
Analysis and Design of an On-Chip Retargeting
Engine for IEEE 1687 Networks

Ahmed Ibrahim, Hans G. Kerkhoff
Testable Design and Test of Integrated Systems Group (TDT),

Centre of Telematics and Information Technology (CTIT), University of Twente,
Enschede, the Netherlands

a.m.y.ibrahim@utwente.nl and h.g.kerkhoff@utwente.nl

Abstract—IEEE 1687 (iJTAG) standard introduces a methodol-
ogy for accessing the increasing number of embedded instruments
found in modern System-on-Chips. Retargeting is defined by
iJTAG as the procedure of translating instrument-level patterns
to system-level scan vectors for a certain network organization.
The analysis and the design of an on-chip retargeting engine is
presented in this paper. Performing retargeting on-chip enables
the execution of life-time dependability procedures using embed-
ded instruments. The proposed engine is capable of retargeting
instruments’ patterns using an optimized model of the network,
which is extracted by resolving the dependencies between the
data registers of the instruments and the network-state registers.

Keywords—IEEE 1687, iJTAG, embedded instruments, retar-
geting, dependability.

I. INTRODUCTION

The increasing System-on-Chip (SoC) complexity enabled
by the continuous technology scaling, became a major chal-
lenge for testing and debugging. Consequently, an increased
number of embedded instruments became integrated in modern
SoCs. Access to those instruments was usually done in an
ad-hoc manner, however, with the introduction of the IEEE
1687 standard (iJTAG) [1] instrument access-methods became
standardized, and more instruments could become connected
to the iJTAG instruments network in a systematic manner.

A subset of embedded instruments could be accessed on-
chip for maintaining the life-time dependability of SoCs, as
well as the off-chip access for test and debug. For example:
health monitors, environment sensors, fault detectors, and
others, collectively referred to as dependability instruments [2-
4]. An on-chip dependability manager could reuse the existing
iJTAG network as a standardized, scalable and low cost on-
chip access network to the dependability instruments in order
to execute dependability operations. For example, frequency
downscaling using a phase locked loop instrument, when a
certain path delay monitor instrument indicates a persistent
delay fault due to aging.

iJTAG uses reconfigurable scan networks in order to achieve
an optimum access path to the required instrument register
with minimum path overhead. Such networks grow in com-
plexity, and often multiple access vectors are required to be
generated in order to configure the network to access a certain
instrument. For example, in figure 1, three scan vectors are
required in order to access R2, the first is for setting the

Figure 1: Example of a reconfigurable scan network.

register SCB1, which will enable accessing both R1 and SCB2
in the next cycle, then the second for setting SCB2 to ’1’
enabling the access to R2 in the third cycle. The process of
translating an instrument-level pattern to several network-level
vectors is called the retargeting process.

Optimum pattern retargeting was previously investigated in
[5] by mapping it into a pseudo-boolean optimization problem,
then using iterative SAT solving to find an optimum scan
sequence. Such work is useful for retargeting tools, or for
generating a set of retargeted patterns corresponding to a
certain access procedure. However, for on-chip access via a
dependability manager, dynamic retargeting is required, as the
access procedures will be dependent on the runtime data.

In this paper we present the analysis and the design of an on-
chip retargeting engine. The engine uses an optimized network
model for retargeting which enables a simplified processing
compared to the other models used in software tools. The
paper is organized as follows: Terminologies and background
are given in section II, then the analysis for the on-chip model
is presented in section III. In section IV the architecture of the
retargeting engine is presented. Then in section V experimental
verification by means of SoC test benchmarks is discussed.
Conclusions are given in section VI.

II. BACKGROUND AND TERMINOLOGIES

iJTAG introduces a reconfigurable scan network connected
between the TDI and the TDO ports of the Test Access Port
(TAP), for efficiently accessing the Test Data Registers (TDRs)
of embedded instruments. A scan segment can be defined as
any valid organization of scan registers and network multi-
plexers (i.e. ScanMuxs) connected between two nodes in the
network. The scan network consists of several scan segments
branching at branching nodes, and merging at ScanMuxs.

Network reconfiguration is performed by controlling the
address bits (S) of the network ScanMuxs. The source of the

2016 21st IEEE European Test Symposium (ETS)

!

