
Two Soft-Error Mitigation Techniques for Functional
units of DSP Processors

Alireza Rohani

Testable Design and Testing of Integrated Systems Group
CTIT/University of Twente
Enschede, The Netherlands

a.rohani@utwente.nl

Hans G. Kerkhoff
Testable Design and Testing of Integrated Systems Group

CTIT/University of Twente
 Enschede, The Netherlands

h.g.kerkhoff@utwente.nl

Abstract—This paper presents two soft-error mitigation
methods for DSP processors. Considering that a DSP processor is
composed of several functional units and each functional unit
constitutes of a control unit, some registers and combinational
logic, a unique characteristic of DSP workloads has been
deployed to develop a masking mechanism for the control-logic
of each functional unit. Combinational logic has been elaborated
with a fast recovery mechanism to isolate the fault-free
functional units and re-execute the erroneous instruction. These
techniques have been implemented on a DSP processor in order
to assess the achieved fault-tolerance versus the imposed
overheads.

I. INTRODUCTION 1
Increasingly miniaturized CMOS technologies along with the
reduction of operating voltage have made soft-errors a major
source of threat for today’s digital ICs. The impact of soft-
errors on a digital IC can be classified into two categories:
Single-Event-Upset (SEU) and Single-Event-Transient (SET).
A SEU occurs when a high-energy particle hits a storage
element (memory or flip-flop) and consequently changes its
stored value. A SET occurs when combinational logic is being
hit by a high-energy particle and a momentary pulse will be
generated at the output of the strike gate [1] and [2]. Radiation-
based experiments [3] show that the length of such a
momentary pulse is between 50ps to 150ps, depending on the
particle of strike. Historically, memory elements and flip-flops
were the point of concern with regard to soft-errors; as a result
mature and effective Error Detection And Correction (EDAC)
codes were developed to deal with SEUs. In contrast,
developing low-overhead mitigation methods for unstructured
and irregular parts of a processor such as the control unit is still
an open question [4]. The concern of SETs will escalate when
the amount of chip area devoted to complex structures will
grow with chip complexity. Moreover, increasing the system
frequency will cause the system errors to be dominated by the
SETs originating from combinational logic rather than SEUs
from storage elements [5].

II. RELATED WORKS
One of the most well-known approaches to eliminate the

impact of soft-errors in modern processors is the Checkpoint
and Recovery (CR) method in which the current status of the
processor is stored in a memory device at various time
instances of workload execution (referred to as check-points).
Upon soft-error detection, the processor status will be re-
loaded with the last saved check-point (referred to as roll-

1 This research has been conducted as part of the “ELESIS” project
(co)financed by the Netherlands Enterprise Agency (RVO).

back). Generally, CR-based methods impose a heavy load on
the system.

central-data-
memory

central-
control-unit

Local-
Control-

Unit
(LCU)

Input-Register

Input-
Registers

Combinational
logic

expand-unit

Functional-
unit-1

Functional-
unit-2

Functional-
unit-3

Functional-
unit-n

A DSP processor
Figure 1. A typical architecture of a DSP processor. The gray

parts will be elaborated in this paper

Paper [6] introduces the ReStore architecture, in which the
activation of a roll-back is triggered by symptoms such as a
high number of cache misses. Reference [4] presents another
signature-based CR-based technique for the control logic of
MIPS processors. Authors in [7] reconfigure the redundancy of
functional units of a DSP processor into a m-way replication,
however the execution-time of a program will be duplicated
due to assigning some functional units to fault-tolerance.
Recently, a hardware\software CR-based scheme, called Reli,
has been proposed in [8] which is based on elaborating micro-
instructions with additional micro-operations to facilitate
check-pointing.

