
09 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A 22n March Test for Realistic Static Linked Faults in SRAMs / Benso, Alfredo; Bosio, Alberto; DI CARLO, Stefano; DI
NATALE, Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2006), pp. 49-54. (Intervento presentato al convegno IEEE
11th European Test Symposium (ETS) tenutosi a SouthAmpton, UK nel 21-24 May 2006) [10.1109/ETS.2006.2].

Original

A 22n March Test for Realistic Static Linked Faults in SRAMs

Publisher:

Published
DOI:10.1109/ETS.2006.2

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499995 since:

IEEE Computer Society

A 22n March Test for Realistic Static Linked Faults in SRAMs

A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

E-mail {benso, bosio, dicarlo, dinatale, prinetto}@polito.it
http://www.testgroup.polito.it

Abstract

Linked Faults are considered an interesting class of
memory faults. Their capability of influencing the
behavior of other faults causes the hiding of the fault
effect and makes test algorithm design a very complex
task. Although several March Tests have been developed
for the wide memory faults spread, a few of them are able
to detect linked faults. In the present paper March AB, a
March Test targeting the set of realistic memory linked
fault is presented. Comparison results show that the
proposed March Test provides the same fault coverage of
already published algorithms but, it reduces the test
complexity and therefore the test time. Moreover, a
complete taxonomy of linked faults will be presented.

1. Introduction

Memories are one of the most important components
in digital systems, and semiconductor memories are
nowadays one of the fastest growing technologies.
Actually the major trend of System-On-a-Chip (SOC)
allows to embed in a single chip all the components and
functions that historically were placed on a hardware
board. Within SOCs, embedded memories are the densest
components, accounting for up to 90% of chips area [1].
It is thus common finding, on a single chip, tens of
memories of different types, sizes, access protocols and
timing. Moreover they can recursively be embedded in
embedded cores.

The high density of their cells array makes memories
extremely vulnerable to physical defects. Due to the
complex nature of the internal behaviour of memory
chips, the design of fault models and tests is non-trivial.

A linked fault is a memory fault composed of two or
more simple faults. The behaviour of each simple fault
can be influenced by the remaining ones and in some
cases the fault can be masked. Classic March tests cannot
detect linked faults due to the masking effect.

In the latest decade published researches mainly
focused on the definition of new fault models [2] [3] [4]
[5] showing the importance of developing new memory
test algorithms. Nevertheless a few publications targeted
the problem of linked faults.

March A, March B [6], March LA [7], and March LR
[8] have an high fault coverage on a restricted set of
linked memory faults. In [9], the authors present an
automatically generated March algorithm of a complexity
of 43n. This March test is still affected by the problem of
detecting a limited number of memory faults, the same of
[6], [7], and [8]. In [11] and [10] the authors present an
accurate analysis of the linked fault concept, they also
present a March test facing new fault models. The
presented March SL has a complexity of 41n.

In this paper we present March AB, a March test
targeting the same set of faults already covered by March
SL, but reducing the test complexity of the best previous
work by 54 % or by 19n.

To better identify the target faults, a taxonomy of
realistic linked faults is presented, and each addressed
fault is modeled resorting to the Fault Primitive
formalism introduced in [12]. To analytically prove the
efficiency of the proposed March Test, for each fault
model the coverage conditions, i.e. the sequence of
memory operations needed to sensitize and detect the
fault effects, are defined. Moreover, we will prove that
March AB respects the coverage conditions for each fault
in the fault list. Finally, we will compare the fault
coverage with already published algorithms. The
correctness of the proposed test has been also proved by
fault simulation experiments performed by using an in-
house developed memory fault simulator [13].

The paper is structured as follows: Section 2
introduces the fault model formalism, Section 3
introduces the concept of the linked fault and its relative
taxonomy; Section 4 presents the new March Test and the
complete list of the coverage conditions is detailed in
Section 5. Section 6 validates the proposed algorithm
Comparisons evaluations are reported in Section 7, while
Section 8 summarizes the main contributions and outlines
future research activities.