978-1-4673-9659-2/16/$31.00 ©2016 IEEE

!

address bits is a set of updatable network registers referred to
as the ScanMux Control Bits (SCBs). A Segment Insertion
Bit (SIB) is a special configuration of a ScanMux and an
SCB for including/excluding segments. For example, M1-
SCB1 configuration in figure 1 is considered to be a SIB.
SIBs allow a hierarchal organization of the iJTAG networks.

We define the set of Scan Paths (SP) to include all possible
scan paths between TDI and TDO, each corresponds to a
certain state of the network SCBs. An active path ∈ SP , is
the currently configured scan path. A scan access is performed
by executing the Capture-Shift-Update (CSU) cycle defined
by the IEEE 1149.1 TAP controller. During this cycle, data
from the instruments are captured into the corresponding
TDRs. Then a new scan vector with the same length of the
active path is shifted into the network, while simultaneously
data from the active path is shifted out. The scanned-in
vector could consist of both network configuration bits and
instruments data. Finally the CSU cycle ends by updating both
the updatable TDRs and the SCBs with the new instruments
patterns and the network configuration bits.

In order to access a certain instrument via its TDR, the
network should be configured first to an active path that
includes this TDR via one or more scan accesses. We define
the set of Access Paths (AP) of a certain register to include
each scan path p ∈ SP that includes this register. A network
register (TDR or SCB) is considered to be selected when the
active path is ∈ AP .

The selection of a register is dependent on a minimum set
of multiplexers that when configured properly, an active path
∈ AP is formed. We define the Selection Dependency of a
register (Sel(Reg)) as a boolean relation in terms of a subset
of the ScanMuxs address bits, which evaluates to true only
when the corresponding path is ∈ AP (Reg). For example
in figure 1, Sel(R1) = S1 ∧ ¬S2, Sel(R2) = S1 ∧ S2,
Sel(SCB2) = S1, Sel(SCB2) = True.

A register could have several disjunctive selection clauses.
For example, in figure 2, Sel(R2) = (S1 ∧ ¬S2 ∧ S3) ∨
(S1 ∧ S2). Which means that accessing R2 could be done
by configuring the network to satisfy either clause (i.e. setting
S1S2S3 to ’101’ or to ’11X’). Therefore, in general Sel(Reg)
is given in a Disjunctive Normal Form (DNF), where each
clause represents a different minimum network configuration
possibility for forming an access path, and with the literals are
multiplexers address bits. We define a multi path register as
any register with more than one clause in its selection depen-
dency. A register is said to be inaccessible when substituting
the address bits with their corresponding SCB sources, its
selection equation is reduced to False.

III. AN OPTIMIZED MODEL FOR ON-CHIP RETARGETING

Executing retargeting on-chip requires maintaining a model
of the iJTAG network. One possible model is similar to
what was introduced in [6] or in [7] where the network is
represented as a directed graph. In this model, each node in
the graph corresponds to a certain component (TDR, SCB or
ScanMuxs), and maintains a set of predecessor (Pred) and a

Figure 2: A register (R2) with two disjunctive selection dependencies.

set of successor (Succ) nodes. As this model only holds the
connectivity information, generating the retargeted patterns on-
chip for a certain register-access requires resolving the register
selection dependencies each time it is being accessed, which
is an expensive tasks in terms of the required clock cycles.

In this section we will present the analysis for an optimized
iJTAG network model for on-chip retargeting. The model will
embed both the selection dependencies and the network con-
nectivity, which will reduce the required time for generating
the retargeted patterns, and also reduce the area required to
store the model on-chip, as it will eliminate the connectivity
references (Pred and Succ) by embedding it in the sequential
organization of the model.

A. The Selection Dependency Graph

In order to resolve the selection dependencies of the regis-
ters on the address bits of the different ScanMuxs, we define
the Selection Dependency Graph (SDG) as a directed graph
G = (V,E), where an edge e = (vsrc, vdst) ∈ E represents
a certain selection dependency of the destination node on the
source one, and its direction is the opposite of the direction
of the scan path between vsrc and vdst. The set of nodes (V)
is partitioned into four main node types: 1) VReg represents
a network register (TDR or SCB), 2) VI0 represents a ’0’
input port of a 2-to-1 ScanMux, 3) VI1 represents a ’1’ input
port of a 2-to-1 ScanMux, 4) VBr represents a branching node
in the scan path. Two auxiliary nodes for TDI and TDO are
also included. A node v ∈ VReg, VI0 or VI1 has only one
predecessor node vpr ∈ V in the SDG, while a branching
node v ∈ VBr has multiple predecessor nodes.