Another category of recovery methods are redundancy-
based techniques. Authors in [9] and [10] explored a signature-
based caching scheme in which all control signals are
integrated into a signature and then they are verified before the
commitment stage. The disadvantage of this method lies in the
data dependency which can stall the pipeline stages for a long
time. VOLTaiRE, is a low-cost fault detection solution,
proposed in [11] which detects permanent faults in the data-
path of DSP processors. Two soft-error mitigation schemes,
namely Soft-Error Mitigation (SEM) and Soft and Timing
Error Mitigation (STEM), using the approach of multiple
clocking of data for protecting combinational logic, have been
proposed in [12]. While both of these methods can achieve
nearly 100% fault coverage, they impose 100% degradation on
the performance.

In our paper, we will show that employing the unique
characteristics of DSP workloads along with DSP architectures

2014 19th IEEE European Test Symposium (ETS)

!

978-1-4799-3415-7/14/$31.00 ©2014 IEEE

!

can result in a method that benefits from the advantages of
redundancy-based methods (short detection latency) and CR-
based methods (low performance degradation).

III. OUR CONTRIBUTIONS
This paper proposes a new architecture for DSP processors by
developing two architectural mechanisms to mitigate SETs in
functional units of a DSP processor. These mitigation
mechanisms have been developed based on employing the
unique characteristics of DSP workloads as well as DSP
architectures. As depicted in Figure 1, a DSP processor
constitutes of several functional units that execute a Very-
Long-Instruction-Word (VLIW) instruction in parallel. Each
functional unit is composed of several input-registers, a Local-
Control unit (LCU) and combinational logic. Considering the
fact that input-registers can be protected by readily-available
EDAC codes, a SET masking method has been developed for
the LCUs. A SET recovery mechanism has been designed for
the combinational logic. In order to protect the LCUs, the
control signals have been classified into either opcode-
dependent or instruction-dependent, based on their
changeability over time during execution of an instruction. The
opcode-dependent control signals have been replaced by a
ROM memory, acting as a look-up table. To protect
instruction-dependent control signals, an inherent characteristic
of DSP workloads, the locality of references, has been
employed. Combinational logic inside of each functional unit
has been enriched by shadow registers which make it feasible
to re-execute a very fine-grained part of an instruction while
the rest of the processor is waiting, the so called freezing.
Experimental results show that the masking method in LCUs
imposes 4% increase in silicon-area and 10% degradation in
performance, while the percentage of induced failures drops
from 40% to 5.4%. The enriched combinational logic imposes
10% overhead in area and causes no degradation on the
performance.

IV. SET MASKING IN LCUS
The mechanism of masking SETs in the LCUs is based on
classifying the control signals of each functional unit to either
opcode-dependent or instruction-dependent signals. As can be
seen in Figure 2, the value of opcode-dependent control
signals depends only on the opcode part of an instruction. In
contrast, the value of instruction-dependent control signals
depends on the whole instruction and not only on the opcode
part. The following subsections present two different masking
mechanisms for each category.

A. ROM-based Masking Approach
Since the value of opcode-dependent control signals depends
only on the opcode part of an instruction, and the number of
possible opcodes are limited per functional unit, a distributed
ROM memory has been deployed to store the value of the
opcode-dependent control signals for each opcode. The term
distributed implies that each pipeline stage can access this
ROM unit. A limited number of different opcodes per
functional unit (32 different opcodes per functional unit in our
case study) along with a limited number of opcode-dependent
control signals make it feasible to store the value of these
control signals for each opcode in a ROM memory during the
design phase and then retrieve them during run time. The

Figure 2. opcode- and instruction-dependent control signals

organization of this ROM memory consists of several entries
(equal to the number of different opcodes/per functional unit)
and the expected value of their control signals as the contents.
In order to retrieve the value of a particular control signal
during run-time, the opcode of a fetched instruction is
converted into an input-address for the ROM memory in which
the expected value of a particular control signal has already
been stored.

