
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Error-Detection and Self-Repairing Method for Dynamically and Partially Reconfigurable Systems / SONZA
REORDA, Matteo; Sterpone, Luca; Ullah, Anees. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. -
ELETTRONICO. - 66:6(2017), pp. 1022-1033. [10.1109/TC.2016.2607749]

Original

An Error-Detection and Self-Repairing Method for Dynamically and Partially Reconfigurable Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2016.2607749

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2658319 since: 2016-11-30T14:11:58Z

IEEE

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

2 IEEE TRANSACTIONS ON COMPUTERS

An Error-Detection and Self-Repairing Method for
Dynamically and Partially Reconfigurable Systems

Abstract— Reconfigurable systems are gaining an increasing interest in the domain of safety-critical applications, for example
in the space and avionic domains. In fact, the capability of reconfiguring the system during run-time execution and the high
computational power of modern Field Programmable Gate Arrays (FPGAs) make these devices suitable for intensive data
processing tasks. Moreover, such systems must also guarantee the abilities of self-awareness, self-diagnosis and self-repair in
order to cope with errors due to the harsh conditions typically existing in some environments. In this paper we propose a self-
repairing method for partially and dynamically reconfigurable systems applied at a fine-grain granularity level. Our method is
able to detect, correct and recover errors using the run-time capabilities offered by modern SRAM-based FPGAs. Fault injection
campaigns have been executed on a dynamically reconfigurable system embedding a number of benchmark circuits.
Experimental results demonstrate that our method achieves full detection of single and multiple errors, while significantly
improving the system availability with respect to traditional error detection and correction methods.

Index Terms— Self-Repair; Partial and Dynamic Reconfiguration; Single Event Upsets (SEUs); Multiple Event Upsets (MEUs)

—————————— ——————————

1 INTRODUCTION

ECHNOLOGY scaling in the nano-metric domain and
beyond supports the increasing usage of high perfor-
mance and miniaturized embedded systems. Howev-

er, the quest for pushing the limits of technology to the
ultra-nano scale devices has exacerbated concerns related
to power consumption and reliability that have not be
envisioned before. In particular, one of the major issues in
safety-critical applications (especially in the space and
avionic domains) is the run-time mitigation of various
radiation-induced fault effects, which may provoke tran-
sient and permanent modifications of the electronic cir-
cuit’s behavior. The problem is widely known and vari-
ous methods have been developed and proposed in the
area during the last decade. The ubiquity of embedded
systems for safety-critical applications operating in radia-
tion environments demands continuous and successful
operations of the system by autonomously overcoming
possible malfunctions. This condition requires the abili-
ties of autonomous error detection, self-diagnosis and
self-repair [1].

Among the available technology solutions, the adop-
tion of SRAM-based FPGAs is the most suitable for the
realization of dynamically and partially reconfigurable
systems; however, when used in harsh environments,
SRAM-based FPGAs have to withstand the radiation ef-
fects in the form of Single Event Upsets (SEUs) and Mul-
tiple Event Upsets (MEUs), especially affecting their con-
figuration memory [2].

The increased probability of MEUs hitting the config-
uration memory of an FPGA can limit the effectiveness of
traditional redundancy-based fault-tolerance approaches

[3]. In fact, particles can hit the same logic group of circuit
replicas enabling erroneous results to propagate. To cope
with this scenario, researchers have recently investigated
the fine-grain redundancy and its resilience to MEUs
[4][5][6]. However, for proper shielding against high fail-
ure rate while minimizing redundancy overhead in terms
of area, speed and power consumption, systems should
be designed with accurate mixed-grain redundancy and
self-repair properties which are not feasible for fine-grain
redundancy.

State-of-the-art SRAM-based FPGAs have the technol-
ogy supporting run-time dynamic and partial reconfigu-
ration (DPR), which can be used for adaptive behavior as
well as for fault repairing [7]. A self-repairing system
adopting the partial dynamic reconfiguration capabilities
of SRAM-based FPGAs is often divided in two parts,
called static region and dynamic region. The logic and rout-
ing resources and the corresponding configuration
memory frames individuated by means of clock regions
and major and minor columns, illustrated in figure 1, are
organized in a static region, also called base region. The
static region typically consists of a microprocessor, some
memory modules and input/output ports, as described in
figure 2. In general, these components are not re-
configured and their full functionality is constantly re-
quired for implementing the correct operations of the
system; for this reason the static region is often hardened
using a traditional redundancy-based approach, such as
Triple Modular Redundancy (TMR) [7]. The static region
is also responsible for the reconfiguration of the modules
placed into the reconfigurable regions. On the contrary,
the components in the dynamic region correspond to par-
tially reconfigurable resources that can be configured in
different ways depending on the system requirements [8].
The dynamically reconfigurable regions idea is extended
in this paper so that the system is able to also correct the
identified errors by applying internal reconfiguration.

M. Sonza Reorda, Fellow, IEEE, L. Sterpone, Member, IEEE,

A. Ullah, Student Member, IEEE

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

T

————————————————

M. Sonza Reorda, L. Sterpone and A. Ullah are with the Dipartimen-
to di Automatica e Informatica (DAUIN), Politecnico di Torino, To-
rino, Italy. For any information please refer to:
luca.sterpone@polito.it (contact author).

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

SONZA ET AL.: AN ERROR-DETECTION AN SELF-REPAIRING METHOD FOR DYNAMICALLY AND PARTIALLY RECONFIGURABLE SYSTEMS 3

The proposed approach provides significant advantages
compared to already developed solutions [9][10], mainly
because it increases the error detection and correction
capabilities while introducing comparable area and per-
formance overhead.

In order to practically prove the effectiveness of the

approach, we developed a complete set of tools for the
automatic generation of the constraints used for the parti-
tioning of the dynamic regions. The developed set of tools
directly acts at the physical level, automatically inserting
a carry chain into the physical net-list and adding com-
parator check flags into the circuitry; moreover, the tool is
able to cleverly place the different partitions of the dy-
namic region into proper sub-regions, thus allowing SEUs
and MEUs correction. The proposed approach drastically
improves the solution in [9] which uses the built-in slice
carry chain for error detection, only.

 Our approach introduces a minimal area overhead,
which is strictly dependent upon the number of user-
defined partitions. On the average, the overhead intro-
duced by our approach is around 11% with respect to the
duplication-based approach; hence, the proposed tech-
nique is using far less computational resources if com-
pared to the standard TMR solution. Furthermore, correc-
tion is performed on a single reconfigurable frame, which
is the smallest amount of reconfigurable information that
can be read or written; therefore, we can achieve the
highest availability limits offered by the current reconfig-
urable technology.

The paper is organized as follows. Section 2 gives an
overview of the soft error detection and correction meth-
ods implemented with modern SRAM-based FPGAs and
summarizes the major contributions of this paper. Section
3 describes the proposed method, while the developed
design flow is illustrated in Section 4. Experimental re-
sults on the selected case study and their analysis are pre-
sented in Section 5. Finally, conclusions and future works
are described in Section 6.

