
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Post-Silicon Validation of IEEE 1687
Reconfigurable Scan Networks

Aleksa Damljanovic∗, Artur Jutman†, Giovanni Squillero‡, Anton Tsertov§
∗‡Politecnico di Torino, Torino, Italy; †§Testonica Lab, Tallinn, Estonia

∗aleksa.damljanovic@polito.it †artur@testonica.com ‡giovanni.squillero@polito.it §anton@testonica.com

Abstract—The increasing number of embedded instruments
used to perform test, monitoring, calibration and debug within
a semiconductor device has called for a brand new standard—
the IEEE 1687. Such a standard resorts to a reconfigurable scan
network to provide efficient and flexible access to instruments
and to handle complex structures. As it has to deliver reliable
service, many approaches, both formal and simulation-based,
have been proposed in the literature to perform test, diagnosis
and verification of such networks. This paper focuses on the prob-
lem of post-silicon validation of a network, a problem that has
not been adequately addressed, yet. We analyze the mismatches
between the specification and its silicon implementation, and we
propose a methodology to detect a subset of them by applying
functional patterns and observing the length of the active scan
path. Experimental results on ITC2016 benchmarks demonstrate
that the proposed approach is broadly applicable, and able to
generate very effective sequences. We also classify mismatches
that cannot be targeted relying exclusively on the active scan
path length information.

Index Terms—Validation, Pattern Generation, Reconfigurable
Scan Networks, IEEE 1687

I. INTRODUCTION

Nowadays, the standard IEEE 1687-2014 [1], also known
as IJTAG, is being increasingly adopted by the semiconductor
industry for arranging access to internal scan chains during
scan-based test as well as for accessing dedicated embed-
ded instrumentation such as SerDes conditioning and error
monitoring circuits, memory BIST, temperature and voltage
sensors, and many others alike. Since both production test
and in-field monitoring processes majorly depend on such
embedded instruments and other features, it is of utmost
importance to ensure their correct operation. Therefore, many
approaches, both formal and functional, have been proposed
in the literature to perform test [2]–[7], diagnosis [8] and
verification [9]–[11] of IEEE 1687 networks. However, the
correct operation of IJTAG-compliant infrastructure is a prod-
uct of many aspects and components including the actual
hardware on the chip, the respective standard descriptions,
such as ICL (Instrument Connectivity Language) and PDL
(Procedure Description Language) files as well as the software
used to import the descriptions and control the hardware.

The importance of the problem is being escalated by pre-
vious experience of the electronics industry, which suffered
from the inconsistency between description files and actual
hardware implementation of an earlier similar standard: IEEE
1149.1. In surprisingly numerous cases, the BSDL (Boundary
Scan Description Language) descriptions did not match the

actual implementation of JTAG features in silicon. Most
of those mismatches were caused by simply non-matching
revisions of the silicon and the BSDL, but of course a certain
number of problems were related to bugs and design errors in
hardware. Even if the error-checking is performed before tape-
out, it does not necessarily imply that the silicon will work
or that the ICL matches the actual silicon implementation.
Independent of particular reasons causing such mismatches,
the task of proving full compliance between the silicon and the
documentation is not trivial. Taking into account the fact that
the infrastructure described by IEEE 1687 is certainly more
complex than classical Boundary Scan, ensuring its correct
operation is an important research topic.

This paper is focused on the problem of checking the
equivalence between the silicon implementation of IEEE 1687
RSNs and their respective ICL descriptions. The method we
describe assumes that the former is a black box and the latter
plays the role of specification, while no other information
about the target system is available. Although observability
of signals in simulation (for pre-silicon verification) is excep-
tional, this is unfortunately not the case when accessing the
read device through its interface, i.e. we can only apply stimuli
and observe responses through scan input and output ports.

Previous work that addresses this problem is very limited.
The problem’s general definition along with a trivial algorithm
for simple RSNs was first proposed in EU FP7 BASTION
project report [12]. An important contribution of that work
was in defining three levels of validation thoroughness with
respect to required test access and effort. At the base level
(“Level 0”) the RSN infrastructure is validated by checking
scan chain length and capture values in various configurations
ensuring that every instrument is correctly accessible.