In this analysis we represent an m-to-1 ScanMux with n bit
address (Sn−1 ... S0) using the equivalent n-stage cascaded
organization of 2-to-1 ScanMuxs, such that each of the 2-to-
1 ScanMuxs would have a unique address bit literal in the
selection relation. Figure 3 shows the equivalence of a 4-to-1
ScanMux.

Constructing the SDG is done by parsing a network repre-
sentation written in RTL or in Instrument Connectivity Lan-
guage (ICL) that is defined by iJTAG. The graph is constructed
starting from TDO and tracing the network backward towards
TDI, while replacing the registers, branching nodes and each
input of a ScanMux (I0 & I1) with corresponding nodes.
For the sake of simplicity we assume that SCBs are always
separate registers. Figure 4 shows the corresponding SDG to
the network in figure 2.

The selection of a node v ∈ V is computed from the
selection of its predecessors according to its type. A similar

!

!

Figure 3: Example of 2-to-1 Mux equivalence.

Figure 4: The selection dependency graph corresponding to figure 2.

analysis was introduced in [5] for the SAT predicates. The
selection is deduced from SDG here as follows:

Sel(VTDO) = Sel(VTDI) = TRUE (1)

Sel(VReg) = Sel(vpr) (2)

Sel(VI0) = Sel(vpr) ∧ ¬S (3)

Sel(VI1) = Sel(vpr) ∧ S (4)

Eq. (1) implies that both auxiliary nodes (TDI and TDO)
are always selected. This is used as an initial condition for the
selection dependency resolving algorithm. Eq. (2) indicates
that a register is selected when its predecessor node in SDG
is selected. While eq. (3) indicates that a ’0’ input port node
is selected when its predecessor is selected and the ScanMux
address (S) = ’0’. Similarly in eq. (4) for the ’1’ input port
node except that S should be = ’1’.

A branching node is selected (i.e. accessed in the active
path) when at least one of its predecessor nodes is selected.
Eq. (5) represents the selection equation of a branching
node. A reduction by factoring is applied to the resulting
disjunctive clauses in order to remove the dependency on the
ScanMuxs that had their multiplexed segments originated from
this branching node.

Sel(VBr) = Fact(
∨

vpr∈pred(VBr)

Sel(vpr)) (5)

B. Resolving the Selection Dependencies

After constructing the SDG from the network representa-
tion, equations (1-5) could be used to calculate the selection of
all the registers by traversing the graph from TDO to TDI and
resolving the selection of each node based on its predecessor’s.
In order to embed the connectivity information in the on-
chip model of the network, we propose a sequential tracing
algorithm that assigns orders to the registers representing the
register position in the on-chip model while calculating the
nodes selections.

First we define the selection of a node v ∈ V to be a
DNF relation with n clauses, where each clause represents a
minimum network configuration for accessing the node.

Sel(v) =
∨

i∈1...n
Ci(v) (6)

A clause (Cj(v)) of certain node (v ∈ V) has one source
clause in a predecessor node vpr ∈ pred(v), from where Cj(v)
was originally derived. The source of Cj(vI0) (vI0 ∈ VI0)
could be resolved by substituting equation (6) for v = vpr
(vpr = pred(vI0)) in equation (3), the resulting selection re-
lation Sel(vI0) will be given as (

∨
i∈1...n(Ci(vpr)∧¬Spr)). It

is clear that the jth clause in Sel(vI0) (i.e. Cj(v)) was derived
from the jth clause in Sel(vpr) (i.e. Cj(vpr)), therefore:

Src(Cj(vI0)) = Cj(vpr(vI0)) (7)