An example of this organization is shown in Figure 3.
Suppose that a typical functional unit has four different
opcodes, add=00, shift=01, multiply=10, load=11 and two
control signals of which their value depends on the opcodes,
named ALUsel and shift. The designer can store the value of
these control signals per opcode during the design phase. For
example, ALUsel is 1 for the add and multiply opcodes and 0 for
the other two opcodes. The shift signal is only 1 during the
execution of the shift operation. Consequently, the ROM
structure has four entries (associated with four opcodes) while
each entry has a two-bit width representing the contents. The
content of this ROM memory is constant independent of the
executed workload.
The probability that a SEU/SET can alter the contents of a
ROM memory is very low (near 0%) as compared to the
traditional structure of control units [13]. Moreover, EDAC
codes can be readily used to protect this ROM memory [14].
However, this structure is still vulnerable to SETs (in the
input/output lines or in the opcode-to-address convertor). In
the experimental results, the efficiency of this method will be
assessed. It is important to mention that the value of each
opcode-dependent control signal will be generated by this
ROM-unit, like a look-up table rather than the LCU of the
associated functional unit.

Figure 3. ROM structure to mask soft-errors in the opcode-
dependent control signals

!

!

A. Cache-based Masking Method
Another category of control signals is instruction dependent

control signals. Since the number of different instructions per
functional unit is infinite, the previously introduced look-up
table is not feasible in this case. In order to propose a novel
masking mitigation method, a common principle in computer
architectures, the so-called locality of reference has been
employed. This concept implies that most of the program
execution time is spent on a small piece of code. Especially for
DSP workloads, about 90% of the computational time is spent
in a very small kernel [15]. As a result, the variety of
instructions per workload is limited, however, the exact
instructions are not known to the designer before run-time. The
idea of our mechanism is to store a history of each instruction-
dependent control signal during the first and second executions
and subsequently compare the succeeding generated run-time
value with the stored history to detect any momentary change.
Considering that the values of an instruction-dependent control
signal are identical for all the executions of the same
instruction, unless an error occurred, this mechanism can detect
any singular errors in these signals.

A cache structure has been deployed to implement this
mechanism. This cache architecture has several entries which
are associated with the number of different instructions within
the kernel of the DSP program. The more number of entries in
the cache, the more number of different instructions can be
tracked. To track each instruction, the unique Program-Counter
(PC) can be used. The structure of this cache has been depicted
in Figure 4. Suppose that N different signals have been
classified as instruction-dependent control signals. The PC-to-
cache-address-decoder assigns a unique address in the cache
entries to each instruction. The value of the control signals,
which has been produced by the conventional LCUs during
run-time, are saved in the cache memory during the first and
second executions of the kernel of the DSP program. From the
third execution afterwards, the run-time value of a signal
(which has been generated by the conventional LCUs) will be
compared with two previously stored instances. The final
output is the majority voter of these three values at any instant
of time. Considering that the likelihood of perturbation of two
instances of one signal is very small, this scheme can mask the
effects of SETs for the associated signals.
The replacement mechanism of this cache structure plays an
important role in the efficiency of our mechanism. The random
policy replacement was used here to simplify the
implementations. Moreover, the number of entries of each
cache memory has been bounded to 16, i.e. 16 different
instructions can be tracked at any given point of time. A larger
cache can protect more signals, however as a trade-off, the
complexity of the PC-to-cache-address-decoder and the area
overhead of the cache structure need to be considered also.
Another issue that needs to be addressed here is the controller
(or FSM) which is responsible for determining the status of an
instruction-dependent control signal with regard to its history.
Figure 5 illustrates this FSM that will accompany the scheme
depicted in Figure 4.

The complete scheme is depicted in Figure 6. The following
paragraph explains this architecture using the tracing of the
following simple pseudo-code. Suppose that a control signal nt,
whose value depends on the whole instruction, should be
stored and retrieved via the cache structure. The nt signal is

 Figure 4. Cache structure to store a history of control signals

PC Instruction
0XXXX beginning of the program
0X0001 instri
0X0010 instrj
0X0011 loop
0X0100 instr1(the active1 signal is 1)
0X0101 rest of the loop
0X0110 end loop
0XXXX rest of the program

Figure 5. The FSM controller of the cache structure

elaborated during execution of a particular instruction, named
instr1 in the above pseudo-code. At the first iteration of the
loop, there is no history of nt. So the FSM of Figure 5 is in the
status labelled no-history in which the output signal is zero;
this subsequently indicates that the value of nt is written in the
cache memory and is also passed through the rest of the
pipeline stages. At this point, an activation signal named
active1 is raised which indicates that instr1 has been reached in
the program flow. The FSM will move on to the status labelled
one-history which means that one history of the instruction-
dependent control signals associated with the instr1 resides in
the cache.