The main contribution of this paper is twofold. First, we
introduce a comprehensive fault model defined as a set of
mismatches between the ICL description and the silicon im-
plementation. Second, for a subset of mismatches falling into
Level 0 category, we propose a universal method and a tool of
their detection based on observing the length of the active scan
path. In addition, we categorize the mismatches with respect
to the level of detection difficulty providing a list of those
undetectable by our method. Experimental results based on
the set of ITC2016 RSN benchmarks [13] demonstrate that
the proposed approach is broadly applicable as well as that
the test tool is able to generate the sequences for detecting all
target mismatches. The proposed validation tool is a part of

an ecosystem of IEEE 1687 benchmarks and tools [14], which
can be freely used in connection with the benchmarks1.

The following section provides necessary terminology and
background information. Section III describes the fault model,
the detection method and the respective tool. Experimental
results are given in Section IV. Section V concludes the paper.

II. BACKGROUND AND TERMINOLOGY

The RSN is an instrument access network residing between
device interface and instrument interface. Through dynamic
reconfiguration of the RSN, instruments placed on different
segments can either be selected or bypassed by controlling
RSN’s configurable components. This mechanism enables
flexibility and facilitates the embedded instrumentation access
from the chip boundary. The RSN infrastructure consists of
scan registers, multiplexers, control signals and combinational
logic.

Active scan path includes all scan cells (flip-flops) con-
nected between SI and SO for a given state of the network.
Test Data Register (TDR) is an instrument interfacing register.
Often it is represented as a separate register field (referred
to as a ScanRegister) for interfacing individual instrument. It
is composed of 1149.1 Scan Cells. The scan cell is a two-
stage cell with two flip-flops. First stage is responsible for
capture-shift (CS) operations and is a part of scan chain, while
the second one is a ripple-free update (U) stage. Therefore,
depending on the need, TDRs can be Read-Only, Write-
Only or Read-Write. Most commonly used access interface is
IEEE 1149.1 TAP controller. Its state machine is responsible
for generating control signals to operate the network (select,
capture, shift, update and reset).

Two main architectural constructs, i.e, programmable mod-
ules are Segment Insertion Bit (SIB) and Scan Multiplexer
(ScanMux). After shifting desired values into the scan chain
and performing update, values are latched from the (C)S stage
to the U stage of each active, selected cell. The outputs of the
U stages of the control bits are used to drive the multiplexers’
control inputs. Capture stage here is not necessarily present.

0
 1

U

S

S

U

S

0
 1

SM2
SM1

0
 1

U

S
so

si

fsotsi
SIB

sosi

fsotsi

0
 1

U

S so
si

fsotsi

a)

c)

d)

e)

TDR00

TDR01

TDR0

b)

Fig. 1. Simplified schematics of SIB and ScanMux reconfigurable modules

A SIB corresponds to an in-line 2-to-1 ScanMux whose
(C)SU control bit is placed next to the multiplexer. SIB
allows the scan chain to expand by including nested segment
between terminals tsi and fso into the active path. When in
this state, SIB is referred to as asserted (opened). Otherwise,
SIB is said to be in a de-asserted (closed) state, bypassing
the tsi–fso segment with only one bit between si and so.
Two types of SIBs are defined depending on the control bit

1https://gitlab.com/IJTAG

position with respect to the multiplexer: the pre-SIB (Fig. 1a),
if a multiplexer precedes the control bit and the post-SIB
(Fig. 1b) if a multiplexer is placed after the control bit.
Adopted symbolic representation of a SIB is given in Fig. 1c.

