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Abstract—Mahalanobis distance is one of the commonly used
multivariate metrics for finely segregating defective devices from
non-defective ones. An associated problem with this approach is
the estimation of a robust mean and a covariance matrix. In the
absence of such robust estimates, especially in the presence of
outliers to test-response measurements, and only a sub-sample
from the population is available, the distance metric becomes
unreliable. To circumvent this problem, multiple Mahalanobis
distances are calculated from selected sets of test-response mea-
surements. They are then suitably formulated to derive a metric
that has a reduced variance and robust to shifts or deviations in
measurements. In this paper, such a formulation is proposed to
qualitatively screen product outliers and quantitatively measure
the reliability of the non-defective ones. The application of
method is exemplified over a test set of an industrial automobile
product.

I. INTRODUCTION

Stringent quality requirements on the finished electronic
products are continuously forcing the semiconductor indus-
tries, especially the automobile, to insert additional reliability
tests in their production flow. For this purpose they subject
their packaged devices to time consuming burn-in procedures
and purchase expensive automatic test equipments. In order
to simultaneously benefit from supplying reliable products to
customers, stay competitive in the market and profit from their
business, these industries are constantly searching for cheaper
manufacturing and product reliability test methodologies that
reduce the overall cost in their production flow, leaving no
compromise to the quality of their products.
One of the most commonly applied solution to this problem

is identification and elimination of latent devices as early in
the production flow. Several statistical methods are applied to
identify latent devices at wafer-level. Parts Average Testing
(PAT) is one such first procedure introduced by the Auto-
mobile Electronic Council to identify abnormal parts from
a population [1]. Later in time, methodologies like die-level
predictive models, capable of predicting the reliability of the
device, based on the failure rate of the neighboring dies, were
introduced [2]. Some of the other techniques that have been
proposed to identify unreliable devices at wafer sort are based
on test-response measurements either from parametric tests
like IDDQ/DeltaIDDQ [3], [4], supply ramp [5] or functional
tests [6]. Test-response measurements from these wafer-level

tests are statistically post-processed to screen outliers.
Outliers are identified by handling the data either in a

univariate or multivariate space. In some situations, an inlier in
the univariate space can be an outlier in the multivariate space.
Outlier detection methods follow either a supervised or a
unsupervised approach [7]. Supervised approaches are learning
methods that construct the model from training data [8], [9].
Arbitrary data is termed outlier if it does not fit the model. Un-
supervised approaches on the other hand are unaided methods
that usually discriminate a data as an outlier based on distance
to its neighbors [10], [11]. The approaches vary in the manner
on how the distance is calculated. Multivariate unsupervised
outlier identification methods like linear regressions models
for outlier detection, capitalize on known relationships among
variables to calculate the error in predicting the dependent
variable [3], [4], [6], [12]. The distance is then the deviation
of error from the population mean. The problem with linear
regressions models for outlier identification is that they do not
generally account for the manufacturing variability and test
measurement shifts, commonly occurring in analogue and RF
devices. Since the test measurements have less predictability,
the population mean of the measurements also has lesser
certainty. This effects the distance metric and hence the
marginal outliers have a higher chance of being undetected.
Another approach is to transform the test measurements to a
principal component space and then apply the outlier identi-
fication methods on the transformed data [13], [14]. One of
the underlying problems in principal component (PC) related
methods is their high sensitivity to scaling. Since test-response
measurements exhibit spatial and temporal shifts, the distance
metric is non-stationary and hence affects the results of the
PC based outlier identification methods.
To circumvent the problems associated to calculating a

robust distance metric, the Mahalanobis distance [15] is em-
ployed as the distance parameter in the unsupervised outlier
identification methods [16]. Mahalanobis distance is invariant
to measurement shifts and most importantly accounts for the
relationships among the data variables (covariance) in calcu-
lating the metric. However, since the Mahalanobis distance
metric is sensitive to outlier data, robustly estimated population
mean and covariance are used in identifying outliers [17]–
[19]. To further reduce the variance in the distribution of
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the Mahalanobis distance metric, this paper proposes a novel
way of using multiple sets of Mahalanobis distance metric for
reliability analysis of analogue electronic products. One of the
main advantages of the proposed technique is the capability
of the model to include sets of correlating and uncorrelating
test variables into a single structure and conduct a qualitative
and quantitative reliability analysis of a functionally qualified
product.