2 PREVIOUS WORKS
State-of-the-art SRAM-based FPGAs are heterogene-

ous devices containing several macro blocks, like Digital
Signal Processors (DSPs), Block RAMS (BRAMs) and IO
Blocks (IOBs), along with Configurable Logic Blocks

(CLBs) inside the FPGA reconfiguration fabric. Each of
these resource types is arranged in columns that span
from top to bottom of the device realizing a column of
CLBs, IOBs and BRAM memories interconnected by a
mesh of heterogeneous routing resources. Each SRAM-
based FPGA chip is organized in a number of rows de-
pendent on the manufacturer families or specific part. The
most advanced devices have CLB rows connected to
global resources as well as local clock sources [11]. In or-
der to harden circuits implemented on SRAM-based
FPGAs, different architecture level techniques have been
proposed in the past. However, we can broadly classify
them into two main techniques, namely fault masking and
fault correction. In the next part of this section we will pre-
sent a detailed discussion of the previous research work
in each category.

In the recent years, two different mitigation approach-
es have been proposed to mitigate SEUs affecting the con-
figuration memory of SRAM-based FPGAs. On one side,
full hardware redundancy obtained thanks to Triple
Modular Redundancy (TMR) is used to identify and cor-
rect logic values. This solution presents a large overhead
in terms of area, power and especially delay, since it trip-
licates all the combinational and sequential logic, and the
architecture introduces delay penalties for the voter
propagation time and the routing congestion. On the oth-
er side, redundancy approaches are nowadays combined
with scrubbing, that consists in periodically reloading the
complete content of the FPGA’s configuration memory. A
more complex system is used to correct the information in
the configuration memory by using read-back and partial
configuration procedures. Through the read-back process
the content of the FPGA’s configuration memory is read
and compared with the expected value, which is stored in
a dedicated memory located outside of the FPGA. With
the advent of modern SRAM-based FPGAs this operation
may be performed through dynamic reconfiguration. In
details, with dynamic reconfiguration, the FPGA configu-
ration memory can be read-back continuously without
interfering with the circuit functionality and if any upset
is detected it can be selectively re-written with the correct
values, thus avoiding the accumulation of radiation-
induced errors [12]. However, the main drawback of this
technique is the huge detection and correction time that
makes it useless for real-time operations and ineffective
versus the single point of failure induced by configura-
tion memory bit-flips. Spatial redundancy using Triple
Modular Redundancy (TMR) is complementarily used
with the read-back and correction techniques: on one side
TMR can tolerate faults with the limitation of withstand-
ing a single fault per voting group [13], on the other side
read-back and correction avoids the accumulation of er-
rors within the configuration memory. The combination
of TMR and self-healing using dynamic partial reconfigu-
ration has been previously used in [14][15]. However, the
results achievable with this combined solution are com-
putationally expensive and area hungry.

Reconfiguration at the gate level is used in fine-grain
approaches [16] with particular efficiency from the point
of view of the area overhead, although it suffers from a
complex and not flexible control mechanism. Further-
more, because of the adopted fine granularity, this ap-
proach is infeasible for system-level healing. A self-
healing partial dynamic reconfigurable design methodol-
ogy has been proposed in [17]. However, the method in-
serts control circuitry by partitioning the circuit for error

• Minor Column

• Rows (Clock
Regions)

• Major Column

Fr
am

e
0

Fr
am

e
35

Fr
am

e
1

Fr
am

e
25

CLB Major Column

20
 C

LB
 H

ig
h

Fig. 1. Resource and Frame Layout of Modern SRAM based FPGAs

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

4 IEEE TRANSACTIONS ON COMPUTERS

localization and detection purposes. This requires a sig-
nificant overhead.

A methodology for fault tolerant architectures using
on-line checkers for fault detection and localization was
introduced in [18]. On-line checkers for TMR- and dupli-
cation-based systems were combined with partial dynam-
ic reconfiguration in [19] in such a way that detection and
localization of faults will be performed by the checker,
while reconfiguration will recover from the error. The
detection and localization of errors is implemented as a
partial reconfigurable module which is itself subject to
errors. A previous approach based on fine-granularity
error masking has been developed in [20]; however, such
solution can only be applied to a TMR technique with a
majority voter logic scheme. Vice versa, a first overview
of recovery architectures for high computational systems
based on SRAM-based FPGAs has been presented in [21].

2.1 Main contribution
The main contribution of the present work, which is

based on the platform preliminarily presented in [8], is
the description of an autonomous recovery approach that
can be applied to Partially Reconfigurable Modules
(PRMs) when errors are detected inside them. The ap-
proach is implemented by the static region providing ef-
fective capabilities of error detection and correction of
faults within the dynamic region. Our approach allows
resilience to MEUs, since we adopt a static region protect-
ed with a fine-grain redundancy approach, as described
by [3]. In particular, we propose a new fine-grain fault
detection mechanism applied to FPGA resources: the ap-
proach is based on the comparison of Look-Up Tables
(LUTs) outputs by using the logic available to allow carry
propagation, which is generally used for fast arithmetic
computations and mostly not inferred by design tools,
following the approach preliminarily introduced in [9] for
fault detection. In details, the proposed method is charac-
terized by the ability of detecting MEUs into the FPGA’s
configuration memory, as well as to recover any number
of faults in the dynamic partition, thus improving previ-
ously developed approaches, as presented in [9], that
cannot deal with MEUs. Our solution is adaptable to all
modern SRAM-based FPGAs equipped with an Internal
Configuration Access Port (ICAP) and based on a LUT-
slice architecture.

3 THE PROPOSED METHOD
The proposed method consists of two flows: one applied
to the dynamically reconfigurable region for implement-
ing error detection, the other one for instrumenting the
circuit mapped on the FPGA so that it supports the execu-
tion of the self-repairing method against single and mul-
tiple-bit errors.
A dynamically reconfigurable system, from the architec-
tural perspective, is partitioned into static and dynamic
regions as illustrated in figure 2. The static region consists
of a processor with a static-RAM, some general purpose
IOs, flash memories, and hardware resources for manag-
ing the internal configuration access port connected to the
processor local bus. The static region contains the main
processor, which is in charge of controlling the partially
reconfigurable system operational functionalities: there-
fore, it is very important to tolerate and recover errors in
these modules. In this paper we assume that this region is
implemented using Triple Modular Redundancy. By suit-

ably mapping the three copies of the circuit elements on
the device the static region can be protected against any
single point of failure.

The dynamic region consists of the resources imple-
menting the user’s circuit. The proposed approach mainly
focuses on the dynamic region, and exploits reconfigura-
tion at the individual frame level for error detection and
correction. The dynamic region can be organized into a
Single Bit Error (SBE) region, Multi Bit Error (MBE) re-
gion and Coarse-Grain Error region. It is first necessary to
introduce some definitions related to the major character-
istics of current SRAM-based FPGAs: modern FPGAs are
row-wise divided into a number of clock regions for dy-
namic partial reconfiguration, while column-wise are or-
ganized in major columns of resources, such as CLBs,
DSPs or IOs. Each major column spans the whole height
of the device but it is configured in each clock region
(row) by a separate reconfigurable frame (RF). Each RF
contains a different number of “minor frames”, each hav-
ing a height equal to the clock region (row) and num-
bered from left to right. For example, in Xilinx Virtex-5
devices [11] a CLB RF consists of 36 minor frames (hereby
simply referred to as frames), which are responsible for
the configuration of LUTs and their routing, while con-
figuration bits for a single LUT are distributed over mul-
tiple frames. From the point of view of the circuit archi-
tecture, the proposed method is based on the Duplication
With Comparison (DWC) technique applied at two dif-
ferent levels of granularity, herein called Coarse-grained
DWC (C-DWC) and Fine-grained DWC (F-DWC).

