
Exact Stuck-at Fault Classification in

Presence of Unknowns

Hillebrecht, Stefan; Kochte, Michael A.; Wunderlich,

Hans-Joachim; Becker, Bernd

Proceedings of the 17th IEEE European Test Symposium (ETS’12) Annecy, France,

28 May-1 June 2012

doi: http://dx.doi.org/10.1109/ETS.2012.6233017

Abstract: Fault simulation is an essential tool in electronic design automation. The accuracy of the
computation of fault coverage in classic n-valued simulation algorithms is compromised by unknown (X)
values. This results in a pessimistic underestimation of the coverage, and overestimation of unknown (X)
values at the primary and pseudo-primary outputs. This work proposes the first stuck-at fault simulation
algorithm free of any simulation pessimism in presence of unknowns. The SAT-based algorithm exactly
classifies any fault and distinguishes between definite and possible detects. The pessimism w. r. t.
unknowns present in classic algorithms is discussed in the experimental results on ISCAS benchmark and
industrial circuits. The applicability of our algorithm to large industrial circuits is demonstrated.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by IEEE.1

1 IEEE COPYRIGHT NOTICE

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

http://dx.doi.org/10.1109/ETS.2012.6233017


Exact Stuck-at Fault Classification
in Presence of Unknowns

Stefan Hillebrecht∗, Michael A. Kochte†, Hans-Joachim Wunderlich†, and Bernd Becker∗

∗University of Freiburg, Georges-Köhler-Allee 051, 79110 Freiburg, Germany
†ITI, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract—Fault simulation is an essential tool in electronic
design automation. The accuracy of the computation of fault
coverage in classic n-valued simulation algorithms is compro-
mised by unknown (X) values. This results in a pessimistic
underestimation of the coverage, and overestimation of unknown
(X) values at the primary and pseudo-primary outputs.

This work proposes the first stuck-at fault simulation algo-
rithm free of any simulation pessimism in presence of unknowns.
The SAT-based algorithm exactly classifies any fault and distin-
guishes between definite and possible detects.

The pessimism w. r. t. unknowns present in classic algorithms is
discussed in the experimental results on ISCAS benchmark and
industrial circuits. The applicability of our algorithm to large
industrial circuits is demonstrated.

Index Terms—Unknown values, simulation pessimism, exact
fault simulation, SAT

I. INTRODUCTION

Fault simulation and the computation of fault coverage

are essential tools in electronic design automation used for

example in ATPG, for product quality estimation or assessment

of design reliability. An optimistic estimation of fault coverage

of a test pattern set may result in shipping defective units,

while a pessimistic estimation increases test overhead and cost.

Unknown (X) values may emerge during test generation

due to black boxes in the design, and during test application

caused by uncontrolled sequential elements, at clock domain

crossings or A/D boundaries for example. Standard logic and

fault simulation algorithms are based on n-valued logics with

a limited number of symbols to denote the signal states in the

simulation. Not all X states, and the correlation between them,

are reflected accurately. Thus, reconvergences of X values,

where canceling of Xs may occur, are not evaluated correctly

and the resulting signal values are not exact. In consequence,

fault simulation based on n-valued logics like the parallel

pattern single fault (PPSFP) and concurrent algorithm [1]–[4],

are pessimistic and underestimate fault coverage1.

If X values propagate into compaction logic as found in

embedded deterministic test (EDT) or built-in self test (BIST)

environments, the response signature may be corrupted. X-

blocking, X-masking [5] or X-tolerant [6] design-for-test

structures try to remedy the problem at increased hardware

overhead. A pessimistic analysis of X states further increases

this overhead and may cause overmasking of failure data with

impact on diagnosability.

This work presents the first fault simulation algorithm which

computes the exact fault coverage of a test set in presence of X

1In the following they are referred to as 3-valued fault simulators.

values and is free of any simulation pessimism. The example

in Figure 1 shows a circuit with three gates and three inputs.

The simulation result of pattern (a, b, c) = (1, X, 1) with a

3-valued simulator is also annotated to the circuit lines. The

signals d, e, and f are evaluated to the unknown value X by

the simulator. Therefore, this pattern cannot detect any stuck-at

fault in the circuit. Simulations with b = 0 and b = 1 show that

in both cases output f has the logic value 1. Hence, the pattern

is indeed a test for the stuck-at 0 fault at f . Furthermore, the

pattern is also a test for the stuck-at 0 fault at signal a, as

computed by the proposed exact algorithm.

a

b

c

d

e

f

1

1

X

X

X

X

Fig. 1. Simulation result with a 3-valued logic simulator.