2. Fault Model

For test purposes, faults in memories are usually
modeled as Functional Faults. A Functional Fault Model
(FFM) is a deviation of the memory behavior from the
expected one under a set of performed operations. A FFM
involves one or more Faulty Memory Cells (FMC)

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

classified in two categories: Aggressor cells (a-cells), i.e.,
the memory cells that sensitize a given FFM and Victim
cells (v-cells), i.e., the memory cells that show the effect
of a FFM. Each FFM can be described by a set of Fault
Primitives (FPs) [12]. A Fault Primitive is identified by
<S/F/R>, it represents the difference between an expected
(good), and the observed (faulty) memory behavior; in
which:

S = Sa ; [Sv] is a sequence of m operations and/or
conditions, respectively applied to a-cell (Sa)and v-cell
(Sv), needed to sensitize the given fault. The j-th
operation is represented as opj = iOdj where i {0,1}
is the initial value stored in a memory cell; O {w,r}
is the type of operation performed on a cell; d {0,1}
in case of write operation represents the data to be
written into memory cell. Sv is omitted when the FP
correspond to a single cell memory fault, because it
involves just one cell
F is the faulty behavior, i.e., the value (state) stored in
the victim cells after applying S
R is the sequence of values read on the aggressor cell

when applying S.

As an example FP = <0w1 ; 0/1/- > means that the
operation ‘w1’ performed on the a-cell, when the initial
state is 0 for both a and v cells, causes the v-cell to flip.

Several FPs classification rules can be adopted, based
on the number of memory operations (m) needed to
sensitize the FP (static when m = 1 or dynamic fault
elsewhere); and based on the number of memory cells
(#FMC) involved by the FP (single cell where #FMC = 1
or n-cells elsewhere fault) [12]. Hereinafter we deal with
static faults (i.e., m = 1) that have been proved to be the
most realistic fault models when linked [11].

3. Linked Fault: Concept & Taxonomy

In some cases it is possible that the effect of a FFM
influences another functional fault. If these faults share
the same aggressor and/or victim cells, the FFMs are
called Linked, otherwise they are called simple or un-
linked and each fault is independent from the others. To
understand the concept of linked faults we can consider,
as an example, the Disturb Coupling Faults [12] described
by the following two FPs:

FP1 = < 0w1 ; 0 / 1 / - >, FP2 = < 0w1 ; 1 / 0 / - > (1)

The most general case is represented in Figure 1, in
which a n cells memory is affected by two FPs (FP1 and
FP2) having different a-cells (a1, a2) and the same v-cell.
The vertical arrow shows the address order of the
memory (from the lowest memory address to the highest)
in which i, j and k represent the address of a1, a2 and v,

respectively. By first performing “0w1” (FP1) on cell i,
the v-cell k flips from 0 to 1; than performing “0w1”
(FP2) on cell j, the v-cell k changes its value again, from
1 to 0. The global result is that the fault effect is masked
by the application of FP2, since FP2 has a fault effect (F)
opposite to FP1.

a1

a2

v

0

n-1

i

j

k

Figure 1. Example of Linked Fault

Looking at the example of Figure 1, we can derive a
rigorous definition of a Linked Fault (LF):

Definition 1 : two FPs, FP1 = <S1/F1/R1> and FP2 =
<S2/F2/R2>, are said to be Linked, and denoted by “FP1

 FP2”, if both of the following conditions are satisfied:
FP2 masks FP1, i.e., F2 = not (F1);
The Sensitizing operation (S2) of FP2 is applied
after S1, on either the a-cell or v-cell of FP1.

To detect linked faults (LFs), one must detect in
isolation at least one of the FPs that compose the fault
(i.e., without allowing the other FP to mask the fault)
[11].

In the sequel, we detail the taxonomy of the realistic
LFs. The classification is based on the number of memory
cells involved by the fault. We consider only realistic
faults involving one (single cell LF), two and three cells.
These faults have been proved to be the most realistic
memory linked faults [11].

3.1. Realistic Single cell Linked Faults

The single cell Linked Faults involve a single memory
location in which all the FPs are sequentially applied. The
set of realistic single cell Linked faults, reported in Table
1, has been published and validated in [11]. Table 1
reports the whole set of single cell LFs, for each linked
fault, the FP formalism with compact notation describe
the fault. Compact notation resorts to x, y variable where
x, y {0,1}, x = not (y).