The C-DWC is applied for slices that use the carry
chain for computations such as fast additions or multipli-
cations. In this case, the duplication is performed at the
module level and the outputs are compared at the physi-
cal level by LUT elements configured to implement XOR
combinational functions. Our approach is able to directly
modify the circuit physical description in order to use the
XOR logic function to compare the module’s outputs. In
case of error, the software tools running on the reconfigu-
rable system partially rewrite the C-DWC region.
F-DWC is applied at the place and route level, by suitably
duplicating each LUT function in two copies that are
placed in a single slice using two consecutive LUT posi-
tions. The outputs of the two LUTs are then compared
with hardwired physical resources built into the slice in

Fig. 2. Placement space division into Single Bit Error region, Multiple
Bit Error region and the Coarse Grain Error region.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

SONZA ET AL.: AN ERROR-DETECTION AN SELF-REPAIRING METHOD FOR DYNAMICALLY AND PARTIALLY RECONFIGURABLE SYSTEMS 5

the form of a carry chain by using internal and not pro-
grammable resources, such as hardwired MUXCYs and
XORCYs.
The outputs generated by the XORCY functions are con-
nected in a chain of OR logic functions in order to provide
a single error detection flag for each column. Practically,
the F-DWC approach can be adopted by acting at the
Hardware Design Language (HDL) level: the combina-
tional functions are duplicated and both copies of the cir-
cuit LUTs are placed in a single FPGA slice using two
consecutive available LUT positions. Please note that the
outputs of any pair of LUTs pass through the carry chain
and at each pair position of the XORCY generate a com-
parison signal called check flag. Since we are generating a
check flag for each pair of LUTs the number of check flags
may drastically increase. This means that a considerable
amount of routing resources could be required by the
implementation of these check flags because they have to
be routed to the static region for the detection and correc-
tion of possible errors. Moreover, any such scheme will
not only have a large overhead, but it will also be fruitless
because the smallest unit of reconfiguration is a frame.
In order to have a single check flag for each frame we
propose to merge the individual check flags in two differ-
ent ways. The check flags in the SBE region are merged
through the built-in slice carry chain as shown in figure 3
(further details will be provided in section 3.1.1) where
the hardwired resources XORCY and MUXCY are labeled
as Xi and Mi, respectively. Furthermore, a whole column
of slices is connected through the carry chains to produce
a single flag for each column of slices (see for example flag
3 in the SBE region of figure 2).

In this way we achieve a huge reduction in the num-
ber of check flags, but we can only detect Single Event
Upsets (SEUs) in the SBE region, because multiple LUT
pairs are connected together by a long chain of XORs and
XNORs and thus an even number of errors will go unde-
tected due to the logic configuration of the detector.

In the Multiple Bit Error (MBE) region each pair of
LUTs generates a check flag and thus we have two check
flags per slice. The number of check flags can be reduced
by OR-ing some of the flags corresponding to the slices in
the same slice column, as shown in the magnified MBE
region in figure 4. Although some higher overhead is in-

troduced in this way, we have the ability to detect Multi-
ple Event Upsets (MEUs) in the frames mapped on this
region; in fact, the individual check flags are not merged
along the carry chain passing through multiple XORs, as
it happened in the SBE region.

3.1 Error Detection Method
In order to fully explain our proposal, in this section

we will specifically refer to the architecture of Xilinx Vir-
tex-5 FPGAs. As described in the previous section, the
error detection mechanism implemented in the reconfigu-
rable region is based on LUT-based checkers and carry
chains for propagating the check flags. Please note that
the LUT checkers are only deployed when the carry chain
is unavailable for comparison purposes. This allows re-
ducing the performance degradation of the circuit im-
plemented with our method, although in this case the
detection mechanism is implemented at the modular lev-
el. In this section, we focus on the method adopted for the
error detection using the carry chains for comparison; a
more detailed explanation of both the LUT checkers and
the carry chains insertion inside the physical place and
route description of the circuit will be given in Section 4.3.

3.1.1 Single-bit error detection
In order to detect single-bit errors, we propose to du-

plicate each original LUT function into two identical
LUTs. Furthermore, we place the two LUTs in a single
FPGA slice, where we set the Carry Input and the generic
AX inputs to 1 and 0, respectively, as illustrated in figure
3. Consequently, the hardwired XORCY logic gate in the
bottom of the slice is acting as an inverter, while the
MUXCY multiplexer in the bottom first position is simply
acting as a buffer to pass the value of LUT A.

 The multiplexer “M2” receives an inverted (through
the AMUX_2_BX hardwired connection) and buffered
copy of the LUT A output at its “0” and “1” inputs while
the selection line is tied to LUT B (which is the copy of
LUT A) thus effectively performing the EX-NOR function.
The XOR gate named “X2” receives LUT A and LUT B
outputs on its inputs. Similarly, LUT C and LUT D can
also be connected with such a scheme by extending the
EX-NORs and EX-ORs along the slice. In fact, this scheme
can be extended to an entire clock region covering 20
CLBs using the COUT and CIN of slices, thus generating
two flags for the even and odd slice columns of the same
CLB, respectively. This convergence strategy can only be
applied if the CLB column has no empty slices. In case the
CLB column contains empty slices the dedicated COUT
connection cannot be used to propagate the flag signal
upwards along the column. For such a case, an ORing
LUT is introduced in the CLB column and placed in an
available empty slice. This will be discussed in greater
details in Section 4.3. It is interesting to investigate an
upper bound on the number of check flags that can be
generated for the most complex design. The flag signal is
generated per CLB tile columns and is directly related to
the device rows and columns. For example, for the Virtex-
5 VLX110T device the maximum number of check flags
for any design cannot be greater than 1,280 (160x8) [22]
[23]. As the FPGA must contain the control processor the
actual number will be quite less than 1,280 and will de-
termine the size of the GPIO port that is used by the con-
troller to detect errors. Then, it is possible to pinpoint sin-
gle bit upsets in any of the four LUTs in any slice column
in a clock region. However, errors affecting flip-flops

Fig. 3. Single-Bit Error detection scheme implemented in a single
slice.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

6 IEEE TRANSACTIONS ON COMPUTERS

cannot be directly detected. Instead, they are detected
when their effects propagate to the next logic levels of
LUTs, but we still cannot pinpoint the configuration
frames required for correction and thus a larger area has
to be reconfigured to deal with errors in flip-flops (FFs).