If the program hits the instr1 for the second time, the value of
nt will be stored as the second history of this signal. Similar to
the previous situation, the run-time value of nt will be passed to
the rest of the pipeline stages (as output is still 0). Activation of
the active1 signal for the third time raises the output signal and
consequently the run-time value of this control signal goes into

!

!

the majority voter along with two previous stored values, as
shown in Figure 6.

Figure 6. The complete scheme composed of a cache, majority
voter and the FSM controller

Even if one instance is corrupted, either one of the stored

values or the run-time value, the faulty value will be masked
by the majority voter and the fault-free signal will traverse
through the rest of the pipeline. The n parameter in activen in
Figure 6 depends on how many different instructions exist in a
functional unit. This cache structure is a redundant module
along with the conventional LCUs of functional units.
Furthermore, many readily available mechanisms to harden the
cache memory with regard to soft-errors can be used to even
make this cache structure more resilient [16].

V. RECOVERY MECHANISM IN COMBINATIONAL LOGICS
Each functional unit receives its associated opcode from the

expand unit and the required data from the data-memory, as
already shown in Figure 1. The opcode of the received
instruction is decoded by the LCU (or equivalent logic, such as
a look-up table) and subsequently the decoded signals will be
stored in the associated input-registers. Similarly, the required
operands from the memory or register-file will be fetched and
stored in their associated input-registers. As long as the data
presented in the input-registers are identical at T1 and T2, the
output-signal of the combinational logic at T1 and T2 will be
identical. The idea of our recovery method is based on
accompanying every input-register with one shadow-register in
order to hold a copy of the associated data during one
consecutive clock-cycle. Since every instruction in a VLIW
architecture is distributed over different functional units, it is
feasible to halt the fault-free functional units and re-execute the
faulty instruction in the associated functional unit. To achieve
this goal, both the decoded signal received from LCU and the
data received from the data memory need to be available for
one extra clock-cycle. Upon an error detection, the normal flow
of the processor will be halted, and the stored data will be sent
to the combinational logic one more time, resulting in one-
clock latency on the overall execution time. The limitation of
this method is that if two SETs occur at two consecutive clock-
cycles, the proposed mechanism will fail to recover the
processor. Even though the probability of such an occurrence is
very rare, accompanying more shadow-registers per input-
register can solve this problem.

There are two possibilities to implement this mechanism.
First is to store the value of an input-register at the ith clock-

pulse, denoted at datai in a shadow-register; then upon an error
detection, pass the datai to the combinational logic at the
(i+1)th clock-pulse and simultaneously store the new arrived
value datai+1 (which was supposed to be applied to the
combinational logic) in the input-registers. A second
implementation is to re fetch the datai at the (i+1)th clock-cycle
and store the datai+1 in the shadow-register. The second
implementation has been selected in this work and is shown in
Figure 7. Referring to this figure, a detection-signal will be
generated by the combinational logic. This signal can be
generated by any mechanism, providing that it detects an error
in less than one clock-cycle (a so called zero-latency), such as
Duplication With Comparison (DWC). This detection-signal
will set a wait-register that will raise the wait-signal during the
next consecutive clock-cycle to halt fault-free functional units.
These two signals are consistent with the timing diagram which
has been shown in Figure 8. As can be seen in Figure 8, upon
an error detection in the (i+3)th clock-cycle tr2, the input-
register will be loaded with the same previous data in the
(i+4)th clock-cycle while the original data input-4, will be
temporary saved in the shadow-register to be passed into the
combinational logic during the (i+5)th clock-cycle. The
multiplexers 1 and 1' provide the possibility of loading either a
normal value from the data-memory or the value of the last
clock-cycle, depending on the value of detection-signal. The
multiplexers 2 and 2' provide the possibility of loading the
output of an input-register or a shadow-register into the
combinational logic, depending on the value of the wait-signal.
Referring to Figure 8, during the (i+3)th clock-pulse, the
detection-signal is high (tr1), while at the beginning of the
(i+4)th clock-cycle, the detection-signal is high and each input-
register will be loaded by its previous value which a faulty
results was produced for. During the (i+4)th clock-pulse, input-
3 will be processed again in the combinational logic. At the
beginning of (i+5)th clock-cycle, the wait-signal is high and the
combinational logic will be loaded by the contents of the
shadow-register. Considering the experiments carried out in
iRoC-Technologies [17] and [3], the duration of SETs is
considerably less than one clock-cycle. So, re-executing the
faulty instruction after a clock cycle will stop the faulty results
to propagate through the rest of the processor.

