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Abstract—This paper presents two soft-error mitigation 
methods for DSP processors. Considering that a DSP processor is 
composed of several functional units and each functional unit 
constitutes of a control unit, some registers and combinational 
logic, a unique characteristic of DSP workloads has been 
deployed to develop a masking mechanism for the control-logic 
of each functional unit. Combinational logic has been elaborated 
with a fast recovery mechanism to isolate the fault-free 
functional units and re-execute the erroneous instruction. These 
techniques have been implemented on a DSP processor in order 
to assess the achieved fault-tolerance versus the imposed 
overheads. 

I. INTRODUCTION 1 
Increasingly miniaturized CMOS technologies along with the 
reduction of operating voltage have made soft-errors a major 
source of threat for today’s digital ICs. The impact of soft-
errors on a digital IC can be classified into two categories: 
Single-Event-Upset (SEU) and Single-Event-Transient (SET). 
A SEU occurs when a high-energy particle hits a storage 
element (memory or flip-flop) and consequently changes its 
stored value. A SET occurs when combinational logic is being 
hit by a high-energy particle and a momentary pulse will be 
generated at the output of the strike gate [1] and [2]. Radiation-
based experiments [3] show that the length of such a 
momentary pulse is between 50ps to 150ps, depending on the 
particle of strike. Historically, memory elements and flip-flops 
were the point of concern with regard to soft-errors; as a result 
mature and effective Error Detection And Correction (EDAC) 
codes were developed to deal with SEUs. In contrast, 
developing low-overhead mitigation methods for unstructured 
and irregular parts of a processor such as the control unit is still 
an open question [4]. The concern of SETs will escalate when 
the amount of chip area devoted to complex structures will 
grow with chip complexity. Moreover, increasing the system 
frequency will cause the system errors to be dominated by the 
SETs originating from combinational logic rather than SEUs 
from storage elements [5]. 

II. RELATED WORKS 
One of the most well-known approaches to eliminate the 

impact of soft-errors in modern processors is the Checkpoint 
and Recovery (CR) method in which the current status of the 
processor is stored in a memory device at various time 
instances of workload execution (referred to as check-points). 
Upon soft-error detection, the processor status will be re-
loaded with the last saved check-point (referred to as roll-

                                                           
1  This research has been conducted as part of the “ELESIS” project 
(co)financed by the Netherlands Enterprise Agency (RVO).   

back). Generally, CR-based methods impose a heavy load on 
the system.  
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Figure 1. A typical architecture of a DSP processor. The gray 
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Paper [6] introduces the ReStore architecture, in which the 
activation of a roll-back is triggered by symptoms  such as a 
high number of cache misses. Reference [4] presents another 
signature-based CR-based technique for the control logic of 
MIPS processors. Authors in [7] reconfigure the redundancy of 
functional units of a DSP processor into a m-way replication, 
however the execution-time of a program will be duplicated 
due to assigning some functional units to fault-tolerance.  
Recently, a hardware\software CR-based scheme, called Reli, 
has been proposed in [8] which is based on elaborating micro-
instructions with additional micro-operations to facilitate 
check-pointing.  

Another category of recovery methods are redundancy-
based techniques. Authors in [9] and [10] explored a signature-
based caching scheme in which all control signals are 
integrated into a signature and then they are verified before the 
commitment stage. The disadvantage of this method lies in the 
data dependency which can stall the pipeline stages for a long 
time. VOLTaiRE, is a low-cost fault detection solution, 
proposed in [11] which detects permanent faults in the data-
path of DSP processors. Two soft-error mitigation schemes, 
namely Soft-Error Mitigation (SEM) and Soft and Timing 
Error Mitigation (STEM), using the approach of multiple 
clocking of data for protecting combinational logic, have been 
proposed in [12]. While both of these methods can achieve 
nearly 100% fault coverage, they impose 100% degradation on 
the performance. 

In our paper, we will show that employing the unique 
characteristics of DSP workloads along with DSP architectures 
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can result in a method that benefits from the advantages of 
redundancy-based methods (short detection latency) and CR-
based methods (low performance degradation). 