Table 1 Single Cell LFs
Linked Fault FPs S1 S2

TF WDF <S1 / x / -> <S2 / y / -> xwy xwx
WDF WDF <S1 / x / -> <S2 / y / -> ywy xwx
DRDF WDF <S1 / x / y> <S2 / y / -> yry xwx

TF RDF <S1 / x / -> <S2 / y / y> xwy xrx
WDF RDF <S1 / x / -> <S2 / y / y> ywy xrx
DRDF RDF <S1 / x / -> <S2 / y / y> yry xrx

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

Table 2 Realistic Two cells LF2aa: z, l, j, x, y {0,1}, x = not(y), l = not(j)

Linked Fault FPs S1 S2
CFds CFds <S1 ; x / y /-> <S2 ; y / x /-> lwj , jwj, jrj jwl , jwj , jrj
CFtr CFds <z ; S1 / x /-> <S2 ; x / y /-> xwy jwl
CFwd CFds <z ; S1 / y /-> < S2 ; y / x /-> xwx jwl
CFdr CFds <z ; S1 / y /x > <S2 ; y / x /-> xrx jwl
CFds CFwd <S1 ; x / y /- > <z ; S2 / x /-> jwl , jwj , jrj ywy
CFtr CFwd <z ; S1 / x /- > <z ; S2 / y /-> xwy xwx
CFwd CFwd <z ; S1 / x /- > <z ; S2 / y /-> ywy xwx
CFdr CFwd <z ; S1 / x /y > <z ; S2 / y /-> yry xwx
CFds CFrd <S1 ; x / y /- > <z ; S2 / x / x> jwl , jwj , jrj yry
CFtr CFrd <z ; S1 / y /- > <z ; S2 / x / x> ywx yry
CFwd CFrd <z ; S1 / y /- > <z ; S2 / x / x> xwx yry
CFdr CFrd <z ; S1 / y /x > <z ; S2 / x /x> xrx yry

Table 3 Realistic Two cells LF2av:
 z, l, j, x, y {0,1}, x = not(y), l = not(j)

Linked Fault FPs S1 S2
CFds WDF <S1 ; x / y /-> <S2 / x /-> jwl , jwj ,

jrj
ywy

CFtr WDF <z ; S1 / y /-> <S2 / x /-> ywx ywy
CFwd WDF <z ; S1 / y /-> < S2 / x /-> xwx ywy
CFdr WDF <z ; S1 / y /x > <S2 / x /-> xrx ywy
CFds RDF <S1 ; x / y /- > <S2 / x /x> jwl , jwj ,

jrj
yry

CFtr RDF <z ; S1 / y /- > <S2 / x /x> ywx yry
CFwd RDF <z ; S1 / y /- > <S2 / x /x> xwx yry
CFdr RDF <z ; S1 / y /x > <S2 / x /x> xrx yry

Table 4 Realistic Two cells LF2va:
z, l, j, x, y {0,1}, x = not(y), l = not(j)

Linked Fault FPs S1 S2
WDF CFds <S1 / x /-> <S2 ; x / y /-> ywy jwl , jwj ,

jrj
TF CFds <S1 / x /-> <S2 ; x / y /-> xwy jwl , jwj ,

jrj
DRDF CFds <S1 / x /y > <S2 ; x / y /-> yry jwl , jwj ,

jrj
WDF CFwd <S1 / x /-> <z ; S2 / y /-> ywy xwx

TF CFwd <S1 / x /-> <z ; S2 / y /-> xwy xwx
DRDF CFwd <S1 / x /y > <z ; S2 / y /-> yry xwx
WDF CFrd <S1 / x /-> <z ; S2 / y /y > ywy xrx

TF CFrd <S1 / x /-> <z ; S2 / y /y > xwy xrx
DRDF CFrd <S1 / x /y > <z ; S2 / y /y > yry xrx

3.2. Realistic Two cells Linked Faults

Two cells Linked Faults involve two distinct memory
cells: one aggressor cell, and one victim. Figure 2 shows
the possible mutual positions of the two involved cells.

a

v

v
a

a) b)
Figure 2. Two cells LFs; a) a < v, b) v < a

The set of realistic two cells Linked faults can be
found in [11]. Two linked FPs “FP1 FP2” can be
clustered in three different classes of realistic faults:

LF2aa: LFs that share both the a-cells and v-cells
(Table 2);
LF2av: LFs where FP1 is a two cells FP and FP2 is a
single cell FP (Table 3);
LF2va: LFs where FP1 is the single cell FP and FP2 is
the two cells FP (Table 4).