The main novel feature of the presented recovery method is
isolation of the faulty functional unit from the fault-free ones
for one clock-cycle, referred to as freezing, and re-executing
the faulty part of the instruction. Another novel feature is the
minimum amount of information needed to be stored in each
functional unit; this decreases the recovery overhead to only
one clock-cycle, while a typical recovery mechanism takes 16
clock-cycles for the CR-based mechanism [8]. Moreover, the
speed of the enriched processor is identical to the performance
of the original processor, as long as no SET is present in the
system. Furthermore, several clock-cycles are required to store
a check-point in the CR-based methods irrespective of the
occurrence rate of SETs. Our presented method stores the
value of every input-register simultaneously in a shadow-
register and as long as no error has been detected by the
detection mechanism, the total execution time of a workload is
identical by the original or enriched processor.

VI. EXPERIMENTAL RESULTS
In this section, our results are presented based on the

implementation of the described methods in a DSP Xentium

!

!

processor, from Recore System [18]. The RTL code of the
Xentium processor has been modified such that the LCUs of
functional units are enhanced by the method presented in
Section IV and the rest of the functional units have been
modified based on V.

Figure 7. Recovery method in combinational logic part

 Figure 8. Timing diagram of the recovery mechanism

A. Area overhead and Performance Degredation
To assess the area overhead and performance degradation

induced by the presented methods, a fault-tolerant version of
the DSP Xentium processor was developed in the RTL VHDL
code. An aggregation test using 20 DSP workloads was
carried out to assure its correct functionality. Subsequently,
the synthesis tool Synopsys DC was used to synthesize the
RTL design using the UMC 90nm technology. The
implementation data has been divided into two parts: the
area/timing overhead induced by the LCU masking
mechanism and the overhead in the combinational logic.

Doing so allows us to compare the efficiency of our method
with others.

The achieved results are shown in Table 1. The original
Xentium is the original implementation of the processor. The
FT LCU is a Xentium processor in which the LCUs of all
functional units have been enhanced by the method of Section
IV, while the rest of the functional units is identical to the
original design. The next two rows show a Xentium processor
in which the combinational logics have been modified on the
basis of Section V. Moreover, the reported area for the
combinational logic has been divided into two parts: including
the detection mechanism and disregarding the detection
mechanism. As detection mechanism for combinational logic,
a partial DWC approach has been employed. For example, for
the 32*32-bit multipliers inside a functional unit, two 8-LSB
of each input are concurrently multiplied by a smaller
redundant multiplier and then the calculated result will be
compared to the 8-LSB of the 32*32 bit multiplier, in which
any mismatch indicates an error.

Table 1. Area and system clock for the proposed
approaches

 total cell
area (µ2)

area
overhead

(%)

critical-path
(ns)

performance
degradation

original
Xentium 293462 0 7.87 0

FT LCU 304785 4 8.70 10
FT comb.
(including
detection)

341316 16 7.87 0

FT comb.
(excluding
detection)

325247 10 7.87 0

B. Achieved Fault tolerance
A simulation-based fault study at the gate-level

implementation has been conducted to assess the achieved fault
tolerance of the enriched processor. Regarding the simulation-
model of SETs, the most recent model of SETs presented in [3]
and [19] have been employed. Regarding the workload, a
signal processing program, named Finite Impulse Response
(FIR) has been used as a workload during fault injection. Using
additional DSP workloads were desirable, however the
computation time to conduct FIR experiments was already
more than several days and involving more workloads was not
feasible at this time.

