
Run Time Management of Faulty Data Caches 

 

Michail Mavropoulos 

Dept. of Computer Eng. & Informatics  

University of Patras 

Patras, Greece 

mavropoulo@ceid.upatras.gr 

 

Georgios Keramidas 

Dept. of Informatics  

Aristotel University  

Thessaloniki, Greece 

gkeramidas@csd.auth.gr 

 

Dimitris Nikolos 

Dept. of Computer Eng. & Informatics 

University of Patras 

Patras, Greece 

nikolosd@ceid.upatras.gr 

 

Abstract—As the technology continuous to shrink, power 

consumption appears to be the main design parameter. 

Operation on low voltage negatively affects mainly the operation 

of on-chip memories, resulting in multiple malfunctioning 

memory cells. As a reaction many cache fault tolerance (CFT) 

mechanisms have been proposed targeting the mitigation of 

performance degradation. The challenge is to devise 

mechanisms that are tailored to the memory access patterns of 

the executing applications.  

In this work we initially investigate the impact of the 

granularity of cache line disabling scheme in the first level data 

caches. Based on our analysis, we propose a run time adaptive 

mechanism that is able to opt the cache (sub-)block taking into 

account the diverse memory characteristics of the application. 

The proposed mechanism is based on the widely used block 

(sub-block) disabling scheme, and dynamically selects the 

appropriate sub-block granularity during the execution of the 

applications. Our evaluation results reveal that the proposed 

dynamic approach is able to offer significant benefits over a 

faulty cache design with a monolithic (sub-)block granularity. 

Keywords— Cache Fault Tolerance, Re-configurable caches 

I. INTRODUCTION 

Reducing the supply voltage in today’s process 
technologies introduces significant reliability challenges for 
on-chip SRAM arrays. This is particularly true as silicon 
industry moves into the near threshold region characterized by 
high fault probabilities [7]. On-chip caches are built with 
minimum sized (to reduce leakage power), thus more prone to 
failure SRAM cells [3]. Resilience roadmaps pinpoint the 
vulnerability problem in SRAM cells [16]. As a result, a vast 
portion of the on-chip memory resources will become 
unreliable leading to stochastic designs due to increases in 
static [4] and dynamic [5] variations, wear-out failures [24], 
and manufacturing defects [3].  

Therefore, it becomes critical to investigate new CFT 
techniques [13][14][17][22]. Obviously, these techniques 
have to be both lightweight and performance effective, 
especially when the target caches are close to the core (e.g., 
L1 caches). A broad category of CFT designs, named after the 
term graceful degradation [18], has gained much attention by 
the researchers as well as the industry. The underlying idea is 
to disable cache portions, such as cache ways, that include 
malfunctioning memory cells, and apply several schemes to 
reduce the consequences of the disabled cache portions 
[2][13][17][22][23]. A detailed analysis about the already 
proposed techniques is presented in Section III.  

A particularly attractive, due to its simplicity, scheme was 
presented in [1]. The authors introduced the concept of 
subblock disabling. Instead of relying on complex cache 
restructuring or block remapping approaches, the cache lines 
are divided into four parts (called subblocks) and a separate 

bit (called fault bit) is assigned to each subblock. Sub-block 
disabling (called SBDIS hereafter) allows keeping data in 
cache lines even if they have some faulty subblocks. By 
tracking which subblocks are not faulty, hits in those 
subblocks can be detected. Obviously SBDIS is a low 
overhead CFT technique (with less than 0.19% area 
overheads) [1].  

Figure 1 shows the impact of the granularity of the 
(S)BDIS scheme to the cache fault-free area (y-axis) for five 
percentages of failures (pfails) assuming a 32KB, 64-bytes 
block, 8-way cache. In BDIS, one fault bit is applied to the 
whole cache frame (1 fault bit per 64B). In 
SBDIS2/SBDIS4/SBDIS8, one fault bit is assigned to every 
32/16/8B sub-block respectively. From Figure 1, it is obvious 
that moving to smaller block granularities, a larger effective 
cache capacity is available at the microarchitectural level and 
this trend is more pronounced as we shift to higher pfails. For 
example, in the 5e-04 pfail (five malfunctioning cells per 104 
memory cells), BDIS results in 75% fault-free cache area 
(36% in 2e-03), while the SBDIS8 scheme manages to 
increase the sound area to 96% (85% in 2e-03).  

The main contributions of this work are: 

• We examine the cache behavior for a wide range of 
pfails and for two benchmark suites by applying the BDIS 
technique in different block granularities. Our analysis reveals 
that there is no unique BDIS granularity that performs the best 
across all pfails, fault maps, and studied benchmarks. 

• Based on the above observation we propose a simple 
mechanism that is able to opt the best performing cache block 
granularity according to the application memory behavior. 
The proposed mechanism decides at run-time if there is an 
opportunity to reduce the number of misses and dynamically 
adjusts the BDIS granularity. Note that the SBDIS scheme in 
[1] relies only on four subblocks (statically defined). 

• An inherent drawback of the proposed mechanism is 
that it relies on cache flushes in order to select the appropriate 
(S)BDIS scheme. To address this, we introduce an additional 

Figure 1: Effective (fault-free) cache size for different 

percentages of malfunctioning cells. 



prediction mechanism that manages to reduce significantly the 
number of required cache flushes. 