The same is true for a clause in Sel(vI1) and Sel(vReg).
In order to resolve the sources of the clauses in Sel(vBr),

a traversing algorithm is developed in Algorithm 1, which
returns a set of source clauses for all the clauses in SDG
(Src(Ci=1..n(v∈V))). The algorithm traverses the graph start-
ing from TDO towards TDI by calling Traverse(G, vTDO).
It proceeds by always choosing the I1 nodes (line 6). When a
branching node is encountered and not all of its predecessors
selections were resolved, the algorithm backtracks the same
path until the first I1 node, then traverse forward from the
corresponding I0 node (line 17). Every time a branching node
is accessed the selection relation is iteratively updated with
the predecessor set of clauses as follows:

Sel(vBr) = Fact(Sel(vBr) ∨ Sel(vpr)) (8)

If two clauses were reduced by factoring while calculating
(8), the source of the resulting clause (Creduced) is assigned
to the clause in vpr. The algorithm ends by reaching vTDI.

We next order the clauses in the registers selection relations.
Algorithm 2 performs the ordering by traversing the graph
starting from TDO by calling Order(G, vTDO, C1(TDO)).
Algorithm 2 traverse forward by selecting VI1 when the SDG
branches. While traversing the graph, one clause is selected
starting from Ccurrent = C1(TDO) (i.e. TRUE) and selecting
the clause in the successor node where Ccurrent is its source.
When a branching node v ∈ VBr is reached, the algorithm only
proceeds forward if Ccurrent is a source of a clause in Sel(v),
if not (i.e. Ccurrent was reduced) the algorithm backtracks like
in Algorithm 1. During this sequence, while visiting a register
node, an order is assigned to Ccurrent corresponding to the
order of visiting it w.r.t all other registers clauses. A multi
path register with n number of clauses will be visited n times
during the traversal, where each clause will be assigned with
a different order. Figure 5(a) shows the selection relations for
the network in figure 2 along with the clauses ordering resulted
from Algorithm 2.

C. Generating the HArray
The resulting set of Registers Clauses (RC) is used to

construct the on-chip network model. A multi-path register

!

!

Algorithm 1 Setting the Source of Clauses in SDG
1: procedure TRAVERSE(G, v)
2: Calc. Sel(v) from (2), (3) or (4), (∀v ∈ {VReg, VI0,VI1})
3: Set Src(Ci∈1...n(v)) as in (7), (∀v ∈ {VReg, VI0,VI1})
4: Add v to trace path
5: if succ(v) = {vI0, vI1} then .A Mux
6: Traverse(G, vI1) .Choose vI1 if G branches
7: else if succ(v) = vReg then
8: Traverse(G, vReg)
9: else if succ(v) = vBr then

10: Calc. Sel(vBr) from (8)
11: if a reduction is possible then
12: Src(Creduced(vBr))← Csrc(v)
13: else
14: Src(Cnew(vBr))← Csrc(v)

15: if any edge ∈ (pred(vBr), vBr) is not visited then
16: vI0 ← Backtrack(G, v)
17: Traverse(G, vI0)
18: else
19: Traverse(G, vBr)

20: else if succ(v) = vTDI then
21: return Src
22: procedure BACKTRACK(G, v)
23: remove v from trace path
24: if trace path.end node = vI1 then
25: return vI0
26: else
27: Backtrack(G, trace path.end node)

with n disjunctive selection clauses is modeled via n instances
in the model, each represents a register access via the access
path enabled by satisfying the corresponding clause. Therefore
an access to a multi-path register could be performed by
accessing any of its instances. The decision of which instance
to choose for the access is left for the scheduling algorithm.

We define the on-chip model to be an array H[k] of k
records named as the Hierarchy Array (HArray). Each record
maintains a type field Type and one or more auxiliary fields
Aux according to the type. The type field could have a
value ∈ {TDR,SIB, I0, I1, SCB}. The auxiliary fields are:
Aux(TDR) = TDR length (len), Aux(SIB, I0 and I1) = relative
pointer to the corresponding SCB (SCB ptr) and number
of nodes (NN). Aux(SCB) = pointer to the corresponding
location in the SCB State Vector (SV ptr), the state vector
will be discussed in the next section.

A register selection clause (C(vReg)) is a conjunction of m
literals, eq. (9). A literal represents a certain address value of
a multiplexer from the set (k) of m multiplexers on which this
clause is dependent.

