
Hierarchical Fault Simulation of Deep Neural
Networks on Multi-Core Systems

Masoomeh Karami1, Mohammad-Hashem Haghbayan1, Masoumeh Ebrahimi1,2, Antonio Miele3,
Hannu Tenhunen1,2, Juha Plosila1

1Department of Future Technologies, University of Turku, Turku, Finland
2Department of Electronics and Embedded Systems, Royal Institute of Technology (KTH), Kista, Sweden

3Dip. Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
Email: {mkaram, mohhag, juplos}@utu.fi, {mebr, hannu}@kth.se, antonio.miele@polimi.it

Abstract—In this paper, a hierarchical fault simulation tech-
nique for neural networks is proposed, supporting both perma-
nent and temporary faults. In the proposed technique, different
levels of hierarchy are used, forming a mixed-level simulation
environment. In such an environment, the pre-synthesis behav-
ioral specification of the network and the post-synthesis gate-
level model are co-simulated. To accelerate the fault simulation
process, faults are injected in the gate-level specification of
the selected neurons while the behavioral model in different
levels of abstraction is used to simulate the remaining neurons.
Further speedup is obtained through event-driven simulation and
parallelization. Experimental results confirm the time efficiency
of the proposed fault simulation technique.

Index Terms—Fault Simulation, Neural Network, Reliability

I. INTRODUCTION

Deep Neural networks (DNNs) are one of the most promis-
ing and widely used applications in different fields such as au-
tonomous driving, aerospace, medical, and robotics [1]. Con-
sidering these applications, the neural network computations
should satisfy reliable operation [1]. To ensure the system
reliability, in both design-time and run-time, the occurrence
and the impact of faults on the system should be thoroughly
investigated in the underlying hardware. To do this, first,
an appropriate fault model is defined and injected into the
hardware, based on the modeling abstraction level, and after
that, the behaviour of the hardware with regard to the injected
fault is evaluated. This process is called fault simulation. Fault
simulation of DNNs is a time-consuming process as they
involve massive computation of a large number of neurons
[2].

Various studies implemented the fault simulation of DNNs,
however, they are usually limited to a specific fault model or
application. TensorFI is a high level fault injection (FI) frame-
work for applications that are implemented by TensorFlow
[3]. TensorFlow describes computations by using a data-flow
graph. To inject faults into this application, TensorFI duplicates
the data-flow graph and creates a FI graph. The fault model of
TensorFI is a high-level fault model. Although TensorFI offers
timing benefits, the fault coverage is limited compared to the
low-level stuck-at models. BinFI [4] presents a fault injector
for soft errors to find the safety-critical bits in ML applications.
Ares [5] presents a DNN-specific fault injection framework at
the application level and considers memory faults.

In this paper, a novel approach is proposed to improve the
fault simulation process for DNNs by taking advantage of
their special hierarchical structure. The main idea is to take
advantage of the fast simulation time of the higher abstraction
level simulation in the cases where low abstraction level
simulation is not demanded. The proposed fault simulation
technique for DNNs is further accelerated through well-known
techniques of parallel and event-driven fault simulation.

II. HIERARCHICAL FAULT SIMULATION OF DNNS

The first step of the proposed method is determining dif-
ferent abstraction levels of DNN modeling. Figure 1 shows
the levels defined for a simple feed-forward neural network.
The top-level view of such a DNN consists of a number
of computational layers. The lowest abstraction level in our
modeling approach is the gate-level, that is compatible with
our stuck-at fault model.

Figure 1: Simulation abstraction levels

Hierarchical fault model: In this model, the fault injection
process is a top-down process and relies on high-level effective
faults at each level. The lowest level fault is the stuck-at fault
(see Figure 1). The high-level fault model for each neural
network layer is defined in terms of cases where neurons’
outgoing signals from the layer are faulty. Furthermore, the
fault model for a neuron considers cases where the neuron’s
output changes according to the fault. Defining the high-level
fault model removes those low-level faults whose effect is
masked; they do not propagate to higher levels of hierarchy.
This process is done during the fault collapsing phase that
significantly reduces the number of faults.



Multi-thread fault simulation: To enhance parallelization,
multi-thread simulation is used. Since layers are executed in
a pipeline manner, the best parallelization performance could
be obtained when all threads in the system are allocated to the
same layer at the time.

Event-driven fault simulation: The event-driven simula-
tion has been used traditionally for different levels of hier-
archy. In DNN fault simulation, the event can be generated
through a change in the input signals or by injecting a fault
into the system. In our proposed fault simulation technique,
a hierarchical event-driven process is proposed where the
definition of the events in each level of hierarchy is not the
same. The main idea here is that, during the simulation in
each level of hierarchy, only those parts of the modules that
encounter an event in its input will be simulated. Similar to
the fault model definition, the event-driven simulation is a top-
down process, where an event in the highest possible level
of abstraction modeling is considered in fault simulation. The
hierarchical event-driven simulation only can be applied to the
same abstraction level, where concurrent execution would be
possible.