From Table 2 to Table 4 the whole set of realistic two
cell LFs is exploited, we formalize each FPs by using

compact notation, where z, j, l, x, y {0,1}, x = not (y)
and l = not(j).

3.3. Realistic Three cells Linked Faults

Three cells linked faults are composed of FPs sharing the
same v-cells, but having different a-cells (a1 and a2). The
realistic fault model [11] is shown in Figure 3, where the
v-cell is between the a-cells. Realistic three cell space is
exactly the same as two cell LFs (Table 2, Table 3 and
Table 4)

a1

v

a2

a2

v

a1

a1<v<a2 a2<v<a1

Figure 3. Three cells LFs.

4. March Test

A March Test is a test algorithm composed of a
sequence of March Elements [14]. Each March Element
(ME) is a sequence of memory operations applied

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

sequentially on a certain memory cell before proceeding
to the next one. The way in which one moves from a
certain address to another one is called Address Order
(AO). The AO characterizes the ME. Hereinafter, we
shall denote a March Test using a ‘{…}’ bracket and a
March Element using a ‘(…)’ bracket. The i-th operation
is defined as opi where opi {wd, rd}, d {0,1} in which
‘rd’ means “read the content of the memory cell and
verify that its value is equal to d ”. The complexity of a
March Test is defined as the number of memory
operations included in it. Figure 4 shows the March AB,
with a complexity of 22n. March AB is able to detect the
whole set of realistic static linked faults (Section 3).
Compared with March SL [10], the state-of-the-art
algorithm to target the same set of faults with a
complexity of 41n, March AB reaches the same fault
coverage but reduces the test length of about 54% or by
19n.

We obtain the new March tests AB by using the
automatic March test generation algorithm introduced in
[15], moreover generation process also allows the
definition of a set of Fault Coverage Conditions (FCC)
needed to detect the target faults. Each FCC specifies the
March Elements able to detect the target fault. In the
sequel of the paper, we will introduce the coverage
conditions for the set of linked faults listed in Section 3
and we will prove that March AB satisfies all those
conditions.

{ (w0) (r0,w1,r1,w1,r1) (r1,w0,r0,w0,r0) (r0,w1,r1,w1,r1)
 M1 M2 M3 M4

(r1,w0,r0,w0,r0) (r0)}
 M5 M6

Figure 4. March AB O(n) = 22n

5. Fault Coverage Conditions

A Fault Coverage Conditions (FCC) represents a MEs
sequence, formalized with the March Test notation
(Section 4). It can be automatically derived from the FP
formalism by using March test generation algorithm
introduced in [15], that simply builds the set of March
tests targeting each FPs. Then we compare March AB
whit the FCCs and we check the occurrence of the FCCs
inside March AB in order to ensure the correctness of our
algorithm. Next sections detail the FCCs and prove their
coverage.

5.1. Single cell LF Detection

Single cell linked faults are sensitized and detected by
performing operations on the FMC. As described in
section 3.1, two main classes can be composed having the
same FP2. The first one has FP2 equal to WDF and FP1 =
{TF, WDF} (Table 1). In this class, FP1 is sensitized by

S1 = {xwy, ywy, yry} and FP2 by S2= xwx. ME =
(ry,wx,rx,wx,rx) detects WDF in isolation by applying

fourth operation (wx) that sensitize the fault, then read (rx)
observes the fault effect. FP1 cannot be sensitized since
the ME doesn’t contain any operations belonging to S1.

Second class has FP2 equal to RDF and FP1 = {TF,
WDF, DRDF} (Table 1). Here FP2 is sensitized by S2 =
xrx and FP1 by S1 = {xwy, ywy, yry}, therefore ME =
(rx,wy,ry,wy,ry) detects RDF in isolation by the first
operation (rx), FP1 is sensitized after FP2 therefore
masking cannot occur. The two FCCs covering the entire
set of single cell LFs are:

FCC1 = (ry,wx,rx,wx,rx), FCC2 = (ry,wx,rx,wx,rx)

5.2. Two cells LF Detection

The two cells LFs detection is more complex than
those for single cell, because the relations between
aggressor and victim address constraint (i.e., a < v and v
> a) must be respected. Referring to of two cells LFs
classification (Section 3.2), we rank LFs having the same
FP2. In the first group of faults, where FP1 = FP2 = CFds
(Table 2, first row), FP2 is sensitized by S2 = {jwl , jwj ,
jrj}. We investigate each operations belong to S2, and the
relative LF.