II. MULTIVARIATE RELIABILITY CLASSIFIER FUNCTION
AND RELIABILITY ANALYSIS FLOW

The reliability classifier function to be formulated and
used as a model for reliability analysis is multivariate in
nature. The associated analysis is called multivariate analysis.
Multivariate analysis comprises a set of techniques dedicated
to the analysis of data sets with more than one variable [20].
For electronic circuits, the responses from several tests can
be combined in a multivariate sense to describe the response
behavior of the system in terms of product reliability. The
following subsections will firstly discuss a procedural way of
formulating the multivariate classifier reliability function as
a model for qualitative analysis of product reliability. The
qualitative analysis is performed to remove the outliers to
the multivariate reliability classifier functional model. This is
followed by a description on a way of utilizing the model
to assign the probabilistic value for reliability. Finally the
overall reliability analysis flow for simultaneously qualifying
and quantifying product reliability will be discussed.

A. Multivariate Reliability Classifier Function
The multivariate reliability classifier function as a model

for reliability analysis is constructed from multiple test-sets.
All tests within a set are uncorrelated, while the test-sets
are correlated among each other. Each test-set contains a
minimal number of tests and hence corresponds to the most
significant tests. The significance of these tests is based on
their ability to construct a reliability classifier model with
parameters sensitive to changes that influence the final results.
Once such a selection of tests is made, a suitable metric is
developed that is invariant to measurement shifts. Invariant to
measurement shifts prevents recomputing the parameters of
the model for every instance of change in the measurement
environment. In addition, every classifier model attempts to
avoid as many number of false positives or the type I error
and false negatives or type II error that are possible errors
occurring in a statistical decision process. One of the ways to
lessen this erroneous decision process is to reduce the variance
of distribution. Reducing the variance in distribution reduces
the overlap if any, among the distributions and hence the
false positives and false negatives. In the following sections,
the descriptions of various steps that ultimately leads to a
reliability classifier function is discussed.
1) PCA Variable Reduction Procedure: The Principal Com-

ponent Analysis (PCA) variable reduction procedure is an
approach to select the most significant variables that are
sufficient to describe the observed characteristic behavior of

the system. Usually in an electronic circuit test environment,
only n out of p number of test measurements (n << p) are
significant and sufficient in the multivariate sense, to describe a
certain response behavior of the device. An efficient and well-
known approach to determine those n number of significant
tests, is to subject the p-tuple measurement set to the PCA,
wherein the first m principal components are determined using
Scree plot [21].
2) Mahalanobis Distance Metric: The Mahalanobis dis-

tance is a well-known distance measure that takes into account
the covariance matrix [15]. For a p-dimensional multivariate
sample xi(i = 1, 2, . . . , k) the Mahalanobis distance is given
as in Equation 1. This distance metric differs from the Eu-
clidean distance in that the amount of correlations in the
data set is taken into consideration. One of the most striking
features of this metric is that it is scale-invariant.

MDi = ((xi − t)TC−1(xi − t))1/2 (1)

where t is the estimated multivariate location and C the
estimated covariance matrix. Usually, t is the multivariate
arithmetic mean or centroid, and C is the sample covariance
matrix. For multivariate normally distributed data, the squared
values (MD2

i ) are approximately chi-square (χ2) distributed
with p degrees of freedom [18].
3) Construction of PCA-MD based Reliability Multivariate

Classifier Function: The constructional flow of the Principal
Component-Mahalanobis Distance (PCA-MD) based multi-
variate reliability classifier function is depicted in Figure 1.
This functional model to be constructed and capable of qualita-
tively analyzing the reliability of products is parameterized by
k number of significant test-sets, STsets. While the significant
test-sets are correlated among themselves, the tests within
each significant test-set are uncorrelated. Figure 1a depicts the
flow for determining significant test-sets. The PCA variable
reduction procedure is used iteratively to build k number of
significant test-sets. As shown in Figure 1a, the procedure
begins with the functional test list T and corresponding
response measurements from N number of functionally qual-
ified products. At each PCA variable reduction iteration, all
previously determined tests and corresponding measurements
are removed from the overall test list and measurements, and
a new set of tests is determined. The iteration stops at k, if
there is no sufficient correlation (less that 0.7, for instance)
among the respective test pairs of the significant test-sets. In
the following step, as shown in Figure 1b, the Mahalanobis
distance metric MDl ∈ MDsets, l = 1, 2, . . . , k, one for
every significant test-set, is computed for all the products.
Since any two significant test-sets are correlated (respective
test pair correlation), the corresponding Mahalanobis distance
vectors (vector defined from the centroid of the measurement
to the specific measurement) of the products are collinear and
since the Mahalanobis distance vectors are collinear, one of
them can be expressed as a regression function of the others as
shown in the Equation 2. The regression fitting coefficients can
be estimated from the Mahalanobis distance metric calculated
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for all products. The regression function constructed in this
way, can be considered as the multivariate reliability classifier
function. This functional model utilizes the information on
distribution of error ε, in the regression equation to reduce the
variance in measurement [22] and qualitatively classify the
reliability of the product.