3.1.2 Multiple-Bit error detection

In case a further protection level is needed, our ap-
proach is able to provide detection against multiple-bit
errors in a slice column. However, multiple bit errors can
only be detected if the error detecting carry chain is in-
serted in a specific pattern that we will mention in this
section. Furthermore, the logic connectivity pattern re-
quired dictates that the LUTs used in this scenario have 5
inputs or less. Therefore, all LUTs in the design having a
number of inputs lower than 5 can be designated to this
region. It is interesting to know that a recent survey of
designs for Xilinx FPGAs suggests that 37% of LUTs in-
ferred by the synthesizer have less than 5 inputs [21]. The
scheme implemented in order to achieve multiple-bit er-
ror detection is shown in figure 4, where the output of the
LUT A is connected to the output O5, while the output of
the LUT B is taken from O6. The two signals O5 and O6
are internally hardwired to the inputs of the XOR gate in
the second LUT position, which acts as an error detection
logic. Please note that we have to tie up the “A6” input of
LUT A since we intend to activate both the outputs O6
and O5 and this feature is technically achieved by con-
necting it to the “TIEOFF” element. In this way every pair
of LUTs in the design generates a check flag signal, as
shown in figure 3 (check flag 1 and check flag 2). Howev-
er, the number of flags grows linearly with the number of
LUTs in the dynamic region, and so the method becomes
unfeasible for large designs. In order to reduce the num-
ber of flags we propose the usage of 2 slices (out of the
available 20) for merging the check flags by OR-ing them.
In fact, two levels of OR gates placed in the bottom two
slices of a slice column are used as a flag reduction strate-
gy. As we are producing two flags for each clock region
(one for odd and one for even slices) we can have a max-
imum of 72 LUTs (out of 80 LUTs in an even or odd slice
column) configured for computations in any slice column
location (even or odd) within a single clock region. Thus,
the MBE regions require an overhead of 11.11 % for flag

reduction.

3.2 Error Correction Method
The error correction method we propose is based on

the assumption that the DUT Dynamic Regions are physi-
cally placed at preliminary known positions at the design
time and that the original configuration memory frames
are stored into an external memory in such a way that
they can be retrieved when an error on the corresponding
flag from the DUT region is signaled. Data errors affect-
ing combinational logic or Flip-Flops are individuated by
the error detection scheme previously described. The er-
ror signal can be used to drive the processor interrupt
signal: in case an interrupt is triggered from any flag, the
main processor controller responds to the interrupt in the
following way. First, it determines the clock region (in
terms of CLB row) and the slice position (even or odd) the
error was triggered by. This is particularly relevant, since
the main processor controller needs to selectively recon-
figure the faulty frames of the DUT design with the cor-
rect copies of the corresponding frames that are stored in
the outside memory. Secondly, the clock enabling signals
should be de-activated to disable the propagation of er-
rors to the next stages in the design. This is possible since
both static and dynamic regions have well-defined inter-
faces with clock enabling registers. Similarly, the DUT
region should also have latched outputs at every stage of
the design. Thirdly, the main processor controller access-
es the configuration layer of the FPGA and reconfigures
the faulty region with the golden copy of each frame.
Lastly, the main processor controller enables the clock to
re-start the normal operation in the DUT region involved
in the correction.

4 DESIGN FLOW
In this section we describe the tool flow we developed

in order to insert fine-grain duplication with comparison
using the built-in slice carry chains. The developed flow is
shown in figure 5, and consists of two phases applied at
the design mapping process. A pre-map step generates a
number of constraints for directed packing, placement
and sites prohibitions, while a post-map step inserts the
error detecting carry chains and the convergence logic
required to reduce the number of flag signals. This post-
map modification is implemented by modifying the XDL
file (i.e., the Xilinx interface for interacting with the Xilinx
CAD flow). The tool flow has been developed as a C++-
based software environment making heavy use of boost
library and Tools for Open Source Reconfiguration
(TORC).

4.1 Net-list Extraction
The flow starts by parsing the net-list description of the
circuit implemented into the dynamic region, which was
duplicated at the Hardware Description Level (HDL). It is
important that both instances of the design should be la-
beled with “inst1” and “inst2” so that each synthesized
element contains the hierarchical information of the top
level instance to which it belongs. However, global re-
set/clock signals are not duplicated at the module-level,
as it will be explained in Section 4.2. After synthesizing
the design, a post-synthesis simulation Verilog file is gen-
erated using the Xilinx NETGEN utility. The post-
synthesis Verilog file contains the circuit net-list using the
Xilinx primitive cell library elements. The parser module

Fig. 4. Multiple-Bit Error detection scheme implemented in a single
slice.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

SONZA ET AL.: AN ERROR-DETECTION AN SELF-REPAIRING METHOD FOR DYNAMICALLY AND PARTIALLY RECONFIGURABLE SYSTEMS 7

traverses the post-synthesis Verilog file and extracts the
netlist of the circuits in form of a graph composed of edg-
es and nodes, where edges represent netlist interconnec-
tions, while each node represents a logic behavior ele-
ment (i.e., a logic gate or a flip-flop). In details, each node
of the graph corresponds to a data structure with a num-
ber of fields including: functional string, instance name,
inputs vector, outputs vector and type of primitive ele-
ment (LUT or FF). When a new type of elements is en-
countered on the current line a new node is dynamically
created and parsing the consequent lines populates all
parameters of this node. After all the nodes are properly
initialized we iterate over the nodes of the graph connect-
ing one node’s output with the inputs of the proper
nodes.

4.2 DUT Regions Formation and Constraints
Generation

Once the circuit net-list is created in the form of a
graph, it is necessary to generate user constraints, repre-
sented within the User Constraints File (UCF) in order to
perform the DUT physical space division into regions and
for packing the primitive cells into slices. The information
obtained from the net-list is parsed in a hierarchical man-
ner individuating the couples of LUTs that have been
already duplicated at the HDL level. The hierarchical or-
ganization consists of three categories of components.
Firstly, all the components that use MUXs and XORs are
grouped together for modular duplication without carry
chain usage. Secondly, LUTs with less than 5 inputs are
grouped together to form multiple error regions. Thirdly,
LUTs with 6 inputs are grouped to form single bit error
detection regions. The division of flip-flops into groups is
dependent upon the LUTs to which each flip-flop is con-
nected. It is possible to identify two cases: in case a LUT
output is connected directly to a FF input it is possible to
individuate a LUT-FF pair; vice versa, if a LUT output is
connected to another LUT input a LUT-LUT pair is con-
sidered.

Considering this classification, each LUT-FF pair iden-
tified within the netlist is stored in a way that each FF is
indexed by the corresponding LUT within the same pair.
Similarly, a LUT-LUT pair is created each time a LUT
used in the design is related to a LUT in another instance.
These LUT-LUT pairs are necessary for fine-grain com-
parison and need to be packed together in the same slice.
A slice object is modeled to house the packing of LUTs
and FFs. The slice object model is an abstraction of the
actual slice on the corresponding FPGA architectures and
considers the key attribute, for example the number of
LUTs, FFs and the unique clock and reset signals at the
input of the slice. The clock and reset signals (along with
Clock enable, Set/Reset signals) are important constraints
for the application of our method because each slice can
use a unique clock/reset signal that should be used by the
FFs residing in the slice. For this reason the global clock
and reset signals were not duplicated due to the architec-
tural limitation of state-of-the-art FPGA devices. Current-
ly, the approach picks up a LUT-LUT pair and its corre-
sponding FFs and checks the legality for packing them in
a single slice object and packs them together if the legality
constraints are fulfilled. The legality constraints mandate
that the FFs should use the same clock/reset signal, alt-
hough the global clock/reset signals are unique.

For the purpose of this work, the synthesizer is not
constrained in any manner for the duplication performed

at the HDL level; different duplication strategies applied
at the synthesis level may allow the FSM to use unique
control signals.