The reduction of the pessimism of logic and fault simulation

is targeted in previous work using heuristics, formal reasoning

or a combination thereof. The problem of exact X propagation

analysis is an NP-complete problem. Boolean satisfiability, a

known NP-complete problem, can be directly reduced to exact

X propagation analysis.

Heuristic approaches are typically very fast, but the result

is still pessimistic. Proposed methods include circuit analysis

like static learning [7], [8], or partitioning and exhaustive

simulation [9]. In restricted symbolic simulation [10], the

number of symbols to express different X states is increased,

allowing to correctly evaluate a subset of reconvergences of

X-valued signals.

The exact result in logic simulation can be computed

by symbolic simulation of a circuit using reduced ordered

BDDs (ROBDDs, [11]), but may cause excessive memory

consumption for arithmetic or larger circuits. The SAT-based

approach of [12] allows the analysis of each reconvergence

of X-valued signals for X canceling. It also provides the

exact result for fault free simulation, but at high runtimes

for larger circuits and many X sources. Reasoning about X

states also gained importance for verification of designs with

black boxes. While modeling X-valued signals with 3-valued

logic [13] only helps to distinguish the signals from these with

defined binary values, an exact X-analysis based on symbolic

simulation [14], [15] increases the accuracy of the verification.



In fault simulation, each fault free and faulty machine has to

be analyzed per pattern, causing very high computational effort

or excessive memory consumption. Therefore, the pessimism

in fault simulation could only be targeted by heuristic or

hybrid approaches combining heuristics and formal methods

so far. This includes heuristics based on static learning [8]

or restricted symbolic simulation [16], and hybrid SAT-based

[12] or BDD-based [17], [18] fault simulation.

The recent progress in SAT solvers enables the exact

reasoning about fault detection in presence of Xs even for

larger circuits. This paper is the first to propose a formal

method to exactly compute the stuck-at fault coverage of

a test set in presence of Xs. It combines heuristics and

SAT reasoning to remove any simulation pessimism found in

previous approaches. A state-of-the-art incremental SAT solver

is used to incrementally build the SAT instance during analysis

and reduce runtime.

Section II introduces the problem and some definitions. The

exact fault free simulation is explained in Section III and the

stuck-at fault simulation in Section IV. Section V presents

experimental results on ISCAS benchmark circuits and NXP

circuits. Section VI summarizes the paper.

II. TERMINOLOGY AND OVERVIEW

This section introduces the used terminology and outlines

the algorithm for the exact stuck-at fault classification.

A. Terminology and Definitions

In 3-valued logic, the three symbols {0, 1, X} are used to

represent logic value 0 (logic-0), logic value 1 (logic-1) and an

unknown state, i. e., either logic-0 or logic-1. Signals at which

unknown values originate are called X-sources. During logic

simulation of a test pattern p, a 3-valued simulator assigns

logic-0, logic-1 or X to the signals. Signals with value X for

pattern p belong to the set of Pessimistic-Xs PEX(p). PEX(p)
can be partitioned into the sets of Real-Xs REX(p) and False-

Xs FEX(p). FEX(p) contains the signals of PEX(p) which are

independent from the X-sources, i. e., the signals have a binary

value of logic-0 or logic-1. REX(p) contains all signals which

do depend on at least one X-source. In Figure 1, output f ∈
FEX(p), while b, d, e ∈ REX(p).

These sets differ in the fault free and in the faulty cases.

Superscripts G and f are used to distinguish between the fault

free and the faulty case, respectively.

In this work two types of fault detection are distinguished,

definite detection (DD) and potential detection (PD) of a fault.

A fault f is DD iff an observable output o exists where the

fault effect is visible independent of the logic value assignment

to the X-sources. Let the functions vG(p, s) and vf (p, s) return

the logic value of signal s under pattern p in the fault free and

faulty case in presence of unknown values. Then, the definite

detection of stuck-at fault f under pattern p is given as

DDf (p) := ∃o ∈ O :

vG(p, o), vf (p, o) ∈ {1, 0} ∧ vG(p, o) 6= vf (p, o), (1)

where O is the set of output signals of the circuit.

