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Abstract—Large process variations in recent technology nodes
present a major challenge for the timing analysis of digital inte-
grated circuits. The optimization decisions of a statistical delay
test generation method must therefore rely on the probability of
detecting a target delay fault with the currently chosen test vector
pairs. However, the huge number of probability evaluations in
practical applications creates a large computational overhead.

To address this issue, this paper presents the first incremental
delay fault detection probability computation algorithm in the
literature, which is suitable for the inner loop of automatic test
pattern generation methods. Compared to Monte Carlo simula-
tions of NXP benchmark circuits, the new method consistently
shows a very large speedup and only a small approximation error.

Index Terms—delay test, process variations, delay test quality

I. INTRODUCTION

Process variations and high defect densities in recent tech-

nology nodes have emerged as new challenges for the timing

analysis and the delay test of digital integrated circuits [1]–[3].

The uncertainty in the delays of all circuit components severely

degrades the quality and reliability of all delay tests, leading

to many test escapes [4]. More stringent path sensitization

conditions can reduce the risk of test escapes, but these

conditions are not satisfiable for a large number of paths [5].

The detection of a target delay fault by a single test vector

pair occurs with a certain delay fault detection probability,

which must be increased by the application of additional test

vector pairs to minimize the risk of test escapes [6]. This prob-

ability depends on many delay test parameters [7]–[13], which

must be optimized to find a suitable compromise between the

final delay test quality and the test cost. Apart from the test set

itself, these parameters include the test clock cycle time [9] and

the masking of the combinational network outputs for faster-

than-at-speed testing [10]. To guide the delay test parameter

optimization, the delay fault detection probabilities for all

affected target delay faults must be estimated after every delay

test parameter modification. To avoid a huge computational

overhead, the knowledge of previous probability estimation

results must be exploited to incrementally compute the delay

fault detection probability after every parameter modification.

The large runtime of the delay fault detection probability

estimation has prompted some research in a related but simpler

problem [11], which is obtained by neglecting all structural

and spatial correlations. However, the resulting approximation

error is acceptable only for tiny delay variations in the mature

and classical manufacturing technology space [14].

On the other hand, Monte Carlo simulations naturally con-

sider structural and spatial correlations even in very complex

circuit models. To avoid simulating the entire test set after ev-

ery removal or insertion of a test vector pair, [12] proposed to

store the random delay values and test results for all iterations

and test vector pairs. However, a Monte-Carlo simulation of

the entire circuit is inefficient because only sufficiently long

paths, which are also sensitized by the new test vector pair,

can have a significant impact on the fault detection probability.

In [9], the authors presented a sensitization analysis in

combination with a block based approach to compute the test

vector pair delay distribution. While the block based approach

could easily be extended for incremental computations, it also

requires all gate and interconnect delays to have a normal

distribution. However, this requirement is not satisfied for low

power applications [15] and localized delay faults, which are

often assumed to have an exponentially distributed fault size.

To alleviate these limitations, the authors of [13] introduced

a path based approach which only requires normally dis-

tributed path delays. However, the efficiency of this approach

deteriorates with the test set size, because a multivariate

normal integral of increasingly high dimension must be ap-

proximated after every delay test parameter modification.

To address this problem, the paper at hand presents a new

path based algorithm, which incrementally approximates the

fault detection probability after every delay test parameter up-

date. The algorithm minimizes the runtime for the probability

computations by efficiently adapting an approximation of the

test subset delay distribution, which is defined by the joint

delay distribution of all test vector pairs in the test subset. The

accuracy of the delay fault detection probability approximation

only depends on the new values of the delay test parameters

and is not affected by the delay test parameter update type or

the order, in which these updates are applied.

The incremental analysis is based on a new extension of

the Clark approximation [16], which introduces an efficient

method to compute the covariance Cov(U, V ) between the two

maxima U = max(X1, X2) and V = max(X3, X4) of jointly

normally distributed random variables X1, . . . , X4.