The induced effect of a fault can be classified as wrong-
results, which means the injected fault has been propagated
into the system while correct-behaviour indicates the injected
fault has been masked before propagating into the system [20].
The behavior of the processor has been indicated in percent, for
example if 10 out of 100 fault injections produce wrong-
results, the sensitivity of the processor is 10%.
The number of fault injections in each set of experiments has
been increased from an initial value (200 for LCU and 500 for
combinational logic) until a clear convergence can be
recognized in the obtained sensitivity level of the processor.
The mathematical details of calculating the convergence point
is out of the scope of this paper and it has been thoroughly
discussed in [19].

Table 2 shows the results of the sensitivity analysis. It can
be seen that for the original processor, the percentage of
propagated faults in the LCUs is 40% while this number is

!

!

30% for combinational logic. The sensitivity of the enriched
LCUs has decreased to 5.4% with a detection-latency of 0
clock-cycles (faults will be masked). Further investigation
showed that undetected faults have escaped from the detection
mechanism as they occurred in the opcode-to-address-
convertor in the look-up table scheme. For FT-combinational
logic, 15% of injected faults could escape from the detection
mechanism. However, as long as a fault is detected, the
recovery mechanism blocks the fault from propagating through
the rest of the processor and recovers the processor within one
clock-cycle.

Table 2. Achieved fault tolerance

fault

injections (k)
wrong

answers (k) Sensitivity (%)
Detection
latency
(Clk)

LCU Comb.
logic LCU Comb.

logic LCU Comb.
logic

Original
xentium 12.8 32 5.12 9600 40 30 N.A

FT LCU 12.8 32 0.7 9600 5.4 30 0
FT

comb.
logic

12.8 32 5.12 5100 40 15 1

C. Comparison of the presented methods with other available
mechanisms
Table 3 shows the comparison of our proposed methods

with some available solutions of soft-error mitigation in either
LCU or combinational logics. A thorough comparison is very
hard as the imposed overhead depends on many parameters
such as the exact architecture of the case study, the workloads
etc.

Starting with the mitigation methods in the control unit,
our work has been compared with [4]. It can be seen that even
though the area-overhead of [4] is similar to ours, our method
will cause less performance degradation. Comparing our
combinational logic mitigation method with one presented in
[7], our method is quite competitive in terms of area overhead.

Table 3. Comparison of our method versus other referred
methods

Area overhead (%) Frequency degradation

(%)

LCU Comb.
logic LCU Comb.

logic
Our

Method 4 10 10 0

[4] 3.4 N.A 17 N.A
[7] N.A 15 N.A 0

VII. CONCLUSIONS
As DSP processors emerge in diverse domains, traditional

redundancy methods are not affordable for current-day
applications. In this paper two novel solutions to mitigate soft-
errors in DSP processors were introduced. The first method
employed iterative execution of DSP kernels to organize a
look-up table and a cache structure to mitigate soft-errors in
the control unit of a functional unit. The second approach
benefits from the inherent architecture of DSP processors to
isolate faulty functional units from the fault-free ones in order
to carry out a fast recovery. Our simulation results showed
that the proposed methods are able to successfully mitigate

SETs, while their area overhead/performance degradation are
better compared to current available methods.

ACKNOWLEDGMENT
The authors would like to thank G. Rauwerda and S.

Baillou of Recore Systems for their valuable suggestions
during this work as well as their kind contribution to provide
VHDL code of the processor.

REFERENCES

[1] A. Miele, C. Sandionigi, M. Ottavi, S. Pontarelli, A. Salsano, C. Metra
and et al., “High-reliability fault tolerant digital systems in nanometric
technologies: characterization and design methodologies,” IEEE
Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2012, pp. 121-125.