Apart from inserting, i.e., bypassing certain segments, Scan-
Muxes can enable the existence of mutually exclusive, se-
lectable scan chains. They can be used in in-line and remote
configurations. In the latter case, source of a multiplexer’s
control input (control bit, decoded TAP instruction) is located
outside the scan segment that contains element being con-
trolled. A simplified schematic containing one in-line (SM1)
and one remotely controlled (SM2) 2-to-1 ScanMux with their
corresponding (SU) control bits is given in Fig. 1d. The
symbol shown in the same figure (Fig. 1e) is adopted as a
representation of a ScanMux control bit throughout the paper.

III. METHODOLOGY

The proposed methodology is based on previous work
focused on generating efficient patterns to perform end-of-
manufacturing test for RSNs [3]. The detection mechanism
introduced first in [4] and then adopted in several works [5],
[6] has been modified to reduce significant overhead and has
been made more suitable for addressing the presented problem.

A. Mismatch model

Well-established metrics exist for post-manufacturing tests
(single-stuck-at coverage, transition fault coverage) and ex-
perimental results have demonstrated the effectiveness of such
metrics. Although pre-silicon verification metrics are less stan-
dardized (syntactic (code coverage) and semantic (covering
assertion goals)), metrics for post-silicon validation are still
the subject of research. The list of considered mismatches was
created after analyzing the literature and taking into account
that the source of a mismatch is usually confined, such as
a typo in the specification, or a localized hardware bug. It
contains following items:

• A missing register
• An added register
• A wrong register of different length
• A wrong register with the modified functionality
• Exchanging two or more registers (their position)
• Exchanging a register with a ScanMux or a SIB
• Exchanging two SIBs belonging to the same segment
• Exchanging two ScanMuxes
• Exchanging a ScanMux and a SIB
• Wrong ScanMux configurations
• Exchanging inputs or control lines of the ScanMux
• Wrong SIB type (pre-SIB to post-SIB and vice versa)
For the network given as an example in Fig. 2, Table I

provides a set of considered mismatches joined by their type.
Relying on the structural information provided by the ICL

is sufficient for detecting a missing register at one of the
scan segments, since this type of mismatch directly affects the
length of the active scan path. An added register has the similar
effect on the scan path length although this time it is reduced
with respect to the expected one. A wrong register with

pSIB1

TDR1

TDR1a

TDR1b

S
M

1TDR2 TDR3

TDR2a

TDR2b

S
M

2 SIB2p

TDR2p pSIB3

TDRp3

cb1
cb2

length = 11

length = 11
length = 15

length = 7
length = 9

length = 1

length = 12 length = 8

length = 6

pre-SIB post-SIB

a)

0

1 1

0

Fig. 2. Example RSN network

TABLE I
LIST OF CONSIDERED AND INJECTED MISMATCHES FOR THE NETWORK

FROM FIG. 2

Mismatch Type N Mismatch set

SWAP TDR SIB 5

[[pSIB1, TDR2],
[TDR2, SIB2p],
[TDR3, SIB2p],
[TDR2p, pSIB3],
[pSIB1, TDR3]]

SIB PRE POST 3 [[pSIB1], [SIB2p], [pSIB3]]
SWAP CB CB 1 [[cb1, cb2]]
ADDED REGISTER 27
WRONG REG FUNC 9 not considered

WRONG MUX CONF 2 [[SM1|0, TDR1b; 1, TDR1a],
[SM2|0, TDR2b; 1, TDR2a]]

SWAP TDR TDR 1 [[TDR2, TDR3]]
WRONG REG LENGTH 9 all registers
SWAP TDR TDR DD 35 from domain to domain

SWAP SIB SM 4 [[pSIB1, SM1], [SM2, SIB2p],
[SM1, SIB2p], [pSIB1, SM2]]

MISSING REGISTER 9 all registers

SWAP TDR SM 4 [[TDR2, SM1], [SM1, TDR3],
[TDR3, SM2], [TDR2, SM2]]

SWAP SIB SIB 1 [[pSIB1, SIB2p]]
SWAP SM SM 1 [[SM1, SM2]]
SWAP MUX CONTROL not modelled explicitly
SWAP MUX INPUTS not modelled explicitly

the different length is equivalent to having a missing and/or
added register. Exchanging the registers is being performed
not only within the same scan segment but also outside of one
domain. This modification can be modelled as having multiple
wrong register length mismatches. Since the registers belong to
different scan segments, not having both of them on the same
path for the first time they are accessed enables immediate
detection of this particular mismatch.