Once the graph is fully annotated with the resource
division information, a constraint file is generated that
uses the Xilinx packing constraints (XBLKNM) for pack-
ing and for forming area groups (AREA_GROUP). It is
important to note that each XBLKNM constraint uses a
unique slice name by concatenating the region identifier
with an identification number. For example, slices in the
single bit region use names like “SBESlice1”, “SBESlice2”
and so on. This naming convention is necessary for form-
ing the area groups and also for identification at the XDL
level, as it will be discussed in Section 4.3. After the com-
pletion of this packing step, each slice is included in an
area group of either a SBE region or a MBE region, de-
pending on the slice name assigned to it during the pack-
ing process. Furthermore, each area group is floor-
planned by selecting a slice range constraint to which it
will be mapped. The numbers of slices required are calcu-
lated from the number of graph nodes that fall in a certain
group. For multiple bit error regions, a number of CON-
FIG PROHIBIT constraints are generated for each slice
tile. These constraints are generated in such a manner that
the top two slices of each tile column are left empty. It is
important to note that both the packing and the floor-
planning steps have not been optimized in our case and
this can have considerable effects on the circuit operating
frequency. Once the constraints are generated, the transla-
tion and mapping processes are executed and produce
the mapping of LUT copies in the same slice, as illustrat-
ed in figures 3 and 4. The routing and check flag signal
insertion are performed in the following phase.

The algorithm illustrated in figure 6 performs the gen-
eration of the constraints used for the floorplanning of the
circuit including the mapping of the SBE and MBE re-
gions. It consists in three phases. The first one, netlist-
partitioning, elaborates the Directed Acyclic Graph (DAG)
of the circuits identifying the type of LUT resources and
allocating them into the SBE and MBE groups. The se-
cond phase, slice formation, composes the slice resources
connecting LUTs and FFs. The final phase, constraints gen-
eration, creates different mapping groups that will be in-
cluded in the User Constraints File (UCF). All the groups
are generated in the form of relative area constraints, thus
referring to resource map not placed on the FPGA array,

Fig. 5. The developed design flow.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS

besides, a prohibit constraints group is generated in order
to avoid overlapping placement between SBE and MBE
regions.

1: DAG = parser(Verilog_netlist);
// **************** Netlist-partitioning ********************//
2: foreach node ‘n’ in DAG.nodes
3: if(‘n’ is a LUT node)
4: if(child node of ‘n’ is a carry chain element)
5: Modular_LUTs.add(‘n’);
6: if(‘n’ is a 6 input LUT) // Single Bit Error Region
7: SBE_LUTs.add(make_pairs(‘n’, find(duplicate LUT in DAG.nodes))
8: if(‘n’ is 5 or less input LUT)
9: MBE_LUTs.add(make_pairs(‘n’, find(duplicate LUT in DAG.nodes))
10: endif
11: endforeach
// *************** Slice Formation *************************//
12: foreach LUT pair ‘p1’ in SBE_LUTs/MBE_LUTs
13: p2 = random_pick_up_LUT_pair (SBE_LUTs/MBE_LUTs – p1)
14: ff_pair1 = findconnectedFFs(p1)
15: ff_pair2 = findconnectedFFs(p2)
16: slice_object = create_slice_instance(p1,ff_pair1,p2,ff_pair2)
17: if(check_legality(slice_object))
18: sbe_slices/mbe_slices.add(slice_object)
19: else go to step 21
20: endforeach
// *************** constraints generation ***********************//
21: ucf_file = generate_packing_constraints(sbe_slices/mbe_slics);
22: sbe/mbe_clb_resources = calculate(sbe_slices/mbe_slices)
23: ucf_file = generate_area_group_constraints(sbe_clb_resources)
24: ucf_file = generate_area_group_contraints(mbe_clb_resources)
25: ucf_file = generate_site_prohibit_constraints(mbe_clb_resources)

Fig. 6. The flow of the constraint generation algorithm.

4.3 Low-level Manipulations
Once the mapping is performed, the insertion of the

carry chain and the definition of the comparator resources
are implemented by modifying the physical place and
route description of the circuit in order to properly use
the hardwired combinational gates. This process is exe-
cuted in the following distinct steps.
The carry chain insertion step is applied to the slices
where the carry chain primitives are not used for fast
arithmetic computation. The insertion mechanism of the
carry chain is the same for the single- and multiple-bit
error detection scheme; however, they differ in multi-
plexer’s settings and wiring details. Each inserted carry
chain is labeled with a unique reference to differentiate it
with respect to the ones used for arithmetic computation.
Each carry chain that spans multiple slices along a col-
umn forms a Relatively Placed Macro (RPM) identified by a
macro number and an individual carry chain number (for
example, Shape_0:0,0 and Shape_0:0,1 carry two carry
chains that belong to RPM Shape_0, each one identified
by its position in the RPM chain). First, the XDL file
should be checked to generate a unique RPM identifica-
tion name for the next carry chain to be inserted. Single
bit and multiple bit regions use two different kinds of
error detectors, since the flag reduction strategy differs
for both cases. For single bit regions, the flags are merged
using the dedicated COUT line that runs from a slice to
the next slice. Each XDL instance that belongs to a single
bit error region is augmented with a carry chain, each one
using a unique name, as discussed previously. Once the
carry chains are generated, the multiplexer’s settings for
each single bit error region is performed according to fig-
ure 3.
Now that each single bit error region slice contains the
carry chain for error detection it is necessary to connect
the carry chains along the column to converge the error
flags. In fact, at this stage the number of error detection
flags is linearly proportional to the number of slices used
in the single bit error region (which is typically huge) and
it is impractical to route them all to the control processor.
The placement was constrained in the previous step with
a generated UCF file; however, the placer stills tries to
optimize for timing and does not consider the fact the
each slice column should be filled to the maximum extent

possible resulting in a placement such that the single bit
region slices columns have empty slices positioned in the
middle of slices that use carry chain-based detectors. This
is a serious problem for the flag convergence because the
dedicated COUT line can only be used if the slices are
positioned in consecutive positions above and below each
other. In order to solve this problem, multiple carry chain
detectors were combined using an OR LUT generating a
single flag signal per CLB tile column. It is also interesting
to note that for each OR LUT an automatic procedure
searches for an empty slice in the same CLB column and
picks up the nearest one in terms of the slice site distance
for the OR LUT placement. OR LUT placement is a neces-
sary step because for the Virtex-5 FPGA architecture the
placement occurs as a part of the MAP process and
should be completed before the PAR routes the design. In
this way, the single bit error region flags are converged
resulting in error detection carry chains of varying
lengths. The higher the length of a carry chain, the larger
the error detection latency will be, as it will be discussed
in the experimental results Section. For multiple bit error
regions, the carry chains used for error detection use OR
LUTs in a manner similar to single bit regions. However,
the number of flags to be merged is quite large compared
to the single bit region as each slice generates two flags.
Therefore, the slice sites that were prohibited from usage
by the constraints in Section 4.1 are utilized for the
placement of OR LUTs. However, in some cases it is pos-
sible that there are some empty slices that are not utilized
by the placer and those can be used for OR LUTs based
on the metric of close proximity. The area overhead in-
troduced by the OR LUTs in the design utilizes the post-
placement empty slices and can be reduced if the slice
tiles are filled to the maximum extent possible. However,
this situation can cause a routing congestion and result-
antly the routing time will increase considerably.

The last phase of the low-level manipulation consists
of inserting nets with the source and sinks added to them.
Nets are added for all the components that have been
previously inserted in the form of carry chain-based de-
tectors or in the form of OR LUTs. The routing implemen-
tation will be performed by the Xilinx PAR tool that au-
tomatically routes all the nets between the inserted com-
ponents and adds the precise interconnection segments
that will be used for routing. It is important to note that if
the placement is confined too much the router will face
congestion problems and it is possible that the router may
take a very long time or in the worst case will be unable
to complete the routing of the design. Therefore, the
placement should be such that an optimal balance be-
tween the usage of OR LUTs for flag convergence and the
routing congestion is achieved.