Stuck-at fault f is potentially detected if an observable

output o exists where the fault effect can be deterministically

measured for at least one logic value assignment to the X-

sources:

PDf (p) := ¬DDf (p) ∧ ∃o ∈ O :

vG(p, o) ∈ {1, 0} ∧ o ∈ REXf(p). (2)

Note that 3-valued fault simulation may overestimate the

number of potentially detected faults.

B. Algorithm Overview

The proposed fault simulation process is divided into two

parts. First, the test pattern set is pessimistically simulated

with a parallel pattern single fault propagation simulator based

on 3-valued logic to mark as many faults as DD as possible.

Afterwards the test pattern set is simulated by the exact stuck-

at fault simulator, which performs an exact logic simulation of

the fault free circuit per pattern, and then analyzes the activated

faults.

The exact logic simulation algorithm efficiently computes

the exact signal states by use of heuristics and formal reason-

ing based on incremental SAT. This algorithm is also used

in the analysis of activated faults to distinguish definitely

detected, potentially detected and undetected faults.

III. FAULT FREE SIMULATION

The fault free simulation is performed in two steps. In the

first step, a logic simulator and a restricted symbolic simulator

are used as heuristics to classify a high number of REXs and

FEXs at low computational cost. In addition, a set of FEX

candidates is computed which is then formally analyzed in the

second step. For the formal proof whether a FEX candidate

is a REX or not, the state-of-the-art incremental SAT-solver

Antom [19] is utilized. Figure 2 depicts the flow of the exact

fault free simulation.

Restricted symb. sim. of p

Parallel 2-valued logic sim.

FEX REX

PEX

Randomize X assignments

FEX 

candidates

SAT-based classification of 

remaining REX/FEX candidates

H
e

u
ri

st
ic

 a
n

a
ly

si
s

F
o

rm
a

l 
a

n
a

ly
si

s

Fig. 2. Exact fault free simulation for a pattern p.

A. Simulation Step

In the simulation step of a pattern p, p is simulated using

restricted symbolic simulation (RSS) to compute a set of PEX

signals. In addition, a simulation with randomized assignments

to the X-sources is conducted to identify FEX candidates

and determine as many REX signals as possible. The FEX

candidates are later classified using SAT reasoning.



In RSS, for each X-value at the X-sources a unique

symbol Xi is introduced in addition to the two symbols

for logic-0 and logic-1. Hence, X-values from different X-

sources are distinguishable. Furthermore, each X-symbol can

be negated. This allows the correct evaluation of simple local

reconvergences of X-valued signals and increases accuracy

compared to 3-valued simulators. For the example in Figure 1,

RSS correctly computes the output value at f as logic-1, since

the symbol Xb introduced at X-source b is correctly tracked

at d as ¬Xb and at signal e as Xb. Hence, the reconvergence

is exactly evaluated to logic-1. Thus, RSS identifies a subset

of FEXG(p). In the proposed algorithm, the resulting value of

RSS of signal s and pattern p is stored in vG(p, s).
A subset of REXG(p) is efficiently found by a 2-valued

pattern parallel logic simulation. 64 random patterns are gen-

erated by assigning randomized values to the X-sources. The

signal values are evaluated in one single simulation. A 64-bit

integer v = [v0, . . . , v63] is used to represent the values of each

signal. For input i, vi is derived from the simulated pattern p

and set to [0, . . . , 0] or [1, . . . , 1] if i is logic-0 or logic-1,

respectively. At X-source q, a randomized 64-bit integer is

generated and assigned to vq = [v0

q , . . . , v63

q ], vi
q ∈ {0, 1}, 0 ≤

i ≤ 63. vq is used for the evaluation of the direct fanout of q.

After finishing both simulations, each signal is classified

as PEX, REX, FEX or FEX candidate as shown in Figure 2.

If RSS derived a logic value, the signal does not need to be

considered in the subsequent steps. If an unknown value is

calculated for s, the value vs = [v0

s , . . . , v63

s ] of the pattern

parallel simulation is taken into account. If at least one pair

of values vi
s, v

j
s(0 ≤ i, j ≤ 63) has complementary values, the

signal s belongs to REXG(p). If all vi
s are equal, s is marked as

FEX candidate. The classification of these signals is done with

an incremental SAT-solver as explained in the next section.