The remainder of this paper is organized as follows. The

proposed incremental computation of the delay fault detection

probability is presented in section II. Section III describes the

extension of the Clark maximum approximation method. The

experimental results for several NXP benchmark circuits are

shown in section IV and conclusions are drawn in section V.



II. INCREMENTAL COMPUTATION OF THE

DELAY FAULT DETECTION PROBABILITY

It is assumed that the whole circuit is subject to delay

variations, which may cause path delay faults by itself or in

combination with a single gate delay fault. The subset of all

test vector pairs in the test set, which are applicable for the

detection of the gate delay fault, is referred to as test subset.

Furthermore, the time between the application of a test vector

pair to the combinational network inputs and the stabilization

of all network outputs is called test vector pair delay. The

following subsections focus on the insertion and the removal

of a test vector pair from the test subset. The update of other

delay test parameters is addressed in subsection II-E.

Following an update of the test subset, the proposed algo-

rithm incrementally approximates the probability of capturing

an incorrect logic value into at least one scan flip-flop. The

incremental computation is based on the efficient approxima-

tion and adaptation of the test subset delay distribution, which

is the joint delay distribution of all test vector pairs in the

test subset. Only relatively few distribution parameter entries

are affected by a delay test parameter update, which yields

substantial savings in runtime. Moreover, the small dimension

of the distribution allows the efficient approximation of the

timing failure probability, which is a tight upper bound for

the delay fault detection probability. A timing failure occurs

if at least one combinational network output has not stabilized

to its final logic value within the test clock cycle time.

All major steps of the algorithm are shown in Fig. 1. After

the insertion of a new test vector pair, a sensitization analysis

of this test vector pair is performed, which yields all com-

plete transition paths along which transitions propagate to the

combinational network outputs (A). The delay of the new test

vector pair is then described by a normal distribution, which

approximates the maximum of all transition path delays (B).

This normal distribution subsequently extends the multivariate

normal approximation of the test subset delay distribution

by one dimension (C). Finally, the timing failure probability

approximation is obtained by numerical integration over the

resulting multivariate normal distribution (D).

After the removal of a test vector pair, the corresponding

parameter entries of the multivariate normal distribution are

deleted (C). A numerical integration over the reduced distri-

bution yields the timing failure probability approximation (D).

The following subsections present a detailed description of

all major steps of the algorithm.

A. Sensitization Analysis of New Test Vector Pair

The sensitization analysis is based on a single pass event-

driven timing simulation of the new test vector pair using only

nominal delay values [9], [13]. A set of complete transition

paths is subsequently identified by tracing all transitions at the

outputs of the combinational networks back to the inputs of

the networks. The delay of a transition path is the sum of the

delays of all circuit components along the path, where each

component delay is defined as the sum of the nominal delay

value, the inter-die and the intra-die part of the delay variation.

START

update

type

inserted test vector pair

A. Sensitization Analysis of New Test Vector Pair

B. Approximation of New Test Vector Pair Delay Distribution

C. Adaptation of Test Subset Delay Distribution Approx.

D. Approximation of Timing Failure Probability

delay fault detection probability approx.

END

REMOVE(test vector pair)

INSERT(test vector pair)

Fig. 1. Flowchart after the insertion or the removal of a test vector pair.

Any complete transition path, which terminates at an un-

masked combinational network output, is called long transi-

tion path if its probability of exceeding the test clock cycle

time is above a user defined threshold. In the following,

X1, X2, . . . , Xn will denote the delays of the resulting n long

transition paths.

The sum of all component delays along a complete transi-

tion path converges rapidly to a normal distribution for most

practical models of correlation, especially if the distributions

of the gate delays are close to a normal distribution [17]. This

property is a major advantage of the path based approach and

also justifies the assumption, that the joint distribution of all

long transition path delays can accurately be described by a

multivariate normal distribution.

B. Approximation of New Test Vector Pair Delay Distribution

The delay of the new test vector pair, which extends the

current test subset from size k − 1 to size k, is defined as

Yk = max(X1, . . . , Xn), (1)

and approximated using the extended Clark approximation

method, which is presented in section III.