(a) Significant test sets Determination (b) Reliability Analysis

Fig. 1. PCA-MD based Multivariate Reliability Classifier Flow

MDi,l =
k∑

m=1,m �=l

amMDi,m + ε (2)

B. Quantification

Quantification is the process of assigning a reliability metric
to the qualitative results of the multivariate reliability classifier.
The process of quantification begins once the outliers are
qualitatively identified and removed from the test response
data. Hence the goal of quantification is to assign a proba-
bilistic value that quantifies the reliability of all functionally
qualified products that has not been identified as an outlier in
the qualitatively analysis.
As stated earlier, the multivariate reliability classifier func-

tional model is parameterized by sets of Mahalanobis distance
metrics that are collinear. The distribution of errors in the
regression fit is qualitatively analyzed to identify the out-
liers. Rewriting the multivariate reliability classifier functional
model equation from Equation 2 to Equation 3, converts
the error ε, from normal distribution to a chi-square (χ2)
distribution with one degree of freedom [23].

ε2 = (MDi,l −

k∑

m=1,m �=l

amMDi,m)2 (3)

The error ε, is usually not normally distributed due to small
mismatches in measurements. These mismatches, setting aside
the measurement variability that are conditioned by the model,
may indicate the reliability risk to the functionally qualified
product. Since the errors have slightly skewed distributions,
the square of these deviations are much more expressed in the
chi-square (χ2) distribution. The deviation of the squared error
distribution from a Chi-square (χ2) distribution is quantified
to assign probabilistic values that reflect the reliability of

the qualified product within the scope of the available test-
response measurements.
A well-known technique to test the goodness-of-fit of a

given set of observations to any hypothesized distribution is
the Chi-square(χ2) test [24]. Any discrepancy between the
observed and the expected values is expressed in terms of a
χ2 statistic as shown in the Equation 4, where d and e are
the observed and expected values, while k is the number of
independent variables or the degrees of freedom. From the
computed χ2 value for a set of observations, the probability
that these set of observations belong to the hypothesized
distribution can be determined from a χ2 table [25].

χ2 =
∑

k

(dk − ek)2/ek (4)

For the squared error distribution to be tested for the
goodness-of-fit to the χ2 distribution, the sample squared
error distribution space is divided into an equal number of
classes. From the number of observations for each class and
the expected number of observations determined from the
quantiles of the χ2 distribution, the χ2 is computed for a
predefined (n > 1) number of classes, depending on the
granularity requirements of the results. From the evaluated
χ2 statistic for the set of classes and the qualified products
belonging to that class, the probability of these products
belonging to the χ2 distribution and hence the measure of
reliability, is determined.

III. EXPERIMENT AND RESULTS
To demonstrate the capability of the multivariate reliability

classifier to qualify and quantify the reliability of electronic
circuits, functionally qualified samples from an industrial
product have been chosen. In the following section, a brief
description of the product, chosen samples for reliability
analysis will be first described, followed by the multivariate
reliability classifier analysis flow and discussion of results.

A. Product and Sample Information
The product is a single IC implementing a car radio tuner

for AM and FM intended for microcontroller tuning with the
I2C-bus. The number of functional tests at wafer level is 175
that corresponds to several levels of DC tests, modes of AC
and RF tests. Those products that pass these functional tests
are referred to as qualified products at wafer level. The samples
chosen for demonstrating the multivariate reliability classifier
are all qualified car radio tuner products instances chosen from
a single wafer picked up from the manufacturing lot. The
number of qualified products or known good dies (KGDs) are
379 dies, while the number of known defective dies (KDDs)
are 99 dies.

B. Multivariate Reliability Classifier Flow Results and Dis-
cussions
The following sub-sections will first describe this PCA-

MD based reliability classifier function construction procedure
in detail, followed by the description of the qualitative and
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quantitative reliability analysis of the samples and discussion
of the results.
1) PCA Variable Reduction: Functional test-data from 175

tests and 379 qualified products were iteratively subjected to
the PCA variable reduction procedure. During each iteration, a
set of significant tests that belong to the significant test-set are
selected based on the Scree plot. Figure 2 shows the Scree plot
of the test data for two iterations. The number of significant
tests selected for each significant test-set T1 and T2, are 9 tests.
These test variables were selected based on the coefficients
of the respective principle components lying above the elbow
in the Scree plot. Since the test variables within a test-set
are chosen from different principle components (first 9 PC’s
explaining the variance in data), the variables selected from
these principle components are uncorrelated or heterogeneous.
Again, since the test variables in the next iteration (2nd) are
selected from the same set of 9 principle components (given
the small margin of change in the associated Eigen vector after
removal of the test variable selected in the previous iteration),
the significant test-sets are equivalent. Combining these two
arguments it can be concluded that the test variables within the
test-sets T1 and T2 are uncorrelated or heterogeneous, while
the test-sets are equivalent or pair-wise correlated.