The first instance S2 = jwl imply LF = <S1 ; x / y /->
 < jwl ; y / x /->, where S1 = {lwj , jwj, jrj} and j,l,x,y

={0,1}; y = not (x), j = not(l).
Fixing the values: j = y and l = x, S1 = {xwy, ywy,

yry} and S2 = ywx, the following ME can detect FP2 in
isolation when a > v

(ry,wx,rx,wx,rx)

In this case the first accessed cell is the a-cell, only FP2
can be sensitized since the v-cell is in y state, therefore
second operation (wx) sensitizes the fault (FP2), other
faults cannot be sensitized, so when v-cell is accessed, the
first read (ry) detects the fault. In the same way a < v
requires (ry,wx,rx,wx,rx).

Fixing the opposite values: j = x and l = y, S1 = {ywx ,
xwx, xrx} and S2 = xwy, the following MEs can detect
FP2 in isolation when a < v

(rx,wy,ry,wy,ry) (ry,...)

v-cell is firstly accessed and it sets the y state (wy) on the
v.cell. Then a-cell is accessed and the second operation
(wy) sensitizes the fault in isolation (FP2), other faults
cannot be sensitized, since the ME doesn’t include the
required operations. First read (ry) on the following ME
detect the fault effect. Similarly a > v requires

(rx,wy,ry,wy,ry) (ry,...)

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

The second instance S2 = jrj imply LF = <S1 ; x / y /->
 < jrj; y / x /->, where S1 = {lwj , jwj, jrj} and j,l,x,y

={0,1}; y = not (x), j = not(l).
Fixing the values: j = y and l = x, S1 = {xwy, ywy,

yry} and S2 = yry, then the following MEs can detect FP2
in isolation when a > v

(ry,wx,rx,wx,rx)
accessing a-cell, the first operation (ry) sensitizes the fault
(FP2) in isolation. When v-cell is accessed, the first read
(ry) detect the fault. In the same way a < v requires

(ry,wx,rx,wx,rx)
setting the opposite values: j = x and l = y, S1 = {ywx ,

xwx, xrx} and S2 = xrx, then the following MEs can
detect FP2 in isolation when a < v

(rx,wy,ry,wy,ry) (ry,...)

v-cell is firstly accessed, it sets the y state (wy) on the v-
cell. Then a-cell is accessed and the first operation (rx)
sensitizes the fault in isolation (FP2). First read on the
follows ME detects the fault effect. In the same way a > v
requires (rx,wy,ry,wy,ry) (ry,...)

Last instance S2 = jwj imply LF = <S1 ; x / y /-> <
jwj ; y / x /->, where S1 = {lwj , jwj, jrj} and j,l,x,y
={0,1}; y = not (x), j = not(l).

Fixing the values: j = y and l = x, S1 = {xwy, ywy,
yry} and S2 = ywy, the following MEs detect FP2 in
isolation when a < v

(rx,wy,ry,wy,ry) (ry,...)

v-cell is firstly accessed and it sets the y state (wy) on the
v.cell. Then a-cell is accessed and the fourth operation
(wy) sensitizes the fault in isolation (FP2). First read on
the follows ME detect the fault effect. When S1 = yry, the
last operation (ry) will mask the fault. In order to avoid
this conditions, the second ME is refined as

(ry,wx,rx,wx,rx) (rx,...), where FP1 is sensitized by the
first operation and observed by the third ME. In the same
way a > v requires (rx,wy,ry,wy,ry) (ry,wx,rx,wx,rx)

(rx,...). Fixing the opposite values: j = x and l = y, S1 =
{ywx , xwx, xrx} and S2 = xwx, then the following ME
detects FP2 in isolation when a > v

(ry,wx,rx,wx,rx)

a-cell is firstly accessed; the fourth operation (wx)
sensitizes the fault in isolation (FP2). First read on the v-
cell will detect the fault effect. When S1 = xrx, the last
operation (ry) will mask the fault. It requires the following
ME (rx,wy,ry,wy,ry) in order to sensitize and detect in
isolation FP1 In the same way a < v requires

(ry,wx,rx,wx,rx) (rx, wy,ry,wy,ry)

Finally the full set of CFds linked to CFds is detected
by

FCC3 : (rx,wy,ry,wy,ry) (ry,wx,rx,wx,rx)
(rx,wy,ry,wy,ry) (ry,wx,rx,wx,rx) (rx,...)