The additional flexibility of the extension allows the forma-

tion of balanced tree like dataflow graphs (Fig. 2b), in which

only those maximum operations, which lie on the path to the

final result, must be recomputed if modifications to the long

transition path delays are made.

On the other hand, the Clark approximation always forms

a single chain of maximum operations (Fig. 2a), so that on

average half of the maximum operation results depend on the

value of a single variable.



Fig. 2. Data flow graphs for the approximation of max(X1, X2, X3, X4)
using (a) the Clark approximation and (b) the extended Clark approximation.

C. Adaptation of Test Subset Delay Distribution Approx.

The joint distribution of all test vector pair delays is called

test subset delay distribution. For greater efficiency, this dis-

tribution is approximated by a multivariate normal distribution

with mean vector µ and covariance matrix Σ.

After the insertion of a new test vector pair, the length of

the mean vector and the dimension of the covariance matrix

increases from k − 1 to k. The values of the new entry of

µ and the new diagonal entry of Σ equal the mean and the

variance of the new test vector pair delay Yk. The remaining

new entries Cov(Yk, Y1), . . . ,Cov(Yk, Yk−1) of Σ represent

the covariances between Yk and the delays Y1, . . . , Yk−1 of

the remaining test vector pairs in the test subset.

The Clark approximation does not provide a function to

compute the covariance Cov(Yk, Yi) between the two test

vector pair delays Yk and Yi, with i ∈ N
+, i < k. Therefore,

the covariance computation method of the extended Clark

approximation is required, which is presented in section III.

Similar to the approximation of the maximum max(Yk, Yi),
the computation of Cov(Yk, Yi) starts from the long transition

path delays and proceeds level by level until Yk and Yi have

been reached. However, most of the intermediate results are

still available from the approximation of Yk and Yi and only

some additional covariances must be computed.

After the removal of the ith test vector pair, the dimension

of µ and Σ reduces from k to k − 1 by deleting all entries,

which correspond to the ith test vector pair delay Yi.

The time for the extension of the distribution increases

linearly with the test subset size, assuming that all test vector

pairs sensitize the same number of long transition paths.

D. Approximation of Timing Failure Probability

Finally, this step approximates the probability of a timing

failure, which occurs if at least one test vector pair delay

Yi ∈ {Y1, . . . , Yk} exceeds the test clock cycle time Tclk.

The timing failure probability is computed as

Ψ = 1− Pr(Y1 ≤ Tclk, . . . , Yk ≤ Tclk), (2)

and approximated by a multivariate normal integral over the

test subset delay distribution approximation

Ψ ≈ 1−
Tclk
∫

−∞

· · ·
Tclk
∫

−∞

φ(y;µ,Σ)dy1...dyk, (3)

where φ(·) denotes the probability density function of the

multivariate normal distribution.

The probability Ψ is efficiently approximated using recent

numerical integration algorithms [18], [19]. To ensure the

positive definiteness of Σ for linearly dependent test vector

pair delays and approximation errors, all diagonal entries of

Σ are multiplied with a very small constant greater than one.

E. Update of other Delay Test Parameters

The set of complete transition paths, which was stored

for every test vector pair in the test subset, can be reused

because it does not depend on the test clock cycle time Tclk

or the masking of the transition path outputs. However, some

complete transition paths may become long transition paths

if Tclk is reduced or some combinational network outputs

are unmasked. Likewise, some long transition paths may be

removed if outputs are masked or Tclk is increased, although

the latter case may have little impact on the test subset delay

distribution approximation.

If the masking or unmasking of transition path outputs

changes the set of long transition paths, the algorithm proceeds

as if a new test vector pair had been added to the test

subset. However, instead of extending the mean vector and the

covariance matrix, all entries corresponding to the modified

test vector pair delay are replaced.