III. OUR CONTRIBUTIONS 
This paper proposes a new architecture for DSP processors by 
developing two architectural mechanisms to mitigate SETs in 
functional units of a DSP processor. These mitigation 
mechanisms have been developed based on employing the 
unique characteristics of DSP workloads as well as DSP 
architectures. As depicted in Figure 1, a DSP processor  
constitutes of several functional units that execute a Very-
Long-Instruction-Word (VLIW) instruction in parallel. Each 
functional unit is composed of several input-registers, a Local-
Control unit (LCU) and combinational logic. Considering the 
fact that input-registers can be protected by readily-available 
EDAC codes, a SET masking method has been developed for 
the LCUs. A SET recovery mechanism has been designed for 
the combinational logic. In order to protect the LCUs, the 
control signals have been classified into either opcode-
dependent or instruction-dependent, based on their 
changeability over time during execution of an instruction. The 
opcode-dependent control signals have been replaced by a 
ROM memory, acting as a look-up table. To protect 
instruction-dependent control signals, an inherent characteristic 
of DSP workloads, the locality of references, has been 
employed. Combinational logic inside of each functional unit 
has been enriched by shadow registers which make it feasible 
to re-execute a very fine-grained part of an instruction while 
the rest of the processor is waiting, the so called freezing. 
Experimental results show that the masking method in LCUs 
imposes 4% increase in silicon-area and 10% degradation in 
performance, while the percentage of induced failures drops 
from 40% to 5.4%.  The enriched combinational logic imposes 
10% overhead in area and causes no degradation on the 
performance.  

IV. SET MASKING IN LCUS 
The mechanism of masking SETs in the LCUs is based on 
classifying the control signals of each functional unit to either 
opcode-dependent or instruction-dependent signals. As can be 
seen in Figure 2, the value of opcode-dependent control 
signals depends only on the opcode part of an instruction. In 
contrast, the value of instruction-dependent control signals 
depends on the whole instruction and not only on the opcode 
part. The following subsections present two different masking 
mechanisms for each category. 

A. ROM-based Masking Approach 
Since the value of opcode-dependent control signals depends 
only on the opcode part of an instruction, and the number of 
possible opcodes are limited per functional unit, a distributed 
ROM memory has been deployed to store the value of the 
opcode-dependent control signals for each opcode. The term 
distributed implies that each pipeline stage can access this 
ROM unit. A limited number of different opcodes per 
functional unit (32 different opcodes per functional unit in our 
case study) along with a limited number of opcode-dependent 
control signals make it feasible to store the value of these 
control signals for each opcode in a ROM memory during the 
design phase and then retrieve them during run time. The  

Figure 2. opcode- and instruction-dependent control signals 
 

organization of this ROM memory consists of several entries 
(equal to the number of different opcodes/per functional unit) 
and the expected value of their control signals as the contents. 
In order to retrieve the value of a particular control signal 
during run-time, the opcode of a fetched instruction is 
converted into an input-address for the ROM memory in which 
the expected value of a particular control signal has already 
been stored.  

An example of this organization is shown in Figure 3. 
Suppose that a typical functional unit has four different 
opcodes, add=00, shift=01, multiply=10, load=11 and two 
control signals of which their value depends on the opcodes, 
named ALUsel and shift. The designer can store the value of 
these control signals per opcode during the design phase. For 
example, ALUsel is 1 for the add and multiply opcodes and 0 for 
the other two opcodes. The shift signal is only 1 during the 
execution of the shift operation. Consequently, the ROM 
structure has four entries (associated with four opcodes) while 
each entry has a two-bit width representing the contents. The 
content of this ROM memory is constant independent of the 
executed workload.  
The probability that a SEU/SET can alter the contents of a 
ROM memory is very low (near 0%) as compared to the 
traditional structure of control units [13]. Moreover, EDAC 
codes can be readily used to protect this ROM memory [14]. 
However, this structure is still vulnerable to SETs (in the 
input/output lines or in the opcode-to-address convertor). In 
the experimental results, the efficiency of this method will be 
assessed.  It is important to mention that the value of each 
opcode-dependent control signal will be generated by this 
ROM-unit, like a look-up table rather than the LCU of the 
associated functional unit. 