Fig. 2. Scree Plot of Test-data from Qualified Products

2) PCA-MD based reliability classifier: The PCA-MD
based reliability classifier is constructed from the sets of
significant test-sets that are correlated among the test-sets on
hand and uncorrelated within the test-sets. For each significant
test-set T1 and T2, a Mahalanobis distance metric MD1 and
MD2, is calculated for all products, using the test response
data corresponding to the tests in respective significant test
set. Since the respective Mahalanobis distance metric for all
products are collinear to each other, one of them can be
linearly expressed as the function of the other. Hence a linear
regression model as shown in Equation 5, is fit with the
MD1 as the independent variable and MD2 as the dependent
variable. This linear regression model is the PCA-MD based
reliability classifier function. The error in the regression fit
of the reliability classifier function is further analyzed to
qualitatively and quantitatively classify the reliability of the
qualified products.

MD2 = 0.97×MD1 + 0.04267 (5)

3) Qualitative Analysis Results: The goal of qualitative
reliability analysis is to determine statistical outliers to the
model. Statistical outliers to a model can be determined by
iteratively constructing the model and estimating the goodness-
of-fit after every iteration. However, during each iteration, a
set of data that do not seem to fit the model are removed and
the model parameters are re-estimated. The set of data that
are removed at each iteration until no further improvement is
observed in the fit, are the outliers to the model.

Fig. 3. Regression Plot (MD1,MD2) and 4 Outliers

Fig. 4. Error Distribution and Squared Error Distribution of Qualified
Products and Outliers

Following this criterion for the reliability classifier func-
tional model described in Equation 5, the empirical distribution
errors are utilized to qualitative determine the outliers of the
dataset. Since the linear regression fit follows a least square
fit, the error distribution of the fit will closely follow a normal
distribution and the square of the error distribution will follow
a χ2 distribution. The distribution of the errors for all qualified
products along with 4 outliers, are depicted in Figure 3, while
Figure 4 shows the distribution of the errors and squared errors
along with the outliers to the respective distributions. The sta-
tistical outliers determined in this procedure are qualitatively
classified as products that are potentially unreliable.
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4) Invariance to Response Measurement Shifts: One of
the major advantages of the reliability classifier model is its
invariance to response measurement shifts. This is because the
model employs the Mahalanobis distance as parameter which
is robust and invariant to scaling [15]. In addition to this, our
model utilises the error distribution of multiple Mahalanobis
distances that are collinear to each other. This further reduces
the naturally occurring variance in test measurements. Alto-
gether, the reliability classifier model is robust to measurement
variations and shifts.

Fig. 5. Histogram T13 and T13*, Scatter-plot of Error and Error*

In order to validate the invariance of the reliability classifier
model to measurement shifts, the test data of all the qualified
products were shifted (increased by 10% to its measured
value) and subjected to the reliability classifier for qualitative
analaysis. Figure 5a, shows the overlapped histogram of the
measured (T13) and shifted test data (T13*) related to test
variable T13 from all qualified products. Figure 5b is the
regression plot of the error distribution Error and Error*, of
the reliability classifier function model contructed before and
after shift of the test-response data. The regression line lying
at 45◦ and passing through the origin, indicates that the error
distributions are equal to one another, asserting the invariance
of reliability classifier model to measurement shifts.
5) Comparative Results to Other Outlier Detection Meth-

ods: Table I shows the comparative results of the PC-
MD based reliability classifier (PC-MD-RC) model to other
multivariate outlier detection models like the linear regression
(LR), Principal Components (PC) and a univariate method like
PAT. The labels denote the outliers identified by each of the
methods. Although the results from other outlier methods (LR,
and PC), put together, produced comparable results, they do
not identify the outliers exclusively. This is in contrast to our
PC-MD-RC model.