III. EXTENDED CLARK APPROXIMATION METHOD

Let U = max(X1, X2) and V = max(X3, X4) denote

two maxima of jointly normal random variables. The extended

Clark approximation uses the formulas for the exact moments

of U and V , presented by Clark [16], but extends the flexibility

of the approximation by providing a method for the accurate

computation of the covariance Cov(U, V ).
The classical Clark approximation computes Cov(U,X3)

and Cov(U,X4) using the formula Cov(max(Y1, Y2), Y3) =
Pr(Y1 > Y2)Cov(Y1, Y3)+Pr(Y1 ≤ Y2)Cov(Y2, Y3). However,

the new random vector (X3, X4, U) does not have a trivariate

normal distribution. As a consequence, this formula does not

compute the accurate value of Cov(max(X3, X4), U).
This extension computes the accurate covariance from

Cov(U, V ) = E[UV ]− E[U ]E[V ], (4)

where the first raw moments E[U ] and E[V ] are available from

the Clark approximation [16]. The cross-moment E[UV ] is

E[UV ]=E[X1X3|X1>X2, X3>X4]Pr(X1>X2, X3>X4)

+ E[X1X4|X1>X2, X3≤X4]Pr(X1>X2, X3≤X4)

+ E[X2X3|X1≤X2, X3>X4]Pr(X1≤X2, X3>X4)

+ E[X2X4|X1≤X2, X3≤X4]Pr(X1≤X2, X3≤X4).

To simplify the solution for the above expression, let the

random vector W be a linear transformation of X , defined as

(W1,W2,W3,W4) = (X1, X1 −X2, X3, X3 −X4),

The transformed vector W has a multivariate normal distri-

bution with mean vector

θ = (µ1, µ1 − µ2, µ3, µ3 − µ4)
T



and covariance matrix

A=







σ1,1 σ1,1−σ1,2 σ1,3 σ1,3−σ1,4

σ1,1+σ2,2−2σ1,2 σ1,3−σ2,3 σ1,3−σ1,4−σ2,3+σ2,4

σ3,3 σ3,3−σ3,4

σ3,3+σ4,4−2σ3,4






,

where µi denotes the mean of Xi and σi,j denotes the

covariance Cov(Xi, Xj) with i, j ∈ {1, . . . , 4}. Only the

upper triangular part of the covariance matrix A = {ai,j} is

presented here due to spacial limitations. The lower triangular

part is defined by symmetry A = AT .

Suppose that the component Wi has mean θi, standard

deviation ai =
√
ai,i and correlation ρi,j = ai,j/(aiaj) with

another component Wj . By introducing the following notations

αi = −θi/ai (5)

β2 = (α4 − ρ2,4α2)/
√

1− ρ22,4 (6)

β4 = (α2 − ρ2,4α4)/
√

1− ρ22,4 (7)

and using the property

E[WiWj ] = ai,j + θiθj , (8)

the formulas for the truncated multivariate normal distribution,

presented in [20] and [21], can be simplified to

E[UV ] = E[W1W3]

−E[W1W4]Φ1(α4)+(θ1−θ2Φ1(β4))a4φ1(α4)

−E[W2W3]Φ1(α2)+(θ3−θ4Φ1(β2))a2φ1(α2) (9)

+E[W2W4]Φ2(α2, α4; ρ2,4)

+(1−ρ22,4)a2a4φ2(α2, α4; ρ2,4)

with

E[U ] = θ1 − θ2Φ1(α2) + a2φ1(α2) (10)

E[V ] = θ3 − θ4Φ1(α4) + a4φ1(α4), (11)

where φk denotes the probability density function and Φk

denotes the cumulative distribution function of the k-variate

standard normal distribution. Hence, the computation of the

covariance Cov(max(X1, X2),max(X3, X4)) involves sev-

eral univariate normal integrals but only one bivariate normal

integral, which can be evaluated using a fast double precision

approximation method, recently presented by Genz [19].

For the special case ρ2,4 = 0 the computation simplifies to

Cov(U, V ) = a1,3 − a1,4Φ1(α4)− a2,3Φ1(α2) (12)

Finally, if either U or V has a normal distribution, the

proposed extension simplifies to the special case considered by

the Clark approximation formula for Cov(max(Y1, Y2), Y3).