5 EXPERIMENTAL RESULTS
We implemented the proposed method targeting a Xil-

inx Virtex-5 LX110T SRAM-based FPGA. We designed a
dynamically reconfigurable system where a Xilinx Micro-
blaze processor core was mapped into the static region,
while the design under test was mapped into the dynamic
region. Although other controller solutions exist for man-
aging the reconfiguration (e.g., based on an ad-hoc hard-
ware unit), we adopted the Microblaze processor since it
represents a state-of-the-art solution for a dynamically
and partially reconfigurable system based on static and
dynamic regions [4]. For design validation and fault injec-

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

SONZA ET AL.: AN ERROR-DETECTION AN SELF-REPAIRING METHOD FOR DYNAMICALLY AND PARTIALLY RECONFIGURABLE SYSTEMS 9

tion, the same Microblaze processor is used to apply the
test patterns to the DUT and to read the outputs from the
DUT through the GPIO port. Moreover, another GPIO
port connected to the flags stemming from the DUT re-
gion and configured in interrupt mode is responsible for
informing the Microblaze in case of errors. After the bit-
stream is downloaded to the FPGA the Microblaze
memory needs to be initialized with a golden copy of the
DUT bit-stream by reading the configuration area of the
DUT with the Xilinx hardwired Internal Configuration
Access Port (X-HW-ICAP).

As the placement of the different regions was made at
design time the Microblaze processor uses that infor-
mation to build up a bit-stream database for different er-
ror regions, as discussed in Section 3. For F-DWC regions,
the bit-stream is stored in such a way that if an error is
detected by a given flag, the frame can be recalled to re-
configure the affected area. However, the bit-stream for
the C-DWC region is stored as a partial bit-stream by
reading it with the ICAP from the start address to the end
address. In the following sections, we present several re-
sults mainly related to the ability of quick error detection,
localization and repairing. Besides, a measure of the cost
in terms of area overhead and speed is also presented.

5.1 Area Overhead
We selected a set of circuits as benchmarks and proof-

of-concept for our approach. The circuits include some
relevant ITC’99 benchmark circuits with various complex-
ity, two implementations of the CORDIC arithmetic pro-
cessor, a miniMIPS processor, a lightweight 8080 SoC, an
RS-Decoder and a DCT core from the opencores reposito-
ry [24] [25].

In Table I, we reported the number of LUTs and FFs of
each circuit. We compared the amount of resources used
by our approach with the resources used by the original
circuits implemented without any error detection or miti-
gation techniques and with a detection mechanism based
on the duplication with comparison using Double Modu-
lar Redundancy (DMR) and with a detection and mitiga-
tion mechanism based on Triple Modular Redundancy
(TMR). Please note that we did not include the amount of

resources related to the static region within the area count
since the static region remains the same in any Dynami-
cally Reconfigurable system, no matter the adopted solu-
tion. Furthermore, please note that DMR or TMR imple-
mentations do not directly lead to a duplicated or tripli-
cated resource count, since the redundancy is applied at
the pre-synthesis level.

The resource usage figures show that our approach is
far better than TMR, since on the average TMR requires
3.64 times more hardware resources than the original cir-
cuit, while our approach requires 2.10 times more re-
sources, only. If compared with DMR, our approach re-
quires 10% more resources on the average; however,
DMR cannot correct errors, while our approach corrects
errors and reduces the probability of single points of fail-
ure thanks to the developed fine-grain combinational log-
ic infrastructure.

We underline that the area comparison has been per-
formed directly on the basis of LUTs and FFs counts; if
comparison is made considering the number of FPGA
slices, the ratio may by slightly different due to stringent
packing and placement requirements adopted for the fi-
ne-grain redundancy with comparison logic. In particular,
slices are used as a route-through and FFs may be placed
in separate slices, since the FFs require different control
signals that could not be packed together with LUTs.

5.2 Error Detection Latency
The measurement of the error detection latency is the

key factor for making a proper self-repairing system able
to autonomously repair itself obeying to real-time con-
straints. The results we obtained are illustrated in Table
II, where it is shown the maximum error detection latency
for SBE and MBE regions. In detail, the table reports the
length of the carry chain detector, the delay latency with
routing and logic contributions of the SBE region, as well
as the distance from the detector and the delay latency for
the MBE region. It is notable that the SBE region latency is
larger than for the MBE region because all the carry
chains in each CLB that resides in the same column have
been connected in a unique CLB column.

Table I. Characteristics of the implemented circuits

 Original DMR TMR Our Approach
Circuit LUTs

[#]
FFs [#] LUTs [#] FFs [#] LUTs [#] FFs [#] LUTs

[#]
FFs [#]

B03 39 35 78 69 180 111 85 69
B04 115 67 213 131 449 201 250 131
B05 163 42 326 83 792 135 390 83
B07 98 50 196 99 406 153 18 16
B08 20 21 40 42 89 63 49 42
B09 49 28 98 56 117 84 108 56
B10 37 24 72 47 157 72 80 47
B14 1,161 217 2,322 434 6,417 669 2,552 434
B15 1,900 425 3,480 849 8,358 1,275 4,311 849
Cordic rp 1,024 1,019 2,048 2,038 3,658 3,387 2,329 2,038
Cordic pr 689 690 1,378 1,380 2,259 2,259 1,446 1,380
miniMIPS 3,200 1,883 6,439 3,764 5,649 5,649 6,789 3,764
L80SoC 261 237 522 473 1524 726 609 473
RS Decoder 4191 2801 8178 5600 18452 8403 9056 5620
DCT 1254 1935 2508 3866 5608 4755 2811 3866

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

10 IEEE TRANSACTIONS ON COMPUTERS

The analysis of the obtained data demonstrated that
two aspects affect the error detection latency: the routing
congestion and the detector location. For the SBE region
error detectors the contribution of latency due to logic
delay for a fully connected column is around 22.94 ns
(almost the 40%) compared to the routing delay contribu-
tion, which amounts to 35.53 ns (almost 60%).

Detailing the delay analysis, we note that the logic de-
lay is proportional across a column of slices, since the
number of carry chain detectors provides a proportional
delay contribution. Vice versa, the routing delay has a
higher variability due to the routing congestion induced
by the adjacency of slices making the interconnection tiles
less available for longer routing tracks. This aspect does
not only increase the overall latency but introduces severe
constraints on the routing usage in terms of design work-
ing frequency. Two alternatives have been used in order
to reduce the routing delay time. The former one is ori-
ented to relax the placement constraints of the overall
design logic resources, thus leaving some empty slices in
the SBE region; this permits placing the carry chain flag
interconnections only on a single CLB column and avoid-
ing carry chain flag interconnections convergence across
two or more slice columns. The latter solution corre-
sponds to the usage of LUT’s configured as OR gates in
order to converge flag signals. This introduces a trade-off
between the area overhead and the router completion
time.