Even though a mismatch of exchanged ScanMux control
signals (Fig.3a) or inputs (Fig.3b) does not have an effect on
the active path length it can still be detected. The configuration
of the ScanMux is determined by the value in the control bit.
The output signal from the update stage, apart from controlling
the multiplexer can also be used to gate shift, update and
capture. In that case, if upper input is selected, all data shifted
at the input is supposed to go through TDR1 and appear at
the output. However, in case of exchanged control signals,
although the segment is chosen according to the configuration,
all operations are forbidden on that segment and allowed on
the other one. Consequently, shifted values will not propagate
to the output, resulting in all 0s or all 1s, depending on the
value stored in the last scan cell in the selected input segment.
Exchanging input connections is an equivalent mismatch and
can be analyzed in a similar way. Guaranteeing that all scan
segments are accessed at least once ensures that all mismatches

of this type are detected.
Another type of considered mismatch is a ScanMux with

configurations incorrectly assigned to its input segments. In
Fig. 3c, configurations 00, 01, 10 and 11 result in including
registers TDR0, TDR1, TDR2, TDR3 into the scan path,
respectively. In case of a mismatch, chosen registers appear
in the different order: TDR3, TDR2, TDR0, TDR1. If at least
one of the segments has a length different than the original one
in the same position, the mismatch is detectable comparing the
lengths. This type of mismatch also covers the modified order
of control bits (cb0, cb1-10 with 01).

In case of the wrong SIB module type (pre-/post-), the
length and the order of elements on the scan segment remains
unchanged when SIB is de-asserted. If there are some control
bits in the controlled segment-their order is shifted for one
position, while the SIB itself is placed after, i.e., before the
elements of the included segment.

In general, mismatches involving the modified order of
TDRs, SIBs and ScanMuxes do not affect the length of the
active path when the corresponding segment is included into
it. However, detecting them remains possible as long as certain
configuration bits do not match original positions. Writing into
them to set the desired configuration may result in writing into
TDRs or some other configuration bits.

cb

cb0 cb1

cb0 cb1

a)

b)

00

01

10

11

00

01

10

11

c)

TDR1

TDR2

S
M

TDR1

TDR1

TDR2

TDR2

TDR1

TDR2

TDR0

TDR3

TDR1

TDR3

TDR2

TDR0

S
M

S
M

cb

cb

SM

SM

Fig. 3. ScanMux control lines and input mismatch

B. Undetectable mismatches

A mismatch is considered to be undetectable if applying
whichever legal configuration results in observing expected
length of the scan path.

The modified functionality of the register has been modelled
as a permutation of register’s bit scan cells and it is equivalent
to having permuted connections with the instrument. Since
there is no effect on the length of the scan path, this type

of mismatch is undetectable. Exchanged position of registers
within the same scan segment may not always be detectable.
In particular, this is the case if the registers are adjacent or
have the same length. Furthermore, if there is not even a
single control bit cell located in between, all configurations are
properly applied and no mismatch is observed at the output. In
the case of exchanging two or more SIBs within the same scan
segment, the mismatch is undetectable if they have completely
same structure (the position, length and type of modules),
except if they provide access to remote ScanMux control bits.
Wrong configuration mismatch is also undetectable when all
input segments have the same fixed length (only TDRs).

Potentially, by “Level 1” validation [12], some currently
undetectable mismatches could be targeted. Correct reaction
of instruments on PDL defined-actions has to be verified upon
accessing them through performing read and write opera-
tions. Furthermore, the presence of undocumented or specially
hidden structures can be targeted by “Level 2” validation
(phantom detection) [12].