IV. EXPERIMENTAL RESULTS

Several NXP benchmark circuit were speed-optimized using

a commercial synthesis tool and mapped to the NanGate 45nm

Open Cell Library [22]. The gate model for this approach

conforms to the Verilog HDL [23] standard, but instead of

real numbers, every delay value X of a gate has a normal

distribution with variance var(X) = (cvE[X])2 and mean

E[X] equal to the nominal delay value from the standard

delay format description of the synthesized circuit. Based

on predictions for future process technology nodes [14], a

variation coefficient of cv = 0.25 was selected. Interconnect

delays and spatial correlations would require the analysis of

full chip layouts, which had not been designed to avoid an

unnecessary complex experimental setup. The test clock cycle

time Tclk was determined, such that delay variations would

not cause timing failures in 95% of the fault free chips.

For every circuit, a set of 20000 randomly chosen single

gate delay faults was created. Next, a test subset for each delay

fault was generated by a suitable example ATPG algorithm.

At first, the 1000 longest paths through the fault site were

found by a commercial static timing analysis tool. Thereby,

the number of paths terminating at the same combinational

network output was limited to 100. The resulting set of paths

was sensitized with a commercial ATPG tool. Finally, the

delay fault size was chosen, such that the delay of the longest

complete transition path through the fault site was equal Tclk.

To evaluate the incremental probability computation, the

example ATPG algorithm extended an initially empty test

subset by inserting single test vector pairs in decreasing order

of the greatest complete transition path delay. The removal of

a randomly chosen test vector pair only requires a rerun of

the numerical integration, which is also presented in Table I.

Only the results of those update operations are shown, which

resulted in a test subset of size 1, 5, 10 or 20 test vector pairs.

Alternative delay test parameter updates are evaluated by the

results of the corresponding individual steps of the algorithm.

The reference fault detection probability P was computed

by crude full-circuit Monte Carlo simulations of 104 iterations,

which results in a sufficiently small estimated upper bound of

0.0098 for the half length of the 95% confidence interval.

A fault is said to be detected if during one iteration a

combinational network output has an unexpected logic value

after the test clock cycle time Tclk. The runtime of a Monte

Carlo simulation is dominated by the large number of random

delay values, which are required for each iteration. The

Verilog HDL standard distinguishes between different pin-

to-pin, asymmetric rising/falling and conditional path delays.

Therefore up to eight delay values are required for a two-

input gate. The random number generation utilizes high-

performance implementations of the Box-Muller transform

and the Mersenne Twister pseudo-random number generator

from the Intel Math Kernel Library [24]. All programs were

implemented in C, C++ and FORTRAN and executed on Intel

Core i7-2600K processor workstations with 20GB RAM.

Column (1) gives the name of the NXP benchmark circuit,

and column (2) shows the number of test vector pairs |Θ|
in the test subsets Θ after the insertion or removal of a test

vector pair. All following columns (3)-(14) present average

values over all randomly chosen delay faults in each circuit.

The average runtime of the crude Monte Carlo simulation

is shown in column (3). The following columns (4)-(11) and

(12)-(14) present the results for the insertion and the removal

of a test vector pair, respectively.



NXP
circuit

|Θ|

Reference INSERT(test vector pair) REMOVE(test vector pair)

crude MC sensitization analysis (A) dist. ext. (B,C) Ψ (D) Complete Update Ψ (D) Complete Update

tMC |Π| |δ| tSA |ε| tDE tNI |ǫ|
Speedup

tNI |ǫ|
Speedup

[ms] 10−2 [ms] 10−2 [ms] [ms] 10−2 [ms] 10−2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