Stuck-at faults embedded in gate-level: As mentioned
earlier, stuck-at fault should be modeled at the gate-level. Due
to the large number of multipliers and adders in DNNs, we
consider to reproduce these operators with embedded stuck-at
faults operators. The reproduced operator is then called fault-
injectable operator. There are three main steps to prepare a
gate-level implementation for use at a higher level. The first
step is to describe the operators in the HDL code. The next
step is to provide a netlist of the operators. For this purpose,
the HDL code is synthesized by the synthesis tool (i.e., ISE
Xilinx). Finally, the netlist of operator converts into the fault-
injectable operator at a high-level. Through this process, the
stuck-at fault model is embedded on each wire in the netlist.

Overall flow: In the proposed approach, the fault simu-
lation is performed in the highest possible abstraction level.
Whenever a fault is injected, the faulty units are replaced with
their equivalent lower abstraction level of the target module.
Algorithm 1 shows the proposed hierarchical fault simulation.
Each level in the algorithm is represented through an integer
number starting from the lowest gate-level that takes number
zero. The fault-injection function injects the faults recursively
from the top abstraction level down to gate-level. The fault-
injection function goes through the abstraction levels of DNN
to find the target wire for injecting a fault.

Algorithm 1 The fault-injection function
Inputs: module; level; faults; input;
Body:
1: Initialization phase ();
2: FS ← select-faults (module, faults); //Faults are grouped into different

fault sets (FS).
3: for each event on (FS, modules, level) do
4: if is_faulty (FS, module, level) then
5: if level = 0 then
6: events ← simulate-stuck-at (module, FS, inputs);
7: return (events);
8: else
9: inject-fault (module, level-1, FS);

10: else
11: events ← simulate (events);
12: return (events);

III. EXPERIMENTAL SETUP AND RESULT
To evaluate the proposed hierarchical fault simulation tech-

nique, we adopt the well-known LeNet-5 neural network
model, coded in C++ programming language, simulated on
the tiny-DNN simulation environment, and based on Ubuntu
OS. The fault simulation input is selected from the MNIST
benchmark. Figure 2 shows the simulation time of the high-
level model versus the gate-level model for a multi-layer
perceptron (MLP) neural network. Simulating at a behavioural
level significantly improves the simulation time with regard to
the number of neurons compared to gate-level simulation.

1

2

3
3.5

·104

Si
m

ul
at

io
n

tim
e(

s)

Gate-level model
Behavioural-level model

0 50 100 150 200 250 300
0

20

Number of neurons
Figure 2: Simulation time of behavioural-level model vs. gate-level model

For gate-level implementation of the neural network, 32-
bit fixed-point number representation is used while for mod-
eling the high-level implementation, floating-point variable
is used. Figure 3 shows how replacing a behavioral-level
implementation of a single neuron with its equivalent gate-
level implementation affects the total simulation time. For this
purpose, we replace the code for a single neuron in each layer
and measure the total simulation time. The total simulation
time is around 27 seconds before making any changes, and,
for example, it could be increased by around 7 seconds when
inserting a gate-level implementation of a single neuron in the
first convolutional layer. This result indicates the importance
of mixed-level simulation in reducing the simulation time.

1

28

30

32

Si
m

ul
at

io
n-

tim
e(

s)

conv1 avg-pooling2 conv3 avg-pooling4 conv5 FC6
Figure 3: Replacing a single neuron code implementation in each layer.

IV. CONCLUSION

In this paper, a novel hierarchical fault simulation for deep
neural networks (DNNs) is presented. In this approach, the
DNN is modeled and can be simulated in different abstraction
levels, and for each level of abstraction, a fault model is pro-
posed. Experimental results show that the proposed technique
significantly reduces the fault simulation time compared to
traditional fault simulation techniques.

REFERENCES

[1] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” in Journal of Systems Architecture, 2020.

[2] A. Chatterjee and L. R. Varshney, “Energy-reliability limits in nanoscale
neural networks,” in CISS, 2017, pp. 1–6.

[3] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “Tensorfi: A flexible fault injection framework for tensorflow
applications,” in arXiv, 2020.

[4] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: An
efficient fault injector for safety-critical machine learning systems,” in
High Performance Computing, Networking, Storage and Analysis, 2019.

[5] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G. Wei, “Ares: A framework for quantifying the
resilience of deep neural networks,” in DAC, 2018, pp. 1–6.