C. Detection mechanism

The procedure for detecting mismatches is organized as a
set of sessions. A session consists of a configuration pattern to
which an additional sequence of bits is appended. It contains
values for defining the state of the network. The appended
sequence is used as a key to validate that the expected
path is connected between scan input and scan output pins.
Configuration sequence of bits has the length of the currently
active path. This sequence of bits is shifted into the scan chain,
while in parallel the output pin is monitored. If the sequence
observed at the output, long as it is the key sequence presented
at the input, matches the very same key, it is considered that
no potential mismatch could be detected in that session. This
is due to the effect of a mismatch which can either corrupt
the values of the key loaded into the network (e.g., all 0s or
all 1s) or can change its position (postpone it or anticipate it
at the output) with respect to the expected one.

Additionally, if a TAP controller is used to control and
access the network, its state machine has to traverse capture
and update states, while the shift state can be omitted. There-
fore, before shifting in the sequence, a capture operation is
performed. The values appearing at the output during the shift-
in are capture values and can be used to enhance detection
capability. The pause state, following the shift state of the TAP
controller can be used to prevent performing update before
checking the pattern at the output, thus avoiding undesired
effects such as moving the network to an unknown state.

Cost of applying one session is equal to the number of clock
cycles (shift operations) as long as the active path increased
by the length of a key. It should be mentioned that after
performing update to apply wanted configuration, reaching the
shift state in a state machine requires certain number of clock
cycles (JTAG protocol overhead).

D. Algorithm

The mismatch detection is solved as a problem of dis-
criminating between a set of Finite State Machines (FSMs).
One FSM is created for the original network without any
mismatch present; for each mismatch, an additional FSM is
created. Initial state is appended to each FSM, where the
state corresponds to the current configuration of the network.
Positions of configuration (control) bits with respect to the
network’s input are being tracked constantly. After applying
the transition (reconfiguration operation), the state of each
FSM is updated, while the new length (output symbol) is
calculated based on the injected mismatch, if any. Additionally,
positions of the configuration bits in a new state are calculated
and updated accordingly.

Before generating input symbols, during the construction
of the internal network model, every reconfigurable element
(ScanMux, SIB) in the network is annotated with auxiliary
information. First attribute is the hierarchical level (lc) of the
scan segments in which the module is positioned, while the
second one is the highest hierarchical level (ld) of all modules’
levels that are positioned within scan segment(s) attached to
the input(s) of the current module. In Fig. 4b a structural
representation of the network from Fig. 4a is shown as an
example in the form of a tree. A node coincides with the
reconfigurable module, while encoding of the segment that is
either insertable (SIB) or selectable (ScanMux) is given as
a vertex. Nodes n1, n2 and n3 are located at the top level
scan segment, while nodes n31, n32 and n33 are accessible
through n3 (located in its input segment(s)). Nodes n11(1, 1)
and n13(1, 1) provide access only to empty segments and
segments that include either TDRs or control bits (registers),
which is obviously not the case with the node n12(1, 2). This
node provides access to the segment at the second level of
hierarchy with one node n121(2, 2) in it.

The mechanism for generating input symbols is able to
determine if the network contains remotely controlled scan
multiplexer architecture or all modules are controlled in-line.
In the first case, the priority list for accessing nodes is shown
in Fig. 4b. The ni node’s position in the list is based on the
lid value; the precedence is given to the node with the higher
values. However, if the nodes ni and nj have equal value of
the second parameter (lid = ljd), the position is decided based
on the first parameter value lc. Finally, in case that lic = ljc the
nodes whose parent nodes are closer to the input are chosen
first e.g., n11 has precedence in comparison to n31, while n31

is put before n33.
The procedure (Algorithm 1) starts from the position of all

configuration bits, taking into account only accessible ones
when choosing the element from the priority list (Fig. 4b).
When it is a SIB instance, if it is in a de-asserted state, new
configuration sets it to assert, while if it is a ScanMux with
no children nodes, one configuration is generated for every
input segment in order to include it to the active path at
least once. For a ScanMux with some reconfigurable nodes
in its input segments the decision which configuration to set

is based on the priority list. In that sense n3 could be a SIB
with three serially connected nodes n31, n32, n33 located at
the same segment, but it could also be a ScanMux with three
input segments; in first n31, in second n32, and in third n33.
When a segment is included to the active path it is marked as
tested. If all children nodes for a parent SIB node are marked
as tested, the next configuration will also de-assert that SIB.