p35k

1 28 957 6.80 4.89 4.67 0.21 0.10 < 0.01 4.88 6 071 < 0.01 4.88 > 10
7

5 59 490 30.28 3.74 3.75 0.76 0.22 1.27 3.70 11 343 1.27 3.70 46 891

10 92 331 57.88 2.98 3.73 0.72 0.36 12.65 2.93 5 517 12.65 2.93 7 301

20 156 858 109.20 2.16 3.71 0.59 0.61 24.86 2.13 5 375 24.86 2.13 6 309

p45k

1 29 753 3.32 3.45 5.86 0.12 0.08 < 0.01 3.50 5 006 < 0.01 3.50 > 10
7

5 62 473 13.33 3.44 5.09 0.65 0.17 1.16 3.72 9 736 1.16 3.72 53 966

10 99 064 25.63 3.06 5.11 0.77 0.42 10.20 3.39 6 298 10.20 3.39 9 713

20 172 082 45.46 2.42 5.11 0.80 0.45 18.06 2.73 7 285 18.06 2.73 9 530

p77k

1 49 087 3.64 2.07 8.94 0.09 0.08 < 0.01 2.11 5 443 < 0.01 2.11 > 10
7

5 115 037 13.82 2.17 8.89 0.52 0.21 1.05 2.46 11 334 1.05 2.46 109 504

10 190 105 25.24 1.93 8.76 0.69 0.39 8.76 2.32 10 614 8.76 2.32 21 707

20 345 268 44.27 1.96 8.77 0.89 0.69 12.60 2.51 15 650 12.60 2.51 27 405

p78k

1 184 414 3.46 6.70 19.71 0.17 0.06 < 0.01 6.77 9 325 < 0.01 6.77 > 10
8

5 350 785 15.60 4.65 20.11 0.56 0.09 1.37 4.66 16 255 1.37 4.66 255 495

10 557 799 28.76 3.47 20.03 0.59 0.13 11.99 3.46 17 349 11.99 3.46 46 518

20 971 327 50.74 2.73 19.76 0.60 0.20 22.00 2.69 23 147 22.00 2.69 44 159

p81k

1 295 960 2.68 3.95 13.14 0.06 0.06 < 0.01 3.97 22 424 < 0.01 3.97 > 10
8

5 407 829 10.65 2.99 13.05 0.39 0.12 1.18 3.06 28 411 1.18 3.06 344 233

10 539 772 19.39 2.42 13.04 0.45 0.20 11.10 2.50 22 175 11.10 2.50 48 618

20 805 824 33.73 1.96 13.05 0.47 0.37 19.92 2.05 24 171 19.92 2.05 40 453

p100k

1 147 445 3.15 3.87 13.32 0.10 0.07 < 0.01 3.90 11 015 < 0.01 3.90 > 10
8

5 213 606 12.50 3.35 13.24 0.49 0.15 1.14 3.55 14 698 1.14 3.55 187 609

10 302 103 23.10 2.89 13.20 0.57 0.22 9.51 3.13 13 178 9.51 3.13 31 779

20 540 130 44.52 2.74 13.30 0.61 0.44 16.68 3.01 17 752 16.68 3.01 32 373

p267k

1 560 594 4.21 2.97 35.90 0.13 0.10 < 0.01 3.00 15 574 < 0.01 3.00 > 10
8

5 767 491 16.13 2.66 35.95 0.60 0.32 1.20 2.87 20 485 1.20 2.87 639 586

10 1 007 033 29.30 2.18 35.98 0.70 0.65 10.80 2.45 21 229 10.80 2.45 93 203

20 1 476 696 53.29 1.73 36.00 0.72 1.36 19.77 2.03 25 846 19.77 2.03 74 678

p330k

1 773 594 7.61 4.32 51.88 0.22 0.29 < 0.01 4.42 14 827 < 0.01 4.42 > 10
8

5 1 105 557 31.61 3.29 51.89 0.74 1.59 1.21 3.63 20 213 1.21 3.63 911 752

10 1 503 512 56.47 2.69 51.77 0.81 3.76 10.30 3.05 22 840 10.30 3.05 145 940

20 2 299 519 104.69 2.18 51.72 0.81 7.25 18.14 2.51 29 824 18.14 2.51 126 773

TABLE I
RUNTIME AND ABSOLUTE ERROR OF INCREMENTAL ANALYSIS AFTER INSERTION OR REMOVAL OF A TEST VECTOR PAIR (NXP BENCHMARK CIRCUITS)

Columns (4)-(6) present the results of the sensitization anal-

ysis. A complete transition path with delay X was considered

long, if E[X] + 3
√

var(X) ≥ Tclk. The average number of

long transition paths |Π|, identified for all test vector pairs in

the test subset Θ, is shown in column (4). The approximation

error δ of the sensitization analysis is estimated by

δ =
(

1− Pr
(

X1 ≤ Tclk, . . . , X|Π| ≤ Tclk

))

− P

and the average absolute value of δ is presented in column (5).