Figure 3. ROM structure to mask soft-errors in the opcode-
dependent control signals 
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A. Cache-based Masking Method 
Another category of control signals is instruction dependent 

control signals. Since the number of different instructions per 
functional unit is infinite, the previously introduced look-up 
table is not feasible in this case. In order to propose a novel 
masking mitigation method, a common principle in computer 
architectures, the so-called locality of reference has been 
employed. This concept implies that most of the program 
execution time is spent on a small piece of code. Especially for 
DSP workloads, about 90% of the computational time is spent 
in a very small kernel [15]. As a result, the variety of 
instructions per workload is limited, however, the exact 
instructions are not known to the designer before run-time. The 
idea of our mechanism is to store a history of each instruction-
dependent control signal during the first and second executions  
and subsequently compare the succeeding generated run-time 
value with the stored history to detect any momentary change. 
Considering that the values of an instruction-dependent control 
signal are identical for all the executions of the same 
instruction, unless an error occurred, this mechanism can detect 
any singular errors in these signals. 

A cache structure has been deployed to implement this 
mechanism. This cache architecture has several entries which 
are associated with the number of different instructions within 
the kernel of the DSP program. The more number of entries in 
the cache, the more number of different instructions can be 
tracked. To track each instruction, the unique Program-Counter 
(PC) can be used. The structure of this cache has been depicted 
in Figure 4. Suppose that N different signals have been 
classified as instruction-dependent control signals. The PC-to-
cache-address-decoder assigns a unique address in the cache 
entries to each instruction. The value of the control signals, 
which has been produced by the conventional LCUs during 
run-time, are saved in the cache memory during the first and 
second executions of the kernel of the DSP program. From the 
third execution afterwards, the run-time value of a signal 
(which has been generated by the conventional LCUs) will be 
compared with two previously stored instances. The final 
output is the majority voter of these three values at any instant 
of time. Considering that the likelihood of perturbation of two 
instances of one signal is very small, this scheme can mask the 
effects of SETs for the associated signals. 
The replacement mechanism of this cache structure plays an 
important role in the efficiency of our mechanism. The random 
policy replacement was used here to simplify the 
implementations. Moreover, the number of entries of each 
cache memory has been bounded to 16, i.e. 16 different 
instructions can be tracked at any given point of time. A larger 
cache can protect more signals, however as a trade-off, the 
complexity of the PC-to-cache-address-decoder and the area 
overhead of the cache structure need to be considered also. 
Another issue that needs to be addressed here is the controller 
(or FSM) which is responsible for determining the status of an 
instruction-dependent control signal with regard to its history. 
Figure 5 illustrates this FSM that will accompany the scheme 
depicted in Figure 4. 

The complete scheme is depicted in Figure 6. The following 
paragraph explains this architecture using the tracing of the 
following simple pseudo-code. Suppose that a control signal nt, 
whose value depends on the whole instruction, should be 
stored and retrieved via the cache structure. The nt signal is  
 

 Figure 4. Cache structure to store a history of control signals 
 

PC Instruction 
0XXXX beginning of the program
0X0001 instri 
0X0010 instrj 
0X0011 loop 
0X0100       instr1(the active1 signal is 1)
0X0101       rest of the loop
0X0110 end loop 
0XXXX rest of the program

 

Figure 5. The FSM controller of the cache structure 
 

elaborated during execution of a particular instruction, named 
instr1 in the above pseudo-code. At the first iteration of the 
loop, there is no history of nt. So the FSM of Figure 5 is in the 
status labelled no-history in which the output signal is zero; 
this subsequently indicates that the value of nt is written in the 
cache memory and is also passed through the rest of the 
pipeline stages. At this point, an activation signal named 
active1 is raised which indicates that instr1 has been reached in 
the program flow. The FSM will move on to the status labelled 
one-history which means that one history of the instruction-
dependent control signals associated with the instr1 resides in 
the cache.  