C(vReg) =
∧

i∈1...m
(¬)xiSk(i), x ∈ {0, 1} (9)

The HArray consists of several nested
dependency sections, where registers located in a section
are dependent on a corresponding ScanMux. Those sections
are indicated by a header element representing a SIB, I0 or
I1, and the depth is indicated by the NN auxiliary field. The
traversing algorithm ensures that an I0 section is immediately
followed by the I1 section of the ScanMux. A SIB is a
special case of an I0-I1 pair with an empty I0 section.

Algorithm 2 Ordering the registers clauses
1: procedure ORDER(G, v, Ccurrent)
2: Add v to trace path
3: find Ci(v) such that Src(Ci(v)) = Ccurrent

4: Ccurrent ← Ci(v).
5: if v ∈ VReg then
6: Ccurrent.order ← order; order ++

7: if no Clause found then .Occurs only when v ∈ VBr

and Ccurrent is reducible
8: vnext ← Backtrack(G, v)
9: else

10: if succ(v) = {vI0, vI1} then
11: vnext ← vI1 .Choose vI1 if G branches
12: else
13: vnext ← succ(v)

14: Order(G, vnext, Ccurrent)

A literal ¬Sk(i) in C(vReg) represents an I0j dependency
section, while Sk(i) represents an I1j or a SIB one.

The construction of the HArray is performed as follows:
Let HSel be an initially empty FIFO buffer that holds the
intermediate values of the dependencies. For example if HSel
=[I01,I12] it means that the current element in HArray is
selected by (¬S1∧S2). We choose the clause with the highest
order (Ch ∈ RC), then we compare each of the elements in
HSel with the literals in Ch of the same order starting from
the left most one. If an element in HSel doesn’t represent
the dependency of the corresponding literal in Ch, then all
the sections represented by the remaining elements in HSel
(including the conflicting one) are considered to be closed
at this location, then we add the new dependency sections
represented by the remaining literals in Ch by adding an I0,
I1 or SIB elements to the HArray. A SIB is added when a
new S literal is found, while an I1 is added when an S literal
is found where the corresponding HSel element is the I0 of
the multiplexer represented by the literal. An I0 is added for
a new ¬S literal. The register instance is finally included.

After the dependency sections in HArray become defined
along with the TDRs/SCBs locations, the auxiliary information
(NN and SCB ptr) are added to the corresponding nodes.
Figure 5(b) shows the corresponding HArray to the clauses
in figure 5(a) and their ordering. The dependency sections are
shown to the right. Note that the multi-path register (R2) has
two instances in locations 6 and 9 each in a different section.

IV. ARCHITECTURE OF ON-CHIP RETARGETING ENGINE

The proposed retargeting engine architecture is shown in
figure 6. The engine receives a request for concurrently
accessing a number of registers from an external instructions
scheduler. A register could be accessed for a read or a write
operation. The current concurrent access group is stored in a
buffer that holds the IDs of the registers (which corresponds to
the register location in the HArray), a read/write flag, the value
for a write access, and finally a valid bit which indicates that
the corresponding register was not yet accessed. The buffer
is ordered w.r.t the IDs. The engine maintains the dynamic
state of the network configuration by including a State Vector
(SV) which holds the current values of the SCBs. The SV ptr

!

!

Figure 5: The registers selection (a) corresponding to figure 2 and the
resulting HArray (b).

auxiliary of the SCB entries in the HArray points to the
corresponding location in SV.

The engine implements a Traverse and Generate process,
this process is responsible for the generation of the set of
variable length Access Vectors (AV) that will be serially
loaded to the network in order to access the required registers.
An embedded IEEE 1149.1 TAP controller FSM is imple-
mented to generate the physical iJTAG signals from the AV s
according to the standard.

The Traversal process traverses the HArray sequentially in
the same order of the active path. This is performed as follows:
While visiting a SIB, I0 or I1 entry, the corresponding SCB
state is fetched from SV , where the SCB address is computed
from the auxiliary data (i.e SCB ptr), then the state bit
location is known from the SCB auxiliary (i.e SV ptr). A
SIB is considered to be closed when the corresponding SCB =
0, while the I1/I0 port is not selected when the corresponding
SCB = 0/1 respectively. If the SIB, I0 or I1 was found to be
closed or not selected, the corresponding dependency section
is skipped during the traversal by updating the HArray ptr.
Otherwise, the next entry in the current traversal sequence
will be the following entry to the SIB, I0 or I1. During the
traversal, a pointer (Buffer ptr) is maintained to point to the
location of the first entry in the access buffer with a register
ID bigger than the HArray ptr and with a valid bit = 1.