B. Classification of Remaining FEX Candidates

The FEX candidates computed in the previous step for

pattern p are exactly classified by use of an incremental

SAT solver. Input to the SAT solver is a Boolean formula in

conjunctive normal form (CNF) which maps the classification

of a signal to a Boolean satisfiability problem.

For each FEX candidate s it is already known that all 64

random assignments to the X-sources force s to value vi
s(0 ≤

i ≤ 63) of either logic-0 or logic-1. Signal s is a FEX, iff

it can be proven that s cannot have the complementary value

¬vi
s for any assignment to the X-sources. Thus, the Boolean

formula is constructed such that it is satisfiable, if and only if

s can be driven to ¬vi
s. If the formula is satisfiable, s depends

on the X-sources and is classified as REX. Otherwise s is

independent of the X-sources and classified as FEX.

The FEX candidates are evaluated starting from the X-

sources in topological order. To increase efficiency, the SAT

instance is extended incrementally for each FEX candidate

exploiting the result from the simulation step as well as learnt

knowledge from analysis of previous FEX candidates.

To check whether s can be driven to ¬vi
s, the characteristic

equations of the gates in the adjustment cone, resp. transitive

fanin, of s are translated into CNF and added to the SAT

instance. This is done using the Tseitin transformation [20].

The size of the resulting SAT instance is reduced by only

considering the gates which generate PEX or REX values for

pattern p. The CNF for the adjustment cone of a signal s is

created recursively as outlined in Algorithm 1.
This SAT instance is extended by a temporary unit clause

with only one literal (called assumption) for FEX candidate

s which constrains the value of s in the search process of

the SAT solver. If the value of s in the pattern parallel

simulation was vs = [0, . . . , 0], the assumption {s} is added

to constrain the SAT search to assignments to the X-sources

which imply s to logic-1. If the instance is satisfiable, s

belongs to the set REX. Otherwise s is a FEX with value

logic-0 and vG(p, s) is updated. In the latter case, the unit

clause {¬s} is added permanently to the SAT instance to

reduce runtime for subsequent calculations of the SAT solver.

Correspondingly, if the value of s in the pattern parallel

simulation was vs = [1, . . . , 1], the assumption {¬s} is added.

Algorithm 1 CNF creation of the adjustment/fanin cone.

1: procedure ADDSIGNALTOCNF(s, CNF )

2: G← GETDRIVINGGATEOF(s);

3: if G already Tseitin transformed then

4: return;

5: end if

6: if vG(p, s) = 0 then ⊲ Exploit knowledge from RSS

7: CNF ∪ {¬s};
8: return;

9: end if

10: if vG(p, s) = 1 then ⊲ Exploit knowledge from RSS

11: CNF ∪ {s};
12: return;

13: end if

14: CNF ∪ GETTSEITINTRANSFORMATION(G);

15: for all Inputs si of gate G do

16: ADDSIGNALTOCNF(si, CNF );

17: end for

18: end procedure

For the classification of the next FEX candidate s′ in

topological order, the CNF instance is extended incrementally

to include the adjustment cone of s′, i. e., only the clauses for

gates which are not yet Tseitin transformed are added.
During exact simulation, the algorithm maintains a lookup

table derived from the result of the RSS step. The table

contains the information if a symbol for an X-state assigned

to signals during RSS is a logic-0, a logic-1 or a REX. Before

analyzing a FEX candidate s using the SAT technique, a

fast lookup is performed to check whether the corresponding

symbol Xs has already been computed. If the classification

for Xs is already known, s is set to the corresponding state.

Otherwise, s is classified as described above. This effectively

restricts the use of the SAT solver to signals at which REX

values converge.

IV. EXACT STUCK-AT FAULT SIMULATION

The exact stuck-at fault simulation classifies a set of target

faults as definite detect (DD), possible detect (PD) or un-

detected for a test set in presence of unknowns. It uses the



heuristics and formal SAT reasoning of the previous section.

An overview of the fault simulation of a pattern p is given in

Figure 3. 3-valued fault simulation is used to mark as many

target faults as possible as DD. For the remaining faults, an

exact analysis is conducted.

Restricted symb. sim. of p

Parallel 2-valued logic sim.

DD PD

Randomize X assignments

Exact SAT-based fault 

classification 
H

e
u

ri
st

ic
 

a
n

a
ly

si
s

3-valued fault simulation of p

Exact logic simulation of p to compute fault activation

OPD

Potential det.