[2] A. Eghbal, P. M. Yaghini, H. Pedram and H. R. Zarandi, “Fault
injection-based evaluation of a synchronous NoC router,” IEEE
International On-Line Testing Symposium, 2009. Pp. 212-214.

[3] D. Alexandrescu, E. Costenaro and M. Nicolaidis, “A practical approach
to single event transients analysis for highly complex designs,” IEEE
Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2011, pp. 155-163.

[4] H. Ghasemzadeh-Mohammadi, H. Tabkhi, S. G. Miremadi and A. Ejlali,
“A cost-effective error detection and roll-back recovery technique for
embedded microprocessor control logic,” International Conference on
Microelectronics, 2008, pp. 470-473.

[5] E. Touloupis, J. A. Flint, V. A. Chouliaras and D. D. Ward, “Study of
the effects of SEU induced faults on a pipeline protected
microprocessor,” IEEE Transaction on Computers, 2007, pp. 1585-
1596.

[6] N. J. Wang and S. J. Patel, “ReStore: symptom based soft error detection
in microprocessors,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 3, 2006, pp. 188-201.

[7] Y. Y. Chen, K. L. Leu and C. S. Yeh, “Fault-Tolerant VLIW processor
design and error coverage analysis,” Conference of Embedded and
Ubiquitous Computing, 2006, pp. 754-765.

[8] T. Li, R. Ragel and A. Parameswaran, “Reli: Hardware/software
checkpoint and recovery scheme for embedded processors,” Design,
Automation and Test in Europe, 2012, pp. 857-880.

[9] S. Kim and A. K. Somani, “On-Line integrity monitoring of
microprocessor control logic,” International Conference on Computer
Design, 2001, pp. 314-319.

[10] T. S. Ganesh, V. Subramanian and A. Somani, “SEU mitigation
techniques for microprocessor control logic,” European Dependable
Computing Conference, 2006, pp. 77-86.

[11] S. Shyam, S. Phadke, B. Lui, H. Gupta, V. Bertacco and D. Blaauw,
“VOLTaiRE: low-cost fault detection solutions for VLIW
microprocessors,” Workshop on Introspective Architecture, 2006, pp.
20-27.

[12] N. D. P. Avirneni and A. K. Somani, “Low Overhead Soft Error
Mitigation Techniques for High-Performance and Aggressive Designs,”
IEEE Transactions on Computers, vol. 61, no. 4, 2012, pp. 488-501.

[13] Radiation Effects Mitigation handbook, ESA handbook, 2011.
[14] X. Wendling, R. Rochet and R. Leveugle, “ROM-Based synthesis of

fault-tolerant controllers, “Proceedings of the Workshop on Defect and
Fault-Tolerance in VLSI System, 1996, pp. 304-308.

[15] G.J. Smit, A. Kokkeler, P. T. Wolkotte, P. K. F Hölzenspies, D. Marcel
and P. M. Heysters, “The chameleon architecture for streaming DSP
applications,” EURASIP Journal on Embedded Systems, 2007, pp. 11.

[16] H. Zarandi, S. G. Miremadi and A. Ejlali, “Dependability analysis using
a fault injection tool based on synthesizability of HDL Models,”
Symposium on Defect and Fault Tolerance in VLSI Systems, 2003, pp.
485-492.

[17] iRoC Technologies, 2012. http://www.iroctech.com/
[18] Recore Systems, 2011, http://www.recoresystems.com/.
[19] A. Rohani, H. G. Kerkhoff, D. Alexanderscu and E. Costenaro, “Pulse-

length determination techniques in the rectangular single event transient
fault model,” International Conference on Embedded Computer
Systems: Mirchitectures, Modeling, and Simulation, in Press.

[20] S Mukherjee, “Architecture Design for Soft Errors,” ISBN: 978-0-12-
369529-1, Morgan Kaufmann Publishers, 2008.

!

!