If the program hits the instr1 for the second time, the value of 
nt will be stored as the second history of this signal.  Similar to 
the previous situation, the run-time value of nt will be passed to 
the rest of the pipeline stages (as output is still 0). Activation of 
the active1 signal for the third time raises the output signal and 
consequently the run-time value of this control signal goes into 
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the majority voter along with two previous stored values, as 
shown in Figure 6. 

Figure 6. The complete scheme composed of a cache, majority 
voter and the FSM controller 

 
Even if one instance is corrupted, either one of the stored 

values or the run-time value, the faulty value will be masked 
by the majority voter and the fault-free signal will traverse 
through the rest of the pipeline. The n parameter in activen in 
Figure 6 depends on how many different instructions exist in a 
functional unit. This cache structure is a redundant module 
along with the conventional LCUs of functional units. 
Furthermore, many readily available mechanisms to harden the 
cache memory with regard to soft-errors can be used to even 
make this cache structure more resilient [16].  

V. RECOVERY MECHANISM IN COMBINATIONAL LOGICS 
Each functional unit receives its associated opcode from the 

expand unit and the required data from the data-memory, as 
already shown in Figure 1. The opcode of the received 
instruction is decoded by the LCU (or equivalent logic, such as 
a look-up table) and subsequently the decoded signals will be 
stored in the associated input-registers. Similarly, the required 
operands from the memory or register-file will be fetched and 
stored in their associated input-registers. As long as the data 
presented in the input-registers are identical at T1 and T2, the 
output-signal of the combinational logic at T1 and T2 will be 
identical. The idea of our recovery method is based on 
accompanying every input-register with one shadow-register in 
order to hold a copy of the associated data during one 
consecutive clock-cycle. Since every instruction in a VLIW 
architecture is distributed over different functional units, it is 
feasible to halt the fault-free functional units and re-execute the 
faulty instruction in the associated functional unit. To achieve 
this goal, both the decoded signal received from LCU and the 
data received from the data memory need to be available for 
one extra clock-cycle. Upon an error detection, the normal flow 
of the processor will be halted, and the stored data will be sent 
to the combinational logic one more time, resulting in one-
clock latency on the overall execution time. The limitation of 
this method is that if two SETs occur at two consecutive clock-
cycles, the proposed mechanism will fail to recover the 
processor. Even though the probability of such an occurrence is 
very rare, accompanying more shadow-registers per input-
register can solve this problem. 

There are two possibilities to implement this mechanism. 
First is to store the value of an input-register at the ith clock-

pulse, denoted at datai  in a shadow-register; then upon an error 
detection,  pass the datai to the combinational logic at the 
(i+1)th clock-pulse and simultaneously store the new arrived 
value datai+1 (which was supposed to be applied to the 
combinational logic) in the input-registers. A second  
implementation is to re fetch the datai at the (i+1)th clock-cycle  
and store the datai+1 in the shadow-register. The second 
implementation has been selected in this work and is shown in  
Figure 7. Referring to this figure, a detection-signal will be 
generated by the combinational logic. This signal can be 
generated by any mechanism, providing that it detects an error 
in less than one clock-cycle (a so called zero-latency), such as 
Duplication With Comparison (DWC). This detection-signal 
will set a wait-register that will raise the wait-signal during the 
next consecutive clock-cycle to halt fault-free functional units. 
These two signals are consistent with the timing diagram which 
has been shown in Figure 8. As can be seen in Figure 8,  upon 
an error detection in the (i+3)th clock-cycle tr2, the input-
register will be loaded with the same previous data in the 
(i+4)th clock-cycle while the original data  input-4, will be 
temporary saved in the shadow-register to be passed into the 
combinational logic during the (i+5)th clock-cycle. The 
multiplexers 1 and 1' provide the possibility of loading either a 
normal value from the data-memory or the  value of the last 
clock-cycle, depending on the value of detection-signal. The 
multiplexers 2 and 2' provide the possibility of loading the 
output of an input-register or a shadow-register into the 
combinational logic, depending on the value of the wait-signal. 
Referring to Figure 8, during the (i+3)th clock-pulse, the 
detection-signal is high (tr1), while at the beginning of the 
(i+4)th clock-cycle, the detection-signal is high and each input-
register will be loaded by its previous value which a faulty 
results was produced for. During the (i+4)th clock-pulse, input-
3 will be processed again in the combinational logic. At the 
beginning of (i+5)th clock-cycle, the wait-signal is high and the 
combinational logic will be loaded by the contents of the 
shadow-register. Considering the experiments carried out in 
iRoC-Technologies [17] and [3], the duration of SETs is 
considerably less than one clock-cycle. So, re-executing the 
faulty instruction after a clock cycle will stop the faulty results 
to propagate through the rest of the processor. 