OPDD

Poss. def. det.

OPPD

Poss. potent. det.

O
u

tp
u

t

cl
a

ss
if

ic
a

ti
o

n

Fig. 3. Exact fault simulation for a pattern p and classification as definite
detect (DD) or potential detect (PD).

The exact analysis starts with the exact logic simulation

of the fault free circuit for pattern p to compute the set of

activated faults. These faults are then analyzed serially. For

the faulty simulation of an activated fault f , f is injected into

the circuit model. The algorithm then proceeds in two phases

similar to the fault free approach: A heuristic simulation and an

exact calculation step. During the simulation step the behavior

of the faulty circuit is simulated in event-driven manner by

RSS and 2-valued parallel pattern logic simulation which

evaluates random assignments to the X-sources. If the results

of the simulations allow the fault classification as DD or

undetected, further analysis is not required. Otherwise, the

SAT solver is invoked for analysis of the outputs of the faulty

circuit. Internal signals in the faulty circuit do not need to be

considered since the values at observable outputs are sufficient

to reason about fault detection.

A. Fault Analysis by RSS and Pattern-Parallel Simulation

For an activated fault f , the circuit outputs o1, . . . , ok in

the propagation cone, resp. transitive fanout, of f are analyzed

using the results of the faulty circuit simulations. According

to Section II-A, we only consider outputs oi which have a

defined value in the fault free circuit vG(p, oi) ∈ {0, 1}.
If there is one output oi with a defined value in the faulty

case vf (p, oi) ∈ {0, 1} according to RSS, and vf (p, oi) 6=
vG(p, oi), then f is marked as DD and the algorithm proceeds

with the next fault. If all outputs in the propagation cone have

defined values equal to the fault free case, i. e., vf (p, oi) ∈
{0, 1} and vf (p, oi) = vG(p, oi) for 1 ≤ i ≤ k, then f is

undetected by the pattern and the algorithm analyzes the next

fault.

Otherwise, the outputs are divided into three sets: Potential

detect outputs OPD, possibly definitive detect outputs OPDD,

and possibly potential detect outputs OPPD. The set OPD will

contain all outputs at which fault f can be potentially detected.

An output oi is added to the set OPD if the faulty value voi

is not equal to [0, . . . , 0] or [1, . . . , 1]. Note that these outputs

are elements of the set REXf (p).
For an output for which RSS derived an X symbol and voi

equals either [0, . . . , 0] or [1, . . . , 1], it is not known whether

it belongs to REXf (p) or FEXf (p). A later exact analysis

will determine its state. If all vj
oi

(0 ≤ j ≤ 63) are equal to

¬vG(p, oi), oi is added to OPDD since it may be an output at

which the fault can be definitely detected. If the exact analysis

later reveals that oi is a FEX, then f is a DD, otherwise f is

a PD.

On the other hand, if all vj
oi

(0 ≤ j ≤ 63) are equal to

vG(p, oi), oi is added to OPPD since it may be an output at

which the fault can be potentially detected. If the exact analysis

reveals that oi is a REX, then f is a PD, otherwise f cannot

be detected at oi at all.

B. Fault Classification by SAT Reasoning

If the set OPDD is not empty, the output values in the

faulty circuit are iteratively derived using the incremental SAT

solver. This is similar to the fault free case. A SAT instance is

constructed which is satisfiable iff the considered output is a

REX (see Section III-B). If output oi belongs to REXf (p), oi

is removed from OPDD and added to OPD. In the other case,

the fault is marked as DD, because

vG(p, oi), v
f (p, oi) ∈ {0, 1} ∧ vG(p, oi) = ¬vf (p, oi) (3)

is true. Thus, the fault is detected for all logic value as-

signments to the X-sources. Then the next stuck-at fault is

analyzed.

If OPDD is empty and OPD is not empty, the stuck-at fault

is marked as PD and the algorithm proceeds with the next

stuck-at fault.

If the current fault is neither marked DD nor PD and OPPD

is not empty, the SAT solver is used to determine if one of

the outputs in OPPD belongs to REXf (p). Note that this step

is performed only if the fault is not yet marked as PD. If one

output of OPPD is member of REXf (p), the fault is marked as

PD. In the case that all outputs in OPPD belong to FEXf (p),
the fault remains unmarked and undetected.