In this work we also considered more complex networks
involving remotely controlled scan multiplexer architecture.
They are more difficult to manage in terms of module’s
controllability and observability: corresponding control bits
have to be part of the active path in order to set desired
configuration, while additional reconfiguration operations are
required to include the module itself into the active path.
Therefore, an algorithm (Algorithm 2) implemented with
two recursive functions CONFIGUREMUX and PUTONPATH
provides input symbols for guaranteeing that all scan segments
are accessed at least once, while also detecting the full set
of considered, detectable mismatches. The order in which
multiplexers are provided is obtained using the same rule as
in the previous algorithm with the difference that is performed
once, globally, taking all multiplexers into consideration (Fig.
4c).

n1 n2 n3

n11 n12

n121 n122

n1221

n31 n32 n33

n321
a)

n1(0,3)

n11(1,1) n12(1,3)

n122(2,3)

n2(0,0) n3(0,2)

n31(1,1) n32(1,2) n33(1,1)

n1(0,3)
n12(1,3)
n122(2,3)
n1221(3,3)
n121(2,2)
n3(0,2)
n32(1,2)
n321(2,2)
n11(1,1)
n31(1,1)
n33(1,1)
n2(0,0)

n121(2,2)

n1221(3,3)

n321(2,2)

n1221(3,3)
n122(2,3)
n12(1,3)
n1(0,3)
n321(2,2)
n121(2,2)
n32(1,2)
n3(0,2)
n33(1,1)
n31(1,1)
n11(1,1)
n2(0,0)

b) c) d)

Fig. 4. Hierarchical information on network’s nodes

IV. EXPERIMENTS

We developed a prototypical tool, able to build an internal
simplified RSN model by reading the ICL description of
the network. After generation of selected mismatches, pattern
generation is run. Upon completion, a report is generated with
the list of applied configurations, set of covered mismatches
and those which are considered as undetectable.

Experimental results using the proposed mismatch model
and pattern generation algorithms are reported for the sub-
set of ITC2016 benchmark networks, since the tool currently
does not support all the constructs. Some synthetic networks
from the same set [13] have been translated from an internal
XML description to the ICL format and can be found at the
ecosystem’s website. 2.

2https://gitlab.com/IJTAG/benchmarks/tree/master/ICL

Algorithm 1 Deterministic algorithm for in-line RSN archi-
tecture

function GENERATEINPUTSYMBOL(prevState, state)
i← SIZE(bitBuffer) . number of control bits
genState← ACCESSIBLE(state) . visible control bits
while i ≥ 0 do

mux← GETMUX(StateV ars, i) . mux corr. to i
if ACCESSIBLE(i) then . control bit on act. path

CHECKMUX(0,mux) . update mux test status hier.
if SIB then . mux is SIB type

if bitBuffer[i] A then
if HIERTESTED(mux) then

bitBuffer[i]← D . close SIB
SETTESTED(mux) . mark as tested

curL← mux segment hier. level(lc) . 1nd parameter
deepL← mux deepest hier. level(ld) . 2st parameter
if ScanMux or (SIB and (bitBuffer[i] D
or (bitBuffer[i] A and ISTESTED(mux))) then

if deepL ≥ maxD and ¬ISTESTED(mux) then
if curL ≥ maxC then

sMux← mux . save the multiplexer
update levels (maxD)

i← i− SELECTIONCELLSIZE(mux)

if ¬ISTESTED(sMux) then . decide how to conf. mux
if ScanMux then . traverse ScanMux inputs

bitBuffer ← apply next encoding
if last encoding then

SETTESTED(sMux) . mark as tested
else

if bitBuffer[i] D then
bitBuffer[i]← A

else
if (mux, lc = ld) then

SETTESTED(sMux) . mark as tested

Algorithm 2 Generating configurations for remotely con-
trolled RSN architecture

function GENERATECONFIGURATIONS(gen, len, i, d)
mux← muxList(0)
while mux 6= null do

currentConfEnc← mux current configuration
for encoding all mux encodings do

if currentConfEnc 6= encoding then
CONFIGUREMUX(gen, mux, encoding)

