable us-
ing the number of executions of the corresponding ac-
tions identified in the first three steps. Then we choose
the minimal and maximal result as lower and upper
bound of the variable value’s interval or the initial-
ization value zero to approximate the variable value:
[min(min(Xcalc), 0),max(0,max(Xcalc))]. For the exam-
ple in Fig. 5 the action on activation associated to step 5
can be executed four times as shown above. The resulting
interval for k evaluates to [0, 4].
In the end we can check if the conditions in transi-

tions and actions are satisfiable using the approximated
internal and step variables.

V. EVALUATION

The proposed analysis was implemented and inte-
grated in a toolchain developed by the authors. Part of
the toolchain is a graphical editor for GRAFCET based
on a GRAFCET meta-model proposed by Julius et al.
[2]. The meta-model was implemented using the Eclipse
Modeling Framework (EMF)1.
The presented analysis was evaluated using the

GRAFCET specification of an industrial plant first
shown in [15]. The application example is an automatic
testing machine for quality control of components and
consists of a conveyor belt, a rotary indexing table and six
stations. Coordinated by the rotary indexing table, the
parts pass through these stations, where separation and
quality control take place. The components are marked
as regular or damaged parts, and damaged parts are sub-
sequently sorted out. The complete specification consists
of eight partial Grafcets shown in Fig. 7 including their
hierarchical dependencies. On the top level the partial
Grafcet G OM determines the operation mode. Choos-
ing the automatic operation mode, G RIT is activated
and controls the rotary indexing table as well as the six
stations represented by G10 to G70. All hierarchical de-
pendencies are induced by enclosing steps which are used
to implement an emergency stop. G OM is activated by
an initial step. Altogether the specification consists of
60 steps, 62 transitions and 80 Boolean and integer vari-
ables.

Fig. 6 shows the partial Grafcet G RIT2. The number
3 at the top refers to the enclosing step 3 in G OM con-
trolling G RIT. The asterisk at step 10 marks the step
activated by the enclosing step. The station activates the
conveyor belt by setting the output variable conveyorBelt

1 https://www.eclipse.org/modeling/emf/
2 The full specification formalized with GRAFCET can
be viewed here: https://github.com/Project-AGRAFE/

GRAFCET-instances

to true and rotates the rotary indexing table by one sector
using the output variable rotateTable. This transfers the
parts from one station to another and can therefore only
occur while the stations are in their starting position.
The activation of the stations happens in parallel via en-
closing steps 11 to 16. The internal Boolean variables
station1, station2, etc. indicate if a station is finished.
Since these variables are read in G RIT and written in
G10 to G70 they are affected by concurrency.

Applying the analysis regarding the structural reacha-
bility and concurrency from Sec. IVB to G RIT results
in all steps being reachable, as well as the following con-
current steps: step 10 has no concurrent steps - step 11
and 17 are structurally concurrent to the steps 12, 13,
14, 15, 16, 18, 19, 20, 21, 22 - the concurrent steps for
the remaining steps are analog to step 11 and 17. We ap-
plied the analysis to the entire specification, taking into
account that the enclosing steps of G RIT are concur-
rent to each other, and therefore the stations run con-
currently as well. The execution time was less than ten
milliseconds. We used this information to confirm that
no race conditions are present in the Grafcet, i.e., no
stored actions writing the same variable are associated
to concurrent steps.

By applying the analysis from Sec. IVC shown in Fig. 4
to G RIT, we start by calculating the S-invariants y1 =
(s10, s11, s17), y2 = (s10, s12, s18), y3 = (s10, s13, s19),
etc., which cover the whole Grafcet (note that we mis-
use the notation here by writing the step name when
we mean that there is a corresponding 1 and omit it
when there is a 0). Thus, the number of active steps
for every S-invariant is 1-bounded and no structures like
shown in Fig. 2, G4 are present. In the next step
the T-invariants are calculated resulting in one invariant
x1 = (t10, t11, t12, t13, t14, t15, t16, t17), which means
that all covered transitions (i.e., all transitions that have
a corresponding value of 1 in x1) have to fire for the ini-
tial situation to be reached again. Therefore, the actions
associated to step 10 can be executed infinitely often re-
sulting in a possible value assignment conveyorBelt =
rotateTable = {false, true}. Applying the analysis to all
other partial Grafcets results in the same possible value
set for station1 to station7 and therefore, t11 to t17 can
fire according to the analysis, which is the expected be-
havior.