The Generate process is performed in parallel with the
HArray traversal. For each traversed SIB, I0 or I1 entry
in HArray, if the current register ID value indicated by the
Buffer ptr lies inside the dependency section indicated
by the entry, a write access entry is added to the Access
Buffer to write the corresponding selection value for the entry
(i.e. ’1’ for SIBs and I1, ’0’ for I0), then the buffer is
reordered. If the register lies after the dependency section, the
corresponding SIB, I0 or I1 is closed/deselected by writing
the corresponding closing bit in the access buffer.

While visiting an SCB, if a write access was found for
this SCB in the current buffer entry, a bit is generated in the
AV with the corresponding write bit indicated in the buffer,
otherwise the old SCB value indicated in the SV is rewritten

Figure 6: Architecture of the Retargeting Engine

in AV . The updated SCB value is written back in the SV .
Visiting a register during the traversal means that the network
at this point is configured to an access path of this register,
and a corresponding write or read access should be provided
by the instructions scheduler in the access buffer. If not, the
retargeting engine informs the instructions scheduler that an
undefined access to a register is met and a corresponding
access information is required. A write to the register is
performed by serially shifting the register value indicated in
the access buffer to the AV . While a read is performed by
observing the position of the register w.r.t the remaining of
the active path during the HArray traversal, then the content
of the register is extracted from the corresponding location
in the buffered shifted-out network state. The valid bit of an
accessed register or SCB is then set to 0.

V. EXPERIMENTAL RESULTS

In this section we perform several experiments in order to
verify the correctness of the HArray generation process, and
the performance of the proposed retargeting engine. To our
knowledge, there is no benchmark circuits for reconfigurable
scan networks, therefore we follow the same approach in the
verification of both [5] and [9] by using the ITC’02 SoC
test benchmark circuits [8]. We consider the same iJTAG
hierarchal network organization as proposed in [9]. Instead of
using a single chain to act as the core chain, we consider each
core to be wrapped using an IEEE 1500 Core-Test Wrapper
(CTW) with a minimum required instructions as in figure 7(a).
The CTW is used in order to introduce more complex access
sequence than in accessing a single connected register. The
corresponding sub network for the CTW is shown in figure
7(b) and the section of the HArray for one CTW was computed
and is shown in 7(c). Due to space limitations, we only include
results of the four circuits with the highest number of cores.

A Matlab implementation of the HArray generation process
described in section III was done. The dependency graph rep-
resenting each SoC in the benchmark set was generated using
the corresponding graphs of the CTW and SIBs. A VHDL
implementation of the retargeting engine was also developed.
The resulting network model from the Matlab processing was
used to implement the HArray of each test circuit. The third

!

!

Table I: Results for a complete SoC test schedule using the retargeting engine

Circuit no. of HArray SV length No. of retargeted Test time TP CC NC CC Retargeting
name cores Size (bits) patterns (CC) Overhead (%)

p34392 19 272x12 79 66423 17500432 16372887 1127545 6.89
p22810 28 396x11 114 25157 8295510 7870218 425292 5.4
t512505 31 434x18 124 10634 165502627 165324413 178214 0.1
p93791 32 424x11 136 23163 31052141 30661291 390850 1.27

column in table 1 shows the sizes of the generated HArrays.
The HArray depth depends on the number of cores (each core
is allocated 12 entries) and the network SIBs organization.
While the entry size depends on the pointers sizes and the
TDR lengths. The SV length corresponds to the number of
SCBs in the network.

We start by verifying the correctness of the HArray rep-
resentation. The retargeting engine was set to execute one
register access at a time for all registers in the p34392
test circuit, where a VHDL testbench acts as the external
scheduler. Similar to [5], assertion-based VHDL simulations
were performed to ensure each register access by checking
the scanning of the continuity test pattern (11001100..) for
each register (for the WBY and WIR, we observe a ’1’
and ’11’ respectively). Observing a successful register access
implies the correctness of the dependency representation in
the HArray for this register. For example, three different
nested dependencies are required to be resolved for a correct
retargeting to SC (figure 7(c)).