V. EXPERIMENTAL RESULTS

The presented algorithm has been tested and applied to

ISCAS benchmark and large industrial circuits from NXP. The

experiments were run on an AMD Opteron CPU with 2.3 GHz.

A. Reduction of Unknown Output Values

The exact logic simulation algorithm of Section III effi-

ciently computes the exact output values of the circuit for a

test set. This is important for BIST and EDT environments

to avoid unnecessary DFT overhead for X-masking or X-

blocking structures, and overmasking of FEX-valued outputs.

For the considered circuits, three simulation runs are per-

formed and averaged. In each run, a fixed percentage of the

controllable circuit inputs is randomly selected as X-sources

(X-ratio). Then, a test set of 1 000 random patterns is analyzed.

The difference in the number of PEX outputs of a 3-valued

simulation and the REX outputs of the exact analysis is

compared.



Figure 4 shows the reduction of the number of unknown

outputs for ISCAS circuit c7552 for different X-ratios. The

diagram shows that the number of unknown values is reduced

by more than 25% for the X-source scenarios with 1% and 7%

X-sources. The reduction decreases to 0% if nearly all inputs

are X-sources.

30

25

20

15

10

5

0

 X
-o

u
tp

u
t 

re
d
u
ct

io
n
 (

%
)

100806040200
X-sources (%)

Fig. 4. Reduction of unknown output values of ISCAS circuit c7552.

Similar experiments have been conducted for the other

circuits as well. Due to limited space, we only present results

for the case of 5% X-sources in Table I. Column ‘Circuit’

contains the circuit name. Column ‘PEX’ and ‘REX’ show the

absolute number of unknown values at the outputs for the test

set computed by 3-valued simulation respectively the exact

algorithm. In a BIST architecture, only these REX outputs

have to be masked for the computation of a signature. The

last column in the table contains the reduction of X-values

at the circuit outputs. In average, the number of X-values is

reduced by 20.2%.

TABLE I
REDUCTION OF UNKNOWN VALUES AT THE OUTPUTS FOR 1 000 TEST

PATTERNS AND 5% X-SOURCES.

Circuits
Outputs

PEX REX Reduction (%)

c6288 23 387 15 215 34.9
c7552 11 826 9 387 20.6

cs09234 16 839 15 608 7.3
cs13207 44 971 39 854 11.4
cs15850 36 443 34 999 4.0
cs35932 75 672 75 672 0.0
cs38417 143 195 122 760 14.3
cs38584 95 323 91 877 3.6

p35k 84 951 80 240 5.5
p45k 285 178 215 963 24.3
p77k 248 242 195 593 21.2
p78k 685 605 454 267 33.7
p81k 491 965 384 691 21.8
p89k 309 047 255 373 17.4
p100k 325 348 277 661 14.7
p141k 1 154 394 919 633 20.3
p267k 1 284 472 1 124 916 12.4
p286k 1 172 617 758 732 35.3
p295k 2 506 184 2 102 686 16.1

Average 473456 377638 20.2

B. Exact Fault Simulation

This section presents the increase of fault coverage of a

test pattern set due to the non-pessimistic analysis with the

proposed algorithm. Similar to the previous section, three

simulation runs are performed per circuit and averaged. In

each run, a fixed percentage of the controllable circuit inputs

is randomly selected as X-sources. Then, the fault coverage of

a test set of 1 000 random patterns is computed using 3-valued

fault simulation and the proposed exact algorithm.

For circuit c7552, Figure 5 depicts the increase in fault

coverage of the exact algorithm w. r. t. 3-valued fault simula-

tion for different X-ratios, and the runtime in seconds. The

circles indicate the increase of fault coverage if 1 000 test

patterns are analyzed exactly. The exact algorithm increases

fault coverage by up to 14.2%. The highest increase of fault

coverage is achieved when approximately 10% of the inputs

are X-sources. Compared with the approximate hybrid fault

simulation of [12], the exact algorithm reveals that up to 30%

additional faults are actually detectable with the test set.

14

12

10

8

6

4

2

0

A
d
d
it

io
n
al

ly
 d

et
ec

te
d
 s

tu
ck

-a
t 

fa
u
lt

s 
(%

)

100806040200
X-sources (%)

100

80

60

40

20

0

R
u
n
 tim

e (s)

 Exact algorithm

 Run time exact algorithm

 Algorithm in [12]

Fig. 5. Increase in stuck-at fault coverage by accurate fault simulation with
1 000 random test patterns for circuit c7552.