It is worthwhile to mention that while the area over-
head increases, the maximum error detection latency de-
creases. Similarly, the MBE region uses LUT’s configured
as OR gates for the reduction of the interconnection flags.
As a result, the error detection latency for the MBE region
has a logic delay contribution of 0.19 ns, while the routing
delay is 2.92 ns, which corresponds to almost 6% and 94%
of the overall logic delay, respectively. These asymmet-
rical values are due to the fact that in the MBE region the
carry chain detector is one slice long and the error detec-
tion latency directly depends on the placement location of
the OR-LUTs and their distances from the flag generation
node.

Table II. Error Detection Latency for carry chain detectors

5.3 Error Correction and Detection
The effectiveness of the proposed approach concerning

the error correction and detection capabilities have been

evaluated through the execution of a number of fault in-
jection campaigns. The experiments have been performed
on the Xilinx Virtex-5 LX110T SRAM-based FPGAs by
injecting transient faults into the FPGA’s configuration
memory and evaluating the circuit’s response through the
execution of circuit specific workloads. Please note that
the faulty bitstreams are generated by corrupting the
FPGA’s configuration memory bits belonging to the dy-
namic region, while the static region was kept fault free.

Table III shows the fault injection results, where for
each circuit 10,000 Single Event Upsets (SEUs) have been
randomly injected into the whole FPGA configuration
memory bits related to the reconfigurable region. All the
circuits have been emulated at 50 MHz and SEUs are
practically injected by downloading the corrupted bit-
streams into the FPGA configuration memory.

Table III. Fault injection campaign experimental results

In details, the Wrong Answer reports the number of

SEUs and MEUs provoking a wrong answer on the circuit
outputs; the Corrected column reports the number of SEUs
and MEUs properly corrected by our approach. Please
note that the MEU effect considered in our experiments
always occurs in different slice columns involving the
modification of two configuration memory bits.

Table IV. Recovery Time comparison (worst case)

Circuit DMR
[µs]

TMR
[µs]

Our Approach
[µs]

B03 383.7 1,033.2 119.3
B04 678.9 1,239.8 237.7
B05 1,269.4 3,070.1 238.2
B07 531.4 1,594.1 238.9
B08 88.6 856.1 119.2
B09 206.6 501.8 120.9
B10 501.8 974.2 237.2
B14 2,922.5 5,667.8 829.7
B15 5,077.4 8,796.9 2,010.8
Cordic_rp 3,483.4 4,693.7 120.1
Cordic_pr 1,416.9 4,073.8 119.9
miniMIPS 8,029.4 11,335.7 2,011.4
L80SoC 2,154.9 2,892.9 474.8
RS decoder 11,040.5 17,062.6 2,129.3
DCT 4,250.9 19,128.9 2,364.6

This corresponds to the worst-case scenario; in fact,

correction of SEUs and MEUs in a single slice column
takes always the same amount of time; vice versa, errors
in different columns require a longer computational time
to be corrected. The obtained results demonstrate the ef-

Circuit

SBE region MBE region

Length

[#]

Latency

[ns]

Logic

Delay

[ns]

Routing

Delay

[ns]

Distance

[#]

Latency

[ns]

B03 4 8.81 5.73 3.09 4 1.25
B04 8 19.62 9.77 9.85 8 1.52
B05 14 42.61 16.03 26.58 14 2.07
B07 10 22.87 11.67 11.22 10 2.76
B08 3 6.63 4.63 2 2 1.15
B09 2 3.8 3.47 0.33 14 2.82
B10 4 11.98 4.59 7.39 2 1.023
B14 20 55.81 22.93 32.88 18 3.10
B15 20 51.26 22.10 29.16 19 3.42
Cordic_rp 0 0 0 0 3 1.99
Cordic_pr 0 0 0 0 2 1.85
miniMIPS 20 52.43 22.98 28.46 19 3.99
L80SoC 19 40.50 21.86 18.64 16 2.44
RS decod 20 44.80 22.98 21.82 19 3.86
DCT 13 23.84 14.97 8.86 17 2.99

Circuit

SEUs MEUs
Wrong
Answer

[#]

Corrected
[%]

Wrong
Answer

[#]

Corrected
[%]

B03 2,448 98.7 2,944 97.7
B04 584 99.8 632 98.3
B05 782 99.9 942 94.9
B07 4,762 97.4 5,682 95.6
B08 1,425 99.9 1,704 98.4
B09 1,784 99.6 8,938 99.0
B10 1,903 99.4 5,986 99.2
B14 5,121 98.4 5,443 97.9
B15 6,930 99.3 7,240 98.4
Cordic_rp 4,932 99.7 5,230 98.4
Cordic_pr 3,142 98.3 3,350 97.6
miniMIPS 8,903 99.9 9,104 98.4
L80SoC 1,238 97.8 1,469 97.3
RS decod 9,236 99.4 9,491 98.8
DCT 5,232 98.9 5,523 97.3

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

SONZA ET AL.: AN ERROR-DETECTION AN SELF-REPAIRING METHOD FOR DYNAMICALLY AND PARTIALLY RECONFIGURABLE SYSTEMS 11

fectiveness of our approach, which is able to correct more
than 98% of the injected errors provoking wrong answers
for all the considered circuits.

We also measured the recovery time; in Table IV we
reported the worst recovery time measured for all the
circuits during the execution of the fault injection cam-
paigns.

Moreover, we measured the average recovery time for
the tested circuits, which correspond to 76.3 μsec and
158.9 μsec for SEUs and MEUs, respectively. We also
computed the recovery time required by the redundancy
approaches, such as TMR and DMR, using active configu-
ration memory scrubbing of all the reconfigurable region
area, which is about 1.2 ms; our approach shows an im-
provement of more than one order of magnitude, and the
advantage provided by our approach is extremely large
on all the considered circuits.

5.4 Timing Analysis
Finally, we evaluated the impact on the circuit maxi-

mal working frequency on all the benchmark circuits
comparing our approach with the DMR and TMR redun-
dancy based techniques. In order to elaborate the timing
data we used the static timing analysis tool provided by
the Xilinx ISE environment. This tool is capable to pro-
vide the maximum delay for each net as well as the max-
imum delay for each logic cone, thus calculating the cir-
cuit maximum working frequency.

Fig. 7. Clock period comparison for the considered circuits using
different error detection and correction approaches.

The results are illustrated in figure 7, which reports
the maximum clock period of our benchmark set compar-
ing the figures related to the approaches. As it is possible
to notice, our approach has a reasonable behavior for me-
dium complexity circuits, while it is slower (up to the 22%
of the nominal working frequency) for larger circuits.
This phenomenon is due to the unconventional block
placement of logic resources on slice columns for different
circuit regions. This aspect affects the timing of the circuit
because our technique does not include an optimal floor-
plan implementation of the different circuit regions.
Please note in the reported data, the CG-DMR circuits
have been constrained in order to have a justified
comparison with respect to our approach. Circuits
having less complex routing requirements, such as
B03, B09, B14, B15 and CORDIC, may result in a small-
er clock period rather then the original ones.

The circuit clock period can be further optimized us-

ing floorplan oriented placement algorithms by acting on
the Fine-grain logic packing. These logic resources can be
packed per slice columns in order to tightly place the fine
grain duplication with comparison LUTs resources in the
optimal way.