In general, the sensitization of a long transition path is

restricted to a subset of all possible delay realizations, due

to hazards and variations in the arrival times of the transitions

at the off-path inputs. Hence, the nominal delay value based

sensitization analysis might identify a set of long transition

paths, which are not representative for the arrival time of the

last transition at the combinational network outputs. However,

the resulting error δ becomes very small as the number of

long transition paths increases. The average runtime of the

sensitization analysis is shown in column (6).

The following steps of the algorithm were omitted, unless

at least one long transition path was found. Columns (7) and

(8) show the results from the extended Clark approximation

for the computation of the test vector pair delay distribution

and the extension of the multivariate normal distribution. The

extended Clark approximation error is estimated by

ε = (1− Pr( Y1 ≤ Tclk, . . . , Y|Θ| ≤ Tclk))

− (1− Pr(X1 ≤ Tclk, . . . ,X|Π| ≤ Tclk)).

The average absolute error, shown in column (7), demonstrates

the superior accuracy of the extended Clark approximation for

the proposed test subset delay distribution extension. However,

experiments with more general statistical timing analysis prob-

lems have shown its high susceptibility to skewed intermediate

results, which resulted in high approximation errors.

The average runtime for the delay distribution extension,

shown in column (8), is very small and increases almost linear

with the size of the test subset.



The test subsets for p330k contains some test vector pairs,

which sensitize thousands of long transition paths, with many

paths being sensitized by multiple test vector pairs of the same

test subset. To minimize the runtime of this step, it would be

possible to ignore all recurrences of a long transition path

delay without affecting the timing failure probability, unless

this path delay is also deleted by a subsequent removal of a

test vector pair or the masking of a transition path output.

The timing failure probability Ψ was approximated using

the FORTRAN routines BVND, TVTL and MVNDST, which

were developed by Genz [18] [19]. The average runtime,

shown in column (9) and (12), increases rapidly for small

and slowly for larger dimensions |Θ| ≥ 10. The parameters

of MVNDST were chosen, such that the estimated relative

error was below 5 · 10−3 while using at most 105 points.

These routines were also used for the presentation of the

approximation errors δ and ε of the individual steps.

Columns (10)-(11) and (13)-(14) present the average run-

time and the accuracy of the complete algorithm after the

insertion or the removal of a test vector pair, respectively.

The approximation error of the final result is estimated by

ǫ = Ψ−P , where Ψ denotes the approximation of the timing

failure probability and P denotes the fault detection probabil-

ity. The average absolute incremental analysis error, shown in

columns (10) and (13), is small and mainly determined by the

accuracy of the sensitization analysis.

Columns (11) and (14) highlight the very large speedup of

the proposed algorithm. Compared to the previous approach

[13], the new algorithm is between 1.2 and 26.5 times faster.

The speedup is defined by the ratio of the average runtime

of the Monte Carlo simulation (column (3)) and the average

runtime of the incremental computation over all delay faults.

Similary, the speedup for other delay test parameter updates

can be computed from the sum of the average runtimes of the

individual steps, which are required for the particular update.

For example, the runtime after the reduction of the test clock

cycle time or the modification of the combinational network

output masks equals the sum of columns (8) and (9).

V. CONCLUSION

Delay variations in recent technology nodes reduce the

quality and reliability of all delay tests. To find a suitable trade-

off between the statistical delay test quality and the test cost,

statistical test generation methods must optimize all delay test

parameters based on the probability of detecting a delay fault.

To efficiently evaluate the huge number of probability estima-

tions, an efficient incremental algorithm has been presented,

which is suitable for the inner loop of automatic test pattern

generation methods. The approach was compared with results

of extensive Monte Carlo simulations and has consistently

shown a very large speedup with only a small loss of accuracy.
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