The runtime of the proposed algorithm reaches the max-

imum of 91s at an X-ratio of about 35%. Compared to

the method of [12] with a runtime of 2 749s, the proposed

algorithm is 30× faster. For small X-ratios, the runtime is low

since RSS uncovers many FEXs at simple X-reconvergences.

If the SAT solver is required, the size of the CNF formula

is small. For high X-ratios, the pattern parallel simulation of

random assignments to X-sources determines most of the REX

signals.

Table II reports the results for a larger set of ISCAS and

industrial circuits. Due to limited space, the results are limited

to the case of 5% X-sources. For each circuit, the table shows

the absolute number of stuck-at faults. Column ‘3-val. Fsim.’

shows the absolute number of detected faults and the fault

coverage in % of 3-valued fault simulation.

The number of additionally detected faults and fault cover-

age increase by the exact algorithm according to equation (1) is

given in column ‘∆ Exact sim. DD.’ Column ‘Exact sim. PD’

lists the number and ratio of faults marked as potential detect

(PD) according to equation (2). The last column lists the

runtime for the exact analysis in seconds.

On average, 3-valued fault simulation computes the cover-

age of the test sets to 67.2%. The exact fault simulation proves

that an additional 1.8% of the faults are detected by the test

sets. The increase in additionally detected faults is very high



TABLE II
DETECTED STUCK-AT FAULTS BY A TEST PATTERN SET WITH 1 000 PATTERNS AND 5% X-SOURCES.

Circuit
Number 3-val. Fsim. ∆ Exact sim. DD Exact sim. PD Run time

faults Num. F.C.(%) Num. F.C.(%) Num. F.C.(%) (s)

c6288 8 704 4 296 49.4 3 977 45.7 80 0.9 4
c7552 9 756 5 546 56.8 856 8.8 1 615 16.6 4

cs09234 13 892 85 67 61.7 91 0.7 816 5.9 8
cs13207 20 246 14 766 72.9 193 1.0 679 3.4 12
cs15850 24 571 19 668 80.0 245 1.0 588 2.4 10
cs35932 52 225 41 391 79.3 0 0.0 161 0.3 62
cs38417 56 761 46 279 81.5 275 0.5 1 504 2.6 80
cs38584 54 153 44 459 82.1 100 0.2 1 125 2.1 54

p35k 110 494 47 212 42.7 1 973 1.8 5 083 4.6 604
p45k 107 814 63 754 59.1 1 221 1.1 16 339 15.2 975
p77k 186 645 85 995 46.1 1 661 0.9 10 537 5.6 26 338
p78k 225 476 189 431 84.0 18 681 8.3 6 368 2.8 3 461
p81k 272 322 133 617 49.1 3 116 1.1 30 284 11.1 100 510
p089k 228 570 130 985 57.3 2 473 1.1 13 784 6.0 3 591
p100k 247 376 173 237 70.0 8 694 3.5 18 315 7.4 17 411
p141k 434 363 328 111 75.5 10 402 2.4 18 943 4.4 59 375
p267k 640 221 456 456 71.3 7 184 1.1 42 798 6.7 85 520
p286k 949 733 685 249 72.2 13 116 1.4 43 441 4.6 190 158
p295k 728 246 458 122 62.9 4 125 0.6 37 378 5.1 149 942

Sum 4 371 568 2 937 141 67.2 78 383 1.8 249 837 5.7 638 120

for the multiplier c6288 due to high signal observability and

propagation of many X-values in the pessimistic simulation.

The results also show that a noteworthy amount of stuck-at

faults of 5.7% on average can be classified as potential detect.

The runtime of the algorithm for the considered ratio of X-

sources ranges from 4 milliseconds up to 190 seconds for a

single pattern.

VI. CONCLUSIONS

The work presented the first stuck-at fault simulator, which

is able to calculate the exact fault coverage of a test pattern

set in the presence of unknown values. The simulator em-

ploys logic and restricted symbolic simulation to classify as

many signal states as possible without invoking formal SAT

reasoning. Incremental SAT solving is utilized only to exactly

analyze the remaining signal states. The usage and runtime of

the SAT-solver and the size of the CNF formulae are strongly

reduced by considering the simulation results and employing

incremental SAT techniques. The algorithm is able to handle

large industrial circuits.