Next we implement a complete test procedure for each test
circuit. In this procedure each core is accessed individually.
Each core-test includes an n number of core-accesses, where
n is the number of ATPG patterns assigned to this core. In each
care-access WBR in, SC and WBR out are concurrently
accessed. In this experiment we assume an on-chip Test
Patterns Generator to provide the write values. In order to
measure the retargeting efficiency, we define the Retargeting
Overhead (RO), as the ratio between the clock cycles required
for the generation of the network configuration bits (NC CC)
to the clock cycles required for the generation of the cores
test patterns (TP CC). The TP CC can be calculated as
(
∑

all cores(WBRini
+ SCi + WBRouti) x nPatternsi).

NC CC can be calculated by observing the number of CC
for the generation of the complete test data in the RTL
simulation (which includes retargeting CC + actual patterns)
then subtracting this value from TP CC. Therefore RO =
(Observed CC − TP CC)/TP CC.

As there was no prior work on on-chip retargeting, we
couldn’t compare our results with other works. The maximum
RO was around 7%. It can be shown from the results that the
retargeting overhead for the third circuit is very low, this is due
to the very long scan chains that this circuit uses compared to
the other circuits, therefore the retargeting engine spends most
of the time in the register entry of the HArray. The retargeting
engine was synthesized using TSMC 90 nm technology, the
resulting area constituted to a 57748 um2.

VI. CONCLUSIONS

In this work we presented the analysis and the design of
an on-chip engine for dynamic retargeting. The engine is used

Figure 7: IEEE 1500 CTW

for executing life-time dependability operations using iJTAG-
connected instruments. We analyzed the iJTAG networks for
the extraction of an on-chip model, by resolving the dependen-
cies between the data registers and the network state registers.
The proposed model enables a simple implementation of a
retargeting engine, which retargets instruments patterns by
traversing the model and iteratively opening dependency sec-
tions to access the target register. The retargeting engine along
with the model were verified for a set of benchmark circuits,
and it was shown that the retargeting overhead constitutes a
maximum 7% of the actual required time for a SoC test.

VII. ACKNOWLEDGMENTS

This research was carried out within the FP7 BASTION
project, financed by the European Committee (EC) and the
Netherlands Enterprise Agency (RVO).

REFERENCES

[1] IEEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device, IEEE Std 1687-2014, 2014.

[2] J.C. Vazquez, V. Champac, A.M. Ziesemer Jr., R. Reis, I.C. Teixeira, M.B.
Santos and J.P. Teixeira, ”Built-in aging monitoring for safety-critical
applications”, Int’l On-Line Testing Symposium (IOLTS) , pp.9-14, 2009.

[3] E. Karl, P. Singh, D. Blaauw, and D. Sylvester, ”Compact In-Situ Sensors
for Monitoring Negative-Bias-Temperature-Instability Effect and Oxide
Degradation”, Int’l Solid-State Circuits Conf. (ISSCC), pp.410-412, 2008.

[4] A. Ibrahim and H.G. Kerkhoff, ”iJTAG integration of complex digital
embedded instruments”, Int’l Design & Test Symposium (IDT), pp.18-
23, 2014.

[5] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, ”Scan pattern retar-
geting and merging with reduced access time,” European Test Symposium
(ETS), pp. 17, 2013.

[6] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, ”Modeling, Veri-
fication and Pattern Generation for Reconfigurable Scan Networks,” Intl
Test Conf. (ITC), 2012.

[7] F. G. Zadegan et al., ”Design, Verification and Application of IEEE 1687,”
Asian Test Symposium (ATS), pp.93-100, 2014.

[8] E. Marinissen, V. Iyengar, and K. Chakrabarty, ”A Set of Benchmarks
for Modular Testing of SOCs,” Intl Test Conf. (ITC), pp. 519528, 2002.

[9] F. G. Zadegan et al., ”Access Time Analysis for IEEE P1687,” IEEE
Trans. Computers, vol. 61, no. 10, pp. 14591472, 2012.

!

!