TABLE I
COMPARATIVE RESULTS

PC-MD-RC LR PC PAT

OL201 OL340 OL340 -
OL340 OL149 OL201
OL149 - -
OL206

6) Quantitative Analysis Results: Figure 6 shows the den-
sity function of squared errors derived from the reliability

classifier functional model for all qualified products, after
removing the outliers identified in the qualitative reliability
analysis procedure discussed earlier. A corresponding χ2 den-
sity function with 1 degree of freedom is overlayed to display
the deviation from the density function of squared errors.

Fig. 6. Overlayed Density Function of Squared Errors and χ2

To determine the goodness-of-fit of the squared error with
respect to the χ2 distribution, a χ2 test is conducted. To
facilitate the χ2 test, the distributions are evenly sub-divided
into classes. For each classes lying between the 2nd and 4th

quartile of the χ2 distribution, the number of observed and the
expected number of samples are determined from the squared
error distribution and the χ2 distribution respectively. The d2/e
statistic is then computed for each of these classes. In order
to accommodate the variations between adjacent classes, two
neighboring classes along with the current class are subjected
to χ2 test. In other words, to determine the goodness-of-fit
of a class from the squared error distribution, the χ2 statistic
for that class includes the two of its neigbouring classes. The
exception is however for the first and the last class, where only
a neighbor class is included. Hence the degree of freedom
for all classes is 3, while for the first and the last class is
2. Whenever the expected class observation is less than 2,
the χ2 statistic is not computed as they will not provide any
significant results. This is because an expected value of one
observation is usually at the tail of the χ2 distribution and
any major deviation of the squared error distribution will be
already identified and removed by the qualitative reliability
analysis procedure.
Table II shows the quantitative analysis results for all

qualified products other than the outliers identified in the
qualitative analysis. For each class with a mid-value Cls.,
beginning from the 2nd quartile, the observed Obs., and the
expected Exp. number of observation are shown. The corre-
sponding d2/e values and the χ2

df=3
statistic are calculated.

The probability value pvalue, is determined for χ2

df=3
, with

degrees of freedom df , 2 for the first and the last class and 3
for the remaining classes from the χ2 statistical table [25]. A
probability value greater than 0.05 indicates that the deviation
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TABLE II
QUANTITATIVE ANALYSIS RESULTS FOR THE QUALIFIED PRODUCTS

Cls. Obs. Exp. (d− e)2/e χ2

df=3
p value

0.11 10 14 1.14 1.24 0.35
0.13 9 10 0.10 1.74 0.4
0.15 6 8 0.50 4.76 0.1
0.17 1 6 4.16 4.66 0.1
0.19 4 4 0.00 5.16 0.05
0.21 6 4 1.00 2.33 0.3
0.23 5 3 1.33 4.33 0.1
0.25 0 2 2.00 3.83 0.25
0.27 3 2 0.50 3.50 0.20
0.29 2 1 1.00 - -
0.31 2 1 1.00 - -
0.33 1 1 0.00 - -
0.35 0 1 1.00 - -
0.37 1 0 * - -
0.39 1 1 0.00 - -
0.41 2 0 * - -
0.43 0 0 * - -
0.45 1 1 0.00 - -

of the observed value of the squared error from the expected
χ2 value is sufficiently small that chance alone accounts for it,
while a probability value less than or equal to 0.05 means that
some factor other than chance is operating for the deviation
to be significantly large. Hence a p value equal to 0.05 for the
qualified products belonging to the class interval with a mid-
value 0.19 indicates that there is only 5% chance that this
product, belong to the χ2 distribution. Although the observed
and the expected value for this class match, the χ2 statistic of
a class is influenced by its two adjacent neigbours. Hence the
chance that the products from the neighbouring classes can
be hypothesed to be relatively less affected. Since the p value
for the remainder of the classes are greater than 0.05, it can
be concluded that the deviation of the squared error is due to
chance and can be probablistically considered reliable within
the realm of the functional test conducted on the product.

IV. CONCLUSIONS

A multivariate reliability classifier model capable of quali-
tatively and quantitatively analyze the reliability of analogue
electronic products has been described. One of the major
advantages of the model is that it simultaneously accommo-
dates the strengths of using correlating and uncorrelated test
variables for identifying outliers. To avoid any bias to the
results caused by commonly occurring shifts in test-response
measurements, robustly estimated distance metric has be used
by the model to identify marginal outliers. The functional
model of the reliability classifier has been chosen in a way that
the results of the qualitative analysis can be further analyzed
quantitatively to measure the level of reliability of the product
in a probabilistic sense. The combined other models like the
linear regression model and the principal component model
do not identify the outliers exclusively, in contrast to our
multivariate reliability classifier model. Other applications of
the reliability classifier like identification and conditioning
specific functional test for product grading and early detection
of failures remains to be investigated.
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