If FP1 is a CFtr, a CFwd, or a CFdr, it is easy to see
that FCC3 is still able to detect them, since each CFds is
detected in isolation. Similarly it is possible to verify that
the detection conditions for the remaining LF2aa, LF2av
(Table 3) and LF2va (Table 4), still remain FCC3 that
also cover the remaining LF2s

5.3. Three cells LF Detection

Three cells LFs are composed of two cells FPs (see
Section 3.3) sharing the same v-cells but having different
a-cells (a1 and a2). [11] proves that the conditions
detecting two cells LFs are enough to detect all the three
cells LFs. Therefore, FCC3 ensure the detection of the
entire three cells LFs space.

6. March AB Validation

In order to validate March AB we have to prove that it
includes the FCCs introduced in Section 5. First of all it is
immediately clear that FCC1 and FCC2 (Table 5) are
included in FCC3. In other word FCC3 still cover single
cell LFs. We can expand FCC3 exploiting the whole set
of value assumed by x and y. Table 6 shows each ME
obtained by a couple of x,y value. Looking the results we
note that some March elements are redundant, in
particular M1 = M6, M2 = M7, M3 = M8 and M4 = M9.
Note that M10 is included in M4. After removing the
redundancy we obtain five MEs shown in Table 7. It is
now trivial task to prove that FCC3 correspond to March
AB (Figure 4)

7. Comparing March Tests

We compared our test with March SL [10] since both
target the same set of Linked faults. We also considered
others March Tests (A, B, LR, LA and [9]) still
addressing linked faults, but targeting a reduced set of
fault models, in particular a subset of the FFMs presented
in Section 3. Each March algorithm has been simulated
using the memory fault simulator presented in [13]. Table
8 summarizes the simulation results in terms of fault
percentage covered by each March Test and its
complexity (O(n)). It targets single cell LFs, two cells
LFs and three cells LFs. Comparison results show that the
proposed March Test provides the same fault coverage of
the best known one, but it reduces the test complexity,
and therefore the test time of a significantly 54%.
Furthermore, [16] proves that March AB covers

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

Table 5 expanded FCC3
March Elements x,y

M1 (r0,w1,r1,w1,r1) x = 0, y = 1
M2 (r1,w0,r0,w0,r0) x = 0, y = 1
M3 (r0,w1,r1,w1,r1) x = 0, y = 1
M4 (r1,w0,r0,w0,r0) x = 0, y = 1
M5 (r0,...) x = 0, y = 1
M6 (r0,w1,r1,w1,r1) x = 1, y = 0
M7 (r1,w0,r0,w0,r0) x = 1, y = 0
M8 (r1,w0,r0,w0,r0) x = 1, y = 0
M9 (r0,w1,r1,w1,r1) x = 1, y = 0
M10 (r1,...) x = 1, y = 0

Table 6 reduced FCC3
March Elements

M1 (r0,w1,r1,w1,r1)
M2 (r1,w0,r0,w0,r0)
M3 (r0,w1,r1,w1,r1)
M4 (r1,w0,r0,w0,r0)
M5 (r0,...)