PUTONPATH(mux)
index← index + 1
mux← muxList(index)

The networks from the evaluation set differ in the num-
ber and type of programmable modules. Table II reports
all important characteristics for each of the networks listed
in column 1 (Network). Columns 2 and 3 report the total
number of reconfigurable modules - number of SIBs and
ScanMuxes, respectively. The total number of control bits
is given in column Conf. bits. MaxDepth column contains
maximum hierarchical depth of the network (for SIB-based
networks this value equals to the maximum number of nested
SIBs, according to [13]). The longest path length is reported
in Longest path column, while the total number of scan cells
in the network can be found in Scan Cells column.

TABLE II
BENCHMARK NETWORKS LIST

Network SIB SM Conf.
bits

Max
depth

Max
path

Scan
cells

Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat Ex 57 3 62 5 5,100 5,195
TreeUnbalanced 28 - 28 11 42,630 42,630
a586710 - 32 32 4 42,381 42,410
p22810 270 - 270 2 30,356 30,356
p34392 - 96 96 4 27,899 27,990
p93791 - 596 596 4 100,709 101,291
q12710 27 - 27 2 26,185 26,185
t512505 159 - 159 2 77,005 77,005
N132D4 39 40 79 5 2,555 2,991
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 96,158
N73D14 29 17 46 12 190,526 218,869
NE600P150 207 194 401 78 23,423 28,250
NE1200P430 381 430 811 127 88,471 108,148

TABLE III
EXPERIMENTAL RESULTS

Network Num
conf.

Total
Cost [cc]

Run-
time

Total.
mism.

Undet.
mism

Mingle 32 4,437 1s 124 29
TreeBalanced 62 19,391 9s 1,423 47
TreeFlat Ex 102 16,446 10s 2,725 149
TreeUnbalanced 44 150,277 4s 874 50
a586710 106 1,588,162 7s 1,029 186
p22810 518 162,668 8m 36,371 851
p34392 310 2,853,219 100s 8,250 1,377
p93791 1,864 76,688,262 11h 203,832 21,342
q12710 50 54,760 4s 491 8
t512505 287 176,506 1m 10,246 557
N132D4 96 100,629 47s 18,140 492
N17D3 17 3,464 1s 553 11
N32D6 29 850,906 5s 1,290 4
N73D14 55 3,361,858 7s 4,836 21
NE600P150 432 1,685,759 37m 319,871 5,818
NE1200P430 854 10,696,840 4h 1,337,343 11,303

The experimental results are given in Table III. For each of
the benchmarks in column 1, number of generated configura-
tions is reported in column 2. Column 3 gives the total cost
in clock cycles for applying the generated sequence. The key
length has been set to 32, while 5 clock cycles are added as
JTAG overhead to each of the sessions. Furthermore, the time
required by the tool written in Java to apply the algorithm is
given in column Runtime. Columns 5 and 6 report on total
number of considered faults (excluding implicit ones) and the
total number of undetectable faults, respectively. It is worth
noting that in all cases applying generated sequence resulted
in achieving full coverage.

V. CONCLUSIONS

Reconfigurable Scan Networks provide flexible instrumen-
tation access through dynamic reconfiguration. To ensure
there is no mismatch between prototypical device and initial
specifications, product life-cycle requires performing (post-
silicon) validation before going into the mass production. Such
additional effort prevents rendering the whole infrastructure
inoperable and avoids enormous re-design costs. In this paper

we proposed a mismatch model for post-silicon validation
of RSNs. Furthermore, two algorithms have been developed
for generating configuration patterns to detect the set of
considered mismatches. The ITC2016 benchmark networks
were used to evaluate the proposed methodology. We found
that in all cases full detection coverage has been reached.
For the detection procedure based on the active path length
comparison, the tool is able to generate a list of undetectable
mismatches. Furthermore, mismatch model is easily extend-
able, due to the nature of the problem and internal model of
the network extracted by the tool.