This allows to identify safety critical situations. E.g.,
in the given example, the rotary indexing table must not
rotate (i.e., rotateTable = false) as long as one of the six
stations is working, or vice versa. Using the approxima-
tion of the variable values, the analysis returns a false
alarm for this requirement being violated since it can
only detect if the variable values will eventually be true
or false, but not if this will be at the same time or se-
quentially. However, using the results from the analysis
proposed in Sec. IVB, it can be shown that the stations
are deactivated while the rotary indexing table is rotat-
ing: As shown in Fig. 6, the variable rotateTable is true
when step 10 is active and since step 10 has no concurrent

https://www.eclipse.org/modeling/emf/
https://github.com/Project-AGRAFE/GRAFCET-instances
https://github.com/Project-AGRAFE/GRAFCET-instances


8

G_RIT
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21
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tableInPosition(t10)

conveyorBelt :=
true rotateTable

station1 AND station2 AND station3 AND station5  
 AND station6 AND station7

(t17)

FIG. 6. GRAFCET specification G RIT of the control of the rotary indexing table as well as the stations.

G_OM

G_RIT
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1

2

3

Legend

G1 Partial  
Grafcet G1

Hierarchical  
dependency

FIG. 7. Hierarchical dependencies of the testing machine’s
GRAFCET specification.

steps the stations can not be active at the same time.

VI. CONCLUSION

In Sec. IV, we demonstrated that, owing to
GRAFCET’s concurrent behavior, control flow based
analysis approaches from the field of sequential programs
are inapplicable to GRAFCET. Further, we determined
which GRAFCET structures and elements cause concur-
rent behavior. The resulting approach resolves this chal-
lenge by over-approximation and neglecting transition
conditions. We presented a worklist algorithm to ap-
proximate the step variables as well as their concurrency.
Further we presented how analysis means from the field
of Petri nets can be used to approximate internal and
output variable values. Therefore, we demonstrated an
approach that uses a structural analysis to verify pos-

sible GRAFCET instances including elements proposed
by the standard IEC 60848 that can result in concur-
rent behavior. Despite the resulting over-approximation
(which can lead to a report of concurrent steps where no
such behavior is present), we presented in the evaluation
that the approach provides valuable information, such as
verifying that no writing conflicts exist.

For future work we want to reduce the degree of
over-approximation. One approach is to analyze the
GRAFCET instances depending on whether concurrency
is present or not. It can be assumed that not all Grafcets
show all different elements that result in concurrent be-
havior. Instead of an analysis that can handle all struc-
tures proposed by the standard it might be beneficial to
provide specialized algorithms that can analyze only a
subset of the possible GRAFCET instances. Depending
on the Grafcet to be analyzed, a specialized analysis that
might result in less over-approximation could be chosen.
Another approach for future work would be to use the
information obtained from the concurrency analysis to
track the interference between concurrent steps induced
by actions writing variable values (e.g., when a variable is
incremented due to the activation of a concurrent step).
This interference could be used to analyze the Grafcets
by means of abstract interpretation, similarly to works,
e.g., proposed by Miné [18].
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[1] F. Schumacher, S. Schröck, and A. Fay, “Tool support
for an automatic transformation of GRAFCET specifi-
cations into IEC 61131-3 control code,” in 2013 IEEE
18th Conference on Emerging Technologies & Factory
Automation (ETFA), 2013, pp. 1–4.

[2] R. Julius, T. Trenner, A. Fay, J. Neidig, and X. L. Hoang,
“A meta-model based environment for GRAFCET spec-
ifications,” in 2019 IEEE International Systems Confer-
ence (SysCon), 2019, pp. 1–7.

[3] IEC 60848, “GRAFCET specification language for se-
quential function charts,” International Electrotechnical
Commission, IEC 60848, 2013.

[4] J. Provost, J.-M. Roussel, and J.-M. Faure, “A formal
semantics for Grafcet specifications,” in 2011 IEEE In-
ternational Conference on Automation Science and En-
gineering, 2011, pp. 488–494.

[5] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke,
S. Kowalewski, M. Wollschlaeger, and P. Göhner, “Chal-
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