Table 7 Simulation Results
(Two/Three)-cells

MT O
(n)

Single
cell
LF

LF2aa LF2av LF2va All

LR 14n 75% 82% 75% 80% 80%
A 15n 66% 75% 60% 73% 69%
B 17n 75% 70% 64% 73% 70%

LA 22n 83% 87% 83% 86% 86%
AB 22n 100% 100% 100% 100% 100%
SL 41n 100% 100% 100% 100% 100%
[9] 43n 83% 84% 83% 86% 84%

The whole set of static and dynamic unlinked faults,
making possible resort to a single March test able to
detect the bigger set of realistic memory fault, therefore
March AB becomes a natural candidate for memory BIST
architectures, building our test solution very attractive for
industry

8. Conclusions

This paper proposed March AB, a new March Test
targeting static linked memory faults. The detailed
analysis of the March algorithm proves the detection
capability. Moreover we validated March AB by fault
simulation experiments, showing that our test provides
the same coverage of the state-of-the-art test algorithm
(March SL) but reducing test complexity of 54% and
therefore the test time. On going activities are focused on
the definition and validation of new complex fault
models, such as dynamic linked faults and multi-port
memory faults, and their test solutions.

9. References
[1] International Technology Roadmap for Semiconductors,
“International technology roadmap for semiconductors 2004 Update”,
http://public.itrs.net/Home.htm, 2004.
[2] R. Dekker, F. Beenker, L. Thijssen, “A Realistic Fault Model and
Test Algorithms for Satic Random Acces Memory”, IEEE Transaction
on Computer-Aided Design, Volume: 9, Issue: 6, June 1990.
[3] R.D. Adams and E.S. Cooley, “Analysis of a Deceptive Destructive
Read Memory fault Model and Recommended Testing”, NATW 1996.
5th IEEE North Atlantic Test Workshop, 1996.
[4] Z. Al-Ars, Ad J. van de Goor, “Static and Dynamic Behavior of
Memory Cell Array Opens and Shorts in Embedded DRAMs”, DATE
2001, IEEE Design Automation and Test in Europe, 2001, pp. 496-503.

[5] Z. Al-Ars and A.J. van de Goor, “Approximating Infinite Dynamic
Behavior for DRAM Cell Defects”, VTS 2002, 20th IEEE VLSI Test
Symposium, 2002, pp.401-406.
[6] D. S. Suk, S. M. Reddy, “A March Test for Functional Faults in
Semiconductor Random-Access Memory” IEEE Transaction on
Computer-Aided Design, Volume: 30, Issue: 12, 1981.
[7] A. J. van de Goor, G.N. Gayadadjiev, V.N. Yarmolik, V.G. Mikitjuk,
“March LA: A Test for Linked Memory Faults”, ED&TC 1997, Proc.
European Design and Test Conference, 1997, pp. 167.
[8] A. J. van de Goor, G.N. Gayadadjiev, V.N. Yarmolik, V.G. Mikitjuk,
“March LR: A Test for Realistic Linked Faults”, VTS 1996, 16th IEEE
VLSI Test Symposium, 1996, pp. 272-280.
[9] S.M. Al-Harbi, S.K. Gupta, “Generating Complete and Optimal
March Tests for Linked Faults in Memories”, VTS 2003, 21th
IEEEVLSI Test Symposium, 2003, pp. 254 -261.
[10] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, M. Rodgers, “March
SL: a test for all static linked memory faults”, ATS 2003, 12th IEEE
Asian Test Symposium, 2003. pp. 372 – 377.
[11] S. Hamdioui, Z. Al-Ars, A. J. van de Goor, M. Rodgers, “Linked
Faults in Random Access Memories Concept Fault Models Test
Algorithms and Industrial Results”, IEEE Transaction on Computer-
Aided Design, Volume: 23, Issue: 5, May 2004, pp. 737-757.
[12] A. J. van de Goor, Z. Al-Ars, “Functional Memory Faults: A
Formal Notation and a Taxonomy”, VTS 2000, 18th IEEE VLSI Test
Symposium, 2000, pp. 281-289.
[13] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, “Specification and
design of a new memory fault simulator”, ATS 2002, 11th IEEE Asian
Test Symposium, 2002.pp. 92 – 97.
[14] A. J. van de Goor, “Testing Semiconductor Memories: theory and
practice”, Wiley, Chichester (UK), 1991.
[15] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto,
“Automatic March Tests Generation for Static Linked Faults in SRAMs”,
DATE 2006, IEEE Design Automation and Test in Europ, 2006.
[16] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto, “March
AB, March AB1: New March Tests for Unlinked Dynamic Memory
Faults”, ITC 2005, IEEE International Test Conference, 2005.

Proceedings of the Eleventh IEEE European Test Symposium (ETS’06)
0-7695-2566-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