ACKNOWLEDGMENT

The authors thank Tobias Schubert for his SAT-solver An-

tom and related support. This work was partially supported

by the German Research Foundation (DFG) under grants

BE 1176/14-2 and WU 245/5-2.

REFERENCES

[1] E. G. Ulrich and T. Baker, “The concurrent simulation of nearly identical
digital networks,” in Papers on Twenty-five years of electronic design
automation, ser. 25 years of DAC, 1988, pp. 318–323.

[2] J. Waicukauski, E. Eichelberger, D. Forlenza, E. Lindbloom, and T. Mc-
Carthy, “Fault simulation for structured VLSI,” VLSI Systems Design,
vol. 6, no. 12, pp. 20–32, 1985.

[3] K. Antreich and M. Schulz, “Accelerated fault simulation and fault
grading in combinational circuits,” IEEE Trans. CAD, vol. 6, no. 5,
pp. 704 – 712, september 1987.

[4] H. Lee and D. Ha, “An efficient, forward fault simulation algorithm
based on the parallel pattern single fault propagation,” in Proc. Interna-
tional Test Conference (ITC), oct 1991, pp. 946–955.

[5] M. Naruse, I. Pomeranz, S. Reddy, and S. Kundu, “On-chip compression
of output responses with unknown values using LFSR reseeding,” in
Proc. of the IEEE International Test Conference, 2003, pp. 1060–1068.

[6] S. Mitra and K. S. Kim, “X-compact: an efficient response compaction
technique,” IEEE Trans. CAD, vol. 23, no. 3, pp. 421–432, 2004.

[7] M. H. Schulz, E. Trischler, and T. M. Sarfert, “Socrates: a highly
efficient automatic test pattern generation system,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 7, no. 1, pp. 126–137, 1988.

[8] S. Kajihara, K. K. Saluja, and S. M. Reddy, “Enhanced 3-valued
logic/fault simulation for full scan circuits using implicit logic values,”
in Proc. IEEE European Test Symposium (ETS), 2004, pp. 108–113.

[9] S. Kang and S. A. Szygenda, “Accurate logic simulation by overcoming
the unknown value propagation problem,” Simulation, vol. 79, no. 2, pp.
59–68, 2003.

[10] J. Carter, B. Rosen, G. Smith, and V. Pitchumani, “Restricted symbolic
evaluation is fast and useful,” in Proc. IEEE International Conference
on Computer-Aided Design (ICCAD), nov 1989, pp. 38 –41.

[11] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[12] M. A. Kochte and H.-J. Wunderlich, “SAT-based fault coverage evalu-
ation in the presence of unknown values,” in Proc. Design, Automation
and Test in Europe (DATE’11), 2011, pp. 1–6.

[13] A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao,
“Testing, verification, and diagnosis in the presence of unknowns,” in
Proc. VLSI Test Symposium, 2000, pp. 263–268.

[14] C. Wilson, D. Dill, and R. Bryant, “Symbolic simulation with approxi-
mate values,” in Formal Methods in Computer-Aided Design, ser. LNCS,
W. Hunt and S. Johnson, Eds. Springer Berlin / Heidelberg, 2000, vol.
1954, pp. 507–522.

[15] C. Scholl and B. Becker, “Checking equivalence for partial implemen-
tations,” in Proc. Design Automation Conference (DAC), 2001, pp. 238–
243.

[16] S. Kundu, I. Nair, L. Huisman, and V. Iyengar, “Symbolic implication in
test generation,” in Proc. Conference on European Design Automation,
1991, pp. 492–496.

[17] B. Becker, M. Keim, and R. Krieger, “Hybrid fault simulation for
synchronous sequential circuits,” Journal of Electronic Testing: Theory
and Applications (JETTA), vol. 15, no. 3, pp. 219–238, 1999.

[18] M. A. Kochte, S. Kundu, K. Miyase, X. Wen, and H.-J. Wunderlich,
“Efficient BDD-based fault simulation in presence of unknown values,”
in Proc. IEEE 20th Asian Test Symposium (ATS11), 2011.

[19] T. Schubert, M. Lewis, and B. Becker, “Antom—solver description,”
SAT Race, 2010.

[20] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in constructive mathematics and mathematical logic, vol. 2, no.
115-125, pp. 10–13, 1968.