The main novel feature of the presented recovery method is 
isolation of the faulty functional unit from the fault-free ones 
for one clock-cycle, referred to as freezing, and re-executing 
the faulty part of the instruction. Another novel feature is the 
minimum amount of information needed to be stored in each 
functional unit; this decreases the recovery overhead to only 
one clock-cycle, while a typical recovery mechanism takes 16 
clock-cycles for the CR-based mechanism [8]. Moreover, the 
speed of the enriched processor is identical to the performance 
of the original processor, as long as no SET is present in the 
system. Furthermore, several clock-cycles are required to store 
a check-point in the CR-based methods irrespective of the 
occurrence rate of SETs. Our presented method stores the 
value of every input-register simultaneously in a shadow-
register and as long as no error has been detected by the 
detection mechanism, the total execution time of a workload is 
identical by the original or enriched processor. 

VI. EXPERIMENTAL RESULTS 
In this section, our results are presented based on the 

implementation of the described methods in a DSP Xentium 
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processor, from Recore System [18]. The RTL code of the 
Xentium processor has been modified such that the LCUs of 
functional units are enhanced by the method presented in 
Section IV and the rest of the functional units have been 
modified based on  V. 

Figure 7. Recovery method in combinational logic part 
 

 Figure 8. Timing diagram of the recovery mechanism 
 

A. Area overhead and Performance Degredation  
To assess the area overhead and performance degradation 

induced by the presented methods, a fault-tolerant version of 
the DSP Xentium processor was developed in the RTL VHDL 
code. An aggregation test using 20 DSP workloads was 
carried out to assure its correct functionality. Subsequently, 
the synthesis tool Synopsys DC was used to synthesize the 
RTL design using the UMC 90nm technology. The 
implementation data has been divided into two parts: the 
area/timing overhead induced by the LCU masking 
mechanism and the overhead in the combinational logic. 

Doing so allows us to compare the efficiency of our method 
with others.  

The achieved results are shown in Table 1. The original 
Xentium is the original implementation of the processor. The 
FT LCU is a Xentium processor in which the LCUs of all 
functional units have been enhanced by the method of Section 
IV, while the rest of the functional units is identical to the 
original design. The next two rows show a Xentium processor 
in which the combinational logics have been modified on the 
basis of Section V. Moreover, the reported area for the 
combinational logic has been divided into two parts: including 
the detection mechanism and disregarding the detection 
mechanism. As detection mechanism for combinational logic, 
a partial DWC approach has been employed. For example, for 
the 32*32-bit multipliers inside a functional unit, two 8-LSB 
of each input are concurrently multiplied by a smaller 
redundant multiplier and then the calculated result will be 
compared to the 8-LSB of the 32*32 bit multiplier, in which 
any mismatch indicates an error. 