ACKNOWLEDGEMENTS

The work has been supported by the European Commission
through the Horizon 2020 RESCUE-ITN project under the
agreement No. 722325, European Regional Fund, and IUT 19-
1 grant of the Estonian Ministry of Education and Research.

REFERENCES

[1] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, 2014.

[2] M. A. Kochte, R. Baranowski, M. Schaal, and H. Wunderlich, “Test
strategies for reconfigurable scan networks,” in 2016 IEEE 25th Asian
Test Symposium (ATS), Nov. 2016, pp. 113–118.

[3] R. Cantoro, A. Damljanovic, M. Sonza Reorda, and G. Squillero, “A
new technique to generate effective test sequences for reconfigurable
scan networks,” in IEEE 49th International Test Conference (ITC), 2018.

[4] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and
E. Larsson, “On the testability of IEEE 1687 networks,” in IEEE 24th
Asian Test Symposium (ATS). IEEE, 2015, pp. 211–216.

[5] R. Cantoro, L. San Paolo, M. Sonza Reorda, and G. Squillero, “New
techniques for reducing the duration of reconfigurable scan network
test,” in IEEE 21th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS), 2018.

[6] R. Cantoro, F. G. Zadegan, M. Palena, P. Pasini, E. Larsson, and
M. S. Reorda, “Test of reconfigurable modules in scan networks,” IEEE
Transactions on Computers, 2018.

[7] D. Ull, M. Kochte, and H. J. Wunderlich, “Structure-oriented test of
reconfigurable scan networks,” in 26th IEEE Asian Test Symposium
(ATS), Nov 2017, pp. 127–132.

[8] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and
E. Larsson, “Automatic generation of stimuli for fault diagnosis in IEEE
1687 networks,” in IEEE 22nd International Symposium on On-Line
Testing and Robust System Design (IOLTS), 2016, pp. 167–172.

[9] F. G. Zadegan, E. Larsson, A. Jutman, S. Devadze, and R. Krenz-Baath,
“Design, verification, and application of ieee 1687,” in Proceedings of
the 2014 IEEE 23rd Asian Test Symposium. Washington, DC, USA:
IEEE, 2014, pp. 93–100.

[10] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
scan networks: Modeling, verification, and optimal pattern generation,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 20, no. 2, p. 30, 2015.

[11] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wun-
derlich, “Formal verification of secure reconfigurable scan network
infrastructure,” in 21th IEEE European Test Symposium (ETS), 2016,
pp. 1–6.

[12] “Report on structural analysis, verification and optimization
methodology for icl networks,” in EU FP7 BASTION project report,
02 2016, pp. 1–42. [Online]. Available: https://cordis.europa.eu/docs/
projects/cnect/1/619871/080/deliverables/001-BASTIOND23v204.pdf

[13] A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson,
F. G. Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite
of IEEE 1687 benchmark networks,” in IEEE 47th International Test
Conference (ITC), 2016, pp. 1–10.

[14] A. Tsertov, A. Jutman, K. Shibin, and S. Devadze, “IEEE 1687 compli-
ant ecosystem for embedded instrumentation access and in-field health
monitoring,” in AUTOTESTCON 2018, 09 2018, pp. 1–9.

https://cordis.europa.eu/docs/projects/cnect/1/619871/080/deliverables/001-BASTIOND23v204.pdf
https://cordis.europa.eu/docs/projects/cnect/1/619871/080/deliverables/001-BASTIOND23v204.pdf

	Introduction
	Background and Terminology
	Methodology
	Mismatch model
	Undetectable mismatches
	Detection mechanism
	Algorithm

	Experiments
	Conclusions
	References