In order to estimate the throughput of the user circuit
within the dynamic region when the error detection la-
tency is considered, we evaluated the individual contri-
bution of each phase of the design flow on the timing re-
sults of the considered benchmark circuits. In figure 8, we
illustrated the obtained results showing the percentage
contribution of each design phase constraints on the
overall circuit delay: LUT blocks, SBE region, MBE region
and Detectors. As it is possible to observe, most of the
delay is due to the LUT blocks, thus it is related to the
circuit complexity. Considering the contributions of our
approach, the majority of the penalization is introduced
by the SBE and MBE region constraints. y g

Fig. 8. Percentage of influence of the approach implementa-

tion phases on the circuit dynamic region.

6 CONCLUSIONS AND FUTURE WORKS
In this paper we propose a fine-grain fault detection

and correction mechanism, which can be applied to dy-
namically reconfigurable systems implemented by FPGA
devices. The approach is characterized by the capabilities
of detecting and correcting errors induced by single and
multiple upsets affecting the FPGA configuration
memory. The approach exploits the available carry chains
and the hardwired extra logic to perform the error detec-
tion; moreover, it is able to recover and correct errors us-
ing run-time partial reconfiguration. The effectiveness of
our approach has been evaluated with fault injection
campaigns demonstrating that our approach is able to
detect and correct more than 98% of the bit-flips, showing
an improvement of more than 1 order of magnitude in
terms of recovery time with respect to traditional redun-
dancy-based approaches. Moreover, our approach has a
more limited area overhead than TMR in terms of re-
quired circuit resources. As future researches, we plan to
improve the approach on two fronts: on one side, we aim
at reducing the area overhead by optimizing the error flag
propagation in order to be transparent with respect to the
reconfiguration process. On the other side, we plan to
further reduce the recovery time by optimizing the re-
source placement and selectively freezing the unused
slices during the error correction process.

g q y

Fig 7 Clock period comparison for the considered circuits using

n
a
e

u
e

an

g q y

Fig 7 Clock period comparison for the considered circuits using

6

an
na
de
of
mu
m
an

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2607749, IEEE
Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS

7 REFERENCES
[1] M. G. Gericota et al., "On-Line Self-Healing of Circuits Implemented on

Reconfigurable FPGAs", 13th IEEE International On-Line Testing Sym-
posium (IOLTS 2007), pp. 217-222, 2007

[2] L. Sterpone, M. Violante, “A New Algorithm for the Analysis of the
MCUs Sensitiveness of TMR Architectures in SRAM-Based FPGAs”,
IEEE Trans. on Nuclear Science, Vol. 55, Issue 4, Part 1, pp.2019-2027,
2008

[3] N. Rollins et al., “Evaluating TMR techniques in the presence of single
event upsets”, . Conf. on Military and Aerospace Programmable Logic
Devices (MAPLD), pp. P63–P63, 2003.

[4] M. Niknahad, O. Sander, and J. Becker, “Fgtmr – fine grain redundancy
method for reconfigurable architectures under high failure rates,”
NASNIT 2011.

[5] M. Niknahad, O. Sander, and J. Becker “A study on fine granular fault
tolerance methodologies for FPGAs,”, 6th International Workshop on
in Reconfigurable Communication-centric Systems-on-Chip,
(ReCoSoC), 2011 june 2011, pp. 1 –5.

[6] M. Niknahad, O. Sander, and J. Becker “Fine Grain Fault Tolerance – A
Key to High Reliability for FPGAs in Space”, IEEE Aerospace Confer-
ence, 2012.

[7] M. Koester et al., “Design optimization for Tiled Partially Reconfigura-
ble Systems”, IEEE Transaction on Very Large Scale Integration (VLSI)
Systems, Volume:19, Issue 6, pp. 1048-1061, 2010.

[8] M. Sonza Reorda, L. Sterpone, A. Ullah, “An error-detection and self-
repairing method for dynamically and partially reconfigurable sys-
tems”, 18th IEEE European Test Symposium, 2013, pp. 1 – 7

[9] G. L. Nazar and L. Carro, “Exploiting Modified Placement and Hard-
wired Rescources to Provide High Reliability in FPGAs,” 20th Interna-
tional Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 49-152, 2012

[10] X. She and P. Samudrala, “Selective Triple Modular Redundancy for
Single Event Upset (SEU) Mitigation,” NASA/ESA Conf. on Adaptive
Hardware and Systems, 2009 (AHS 2009), pp. 344–350, 2009.

[11] A. Cristo, K. Fisher, A. Gualtieri, R. M. Pérez, P. Martinez, “Optimiza-
tion of Processor-to-Hardware Module Communications on Spaceborn
Hybrid FPGA-based Architectures”, IEEE Embedded Systems Letters,
Vol. 5, No. 4, December 2013.

[12] M. Gokhale et al., “Dynamic reconfiguration for management of radia-
tion-induced faults in FPGAs”, Proc. 18th Intl. Parallel and Distributed

Proc. Symp, pp. 145-150, 2004.
[13] F. Kastensmidt et al., “On the Optimal Design of Triple Modular

Redundancy Logic for SRAM-Based FPGAs”, Proc. Design, Automa-
tion and Test in Europe, pp. 1290-1295, 2005.

[14] M. G. Gericota et al., “A Self-Healing Real-Time System Based on Run-
Time Self-Reconfiguration,” IEEE International Conference on Emerg-
ing Technologies and Factory Automation, 4 pp. – 1042, , Sept. 2005

[15] M. G. Gericota et al.,“Robust Configurable System Design with Built-In
Self-Healing”, Conference on Design of Circuits and Integrated Sys-
tems, November, 2005.

[16] V. V. Kumar and J. Lach, “Fine-Grained Self-Healing Hardware for
Large-Scale Autonomic Systems”, 14th International Workshop on Da-
tabase and Expert Systems Applications (DEXA’03), pp. 707-712, 2003.

[17] Sandeep K. Venishetti, Ali Akoglu and Rahul Kalra, “Hierarchical
Built-in Self-testing and FPGA Based HealingMethodology for System-
on-a-Chip”, Second NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), pp. 717 - 724 , 2007.

[18] M. Straka, Z. Kotasek, and J. Winter, “Digital systems architectures
based on on-line checkers,” 11th EUROMICRO Conference on Digital
System Design, IEEE Computer Society, pp. 81–87, 2008.

[19] M. Straka, J. Kastil, and Z. Kotasek, “Fault Tolerant Structure for SRAM-
based FPGA via Partial Dynamic Reconfiguration,” 13th Euromicro
Conference on Digital System Design: Architectures, Methods and
Tools, pp. 365 - 372, 2010.

[20] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan, M. Wirthlin,
“Fine-Grain SEU Mitigation for FPGAs Using Partial TMR”, IEEE
Transactions on Nuclear Science, pp. 2274 – 2280, Vol. 55, August 2008.

[21] U. Legat, A. Biasizzo, F. Novak, “SEU Recovery Mechanism for SRAM-
based FPGAs”, IEEE Transactions on Nuclear Science, Vol. 59, pp. 2562
– 2571, 2012.

[22] Xilinx Product Specification, “Xilinx Virtex-5 Family Overview”, DS100,
August 2015, pp. 15.

[23] Xilinx Product Specification, “Xilinx Virtex-5 FPGA Data Sheet: DC and
Switching Characteristics”, DS202, May 5, 2010.

[24] “ITC’99 Benchmarks (2nd release)”, 1999. [Online] Available at
http://www.cad.polito.it/downloads/tools/itc99.html

[25] “miniMIPS Overview”, opencores.org, 2009 [Online]. Available:
http://opencores.org/project, minimips.