Table 1. Area and system clock for the proposed 
approaches 

 total cell 
area (µ2) 

area 
overhead 

(%) 

critical-path 
(ns) 

performance 
degradation 

original 
Xentium 293462 0 7.87 0 

FT LCU 304785 4 8.70 10 
FT comb. 
(including 
detection) 

341316 16 7.87 0 

FT comb. 
(excluding 
detection) 

325247 10 7.87 0 

B. Achieved Fault tolerance 
A simulation-based fault study at the gate-level 

implementation has been conducted to assess the achieved fault 
tolerance of the enriched processor. Regarding the simulation-
model of SETs, the most recent model of SETs presented in [3] 
and [19] have been employed. Regarding the workload, a 
signal processing program, named Finite Impulse Response 
(FIR) has been used as a workload during fault injection. Using 
additional DSP workloads were desirable, however the 
computation time to conduct FIR experiments was already 
more than several days and involving more workloads was not 
feasible at this time. 

The induced effect of a fault can be classified as wrong-
results, which means the injected fault has been propagated 
into the system while correct-behaviour indicates the injected 
fault has been masked before propagating into the system [20]. 
The behavior of the processor has been indicated in percent, for 
example if 10 out of 100 fault injections produce wrong-
results, the sensitivity of the processor is 10%.  
The number of fault injections in each set of experiments has 
been increased from an initial value (200 for LCU and 500 for 
combinational logic) until a clear convergence can be 
recognized in the obtained sensitivity level of the processor. 
The mathematical details of calculating the convergence point 
is out of the scope of this paper and it has been thoroughly 
discussed in [19].  

Table 2 shows the results of the sensitivity analysis. It can 
be seen that for the original processor, the percentage of 
propagated faults in the LCUs is 40% while this number is 
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30% for combinational logic. The sensitivity of the enriched 
LCUs  has decreased to 5.4% with a detection-latency of 0 
clock-cycles (faults will be masked). Further investigation 
showed that undetected faults have escaped from the detection 
mechanism as they occurred in the opcode-to-address-
convertor in the look-up table scheme. For FT-combinational 
logic, 15% of injected faults could escape from the detection 
mechanism. However,  as long as a fault is detected, the 
recovery mechanism blocks the fault from propagating through 
the rest of the processor and recovers the processor within one 
clock-cycle. 

Table 2. Achieved fault tolerance 

 
# fault 

injections (k) 
# wrong 

answers (k) Sensitivity (%) 
Detection 
latency 
(Clk)

LCU Comb. 
logic LCU Comb. 

logic LCU Comb. 
logic  

Original 
xentium 12.8 32 5.12 9600 40 30 N.A 

FT LCU 12.8 32 0.7 9600 5.4 30 0
FT 

comb. 
logic 

12.8 32 5.12 5100 40 15 1 

C. Comparison of the presented methods with other available 
mechanisms 
Table 3 shows the comparison of our proposed methods 

with some available solutions of soft-error mitigation in either 
LCU or combinational logics. A thorough comparison is very 
hard as the imposed overhead depends on many parameters 
such as the exact architecture of the case study, the workloads 
etc.  

Starting with the mitigation methods in the control unit, 
our work has been compared with [4]. It can be seen that even 
though the area-overhead of [4] is similar to ours, our method 
will cause less performance degradation. Comparing our 
combinational logic mitigation method with one presented in 
[7], our method is quite competitive in terms of area overhead. 

Table 3. Comparison of our method versus other referred 
methods 

 
Area overhead (%) Frequency degradation 

(%) 

LCU Comb. 
logic LCU Comb. 

logic 
Our 

Method 4 10 10 0 

[4] 3.4 N.A 17 N.A 
[7] N.A 15 N.A 0 

VII. CONCLUSIONS 
As DSP processors emerge in diverse domains, traditional 

redundancy methods are not affordable for current-day 
applications. In this paper two novel solutions to mitigate soft-
errors in DSP processors were introduced. The first method 
employed iterative execution of DSP kernels to organize a 
look-up table and a cache structure to mitigate soft-errors in 
the control unit of a functional unit. The second approach 
benefits from the inherent architecture of DSP processors to 
isolate faulty functional units from the fault-free ones in order 
to carry out a fast recovery. Our simulation results showed 
that the proposed methods are able to successfully mitigate 

SETs, while their area overhead/performance degradation are 
better compared to current available methods. 
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