• We evaluate our approach using a wide range of 
applications (from SPEC2000 and SPEC2006 suites), various 
cache organizations (32/64KB and 4/8 ways), a plethora of 
fault maps and five pfails in order to prove the validity of our 
proposal. Our results indicate that our run-time mechanism is 
able not only to dynamically select the most suitable block 
granularity, but it can also seize the opportunity to further 
optimize the cache performance by taking advantage of the 
different program phases that appear in the application.  

Structure of this paper. Section II assesses the impact of 
defective cells in faulty data caches and motivates this study. 
Section III surveys related work and Section IV describes our 
evaluation framework. Section V presents our two-level, run-
time management mechanism. Section VI provides our 
evaluation results and Section VII summarizes the paper. 

II. MOTIVATION 

Cache design is a multi-parametric design process 
involving several parameters e.g., block size, associativity, 
lookup overheads etc. The centerpiece of the cache parameters 
is the block size. Small block sizes tend to fetch fewer unused 
words, but impose significant performance penalties by 
missing opportunities for spatial prefetching. Larger line sizes 
minimize tag overhead and effectively prefetch neighboring 
words (spatial prefetching).  

Figure 2 depicts the effect of the block disabling scheme 
assuming two block granularities and five pfails. Omitting at 
this point the simulation details, the graph in the top shows the 
averaged values across all studied benchmarks. The y-axis 
shows the relative increase in the number of misses over a 
fault-free cache. The x-axis is divided into five main parts (one 
for each pfail) and each part contains separate statistics for the 
BDIS and SBDIS4 (each cache line is divided into four 
subblocks). In all cases, a 32KB, 8-ways, 64-bytes block DL1 
cache is assumed. At the top of each bar, the disabled part of 
the cache is also shown.  

As expected, finer granularities lead to larger effective 
cache capacities. Surprisingly, in the first four pfails the two 
schemes seem to perform equally well reporting almost the 
same number of misses. The difference between the two 
schemes is less than 5.5% until pfail4, while the SBDIS4 is 
the clear design choice in high failure rate situations (pfail5) 
e.g., when operating in the near-threshold region. Therefore, 
it is obvious that if we want to operate a cache memory in 
different pfails (e.g., in DVFS-enabled systems), a different 
subblock granularity must be selected.  

While the top graph of Figure 2 pertains to the averaged 
values, the additional graphs in Figure 2 depict specific cases 
varying either the studied benchmark (for the same pfail) or 
the studied fault map (for the same benchmark and pfail). The 
graph in the middle shows six selected benchmarks 
corresponding to pfail3 (1e-03).  

As we can see, different benchmarks exhibit a different 
behavior. Note that in pfail3, the difference between the two 
schemes is 4.2% (averaged across all studied cases). In 
bzip2/SPEC2000 and cactusADM/SPEC2006, the SBDIS 
scheme manages to significantly reduce the number of misses 
compared to BDIS by 53.8% and 32.9%, respectively. On the 
contrary, applu/SPEC2000 and wrf/SPEC2006 are not able to 
get advantage of the extra memory offered by SBDIS4. In fact, 

BDIS reports more than 60% less misses in both cases. 
Finally, the other two benchmarks in the mid group of graphs 
of Figure 2 (gap/SPEC2000 and gemsFDTD/SPEC2006) 
show a memory behavior that lies in between the above 
extreme cases. 

Our analysis reveals that the culprit of this non-intuitive 
case is that fine grain block disabling exhibit a hostile behavior 
to the spatial locality of the executing applications. In other 
words, while partially faulty blocks may offer the opportunity 
to exploit the temporal access patterns of the applications (by 
providing a limited space to host the requested blocks in the 
cache), they also limit the possibility to exploit spatial locality, 
simply because the neighboring memory locations are not 
cached. 

Moreover, the graphs in the bottom part of Figure 2 
highlight one more interesting behavior. These graphs 
correspond to representative cases for the same benchmark 
(gemsFDTD/SPEC2006) and pfail (1e-03), but for three 
different fault maps. As we can see, the same trend can be seen 
here as well: a different block granularity is the best-
performing one for different fault maps.  

To conclude, fine-grain block disabling schemes are able 
to substantially increase the available fault-free cache space in 
defective caches. However, there is no unique BDIS 
granularity that performs the best across all pfails, fault maps, 
and benchmarks. In the rest of this paper, we propose a 

Figure 2: Impact of SBDIS granularity on the miss ratio for the 

SPEC2000 and SPEC2006 benchmarks. The percentages on top 

of each bar indicate the fraction of the cache faulty area. 



dynamic mechanism that is designed to dynamically select the 
best performing granularity according to the application 
memory behavior (spatial-temporal memory characteristics). 
The proposed mechanism decides at run-time if there is an 
opportunity to reduce the number of misses and dynamically 
adjusts the BDIS granularity. 

III. RELATED WORK 

In this work we deal with the cache reliability problem 
by adapting the block granularity of faulty data caches. We 
will briefly overview prior work in both directions. 

CFT Techniques. Many CFT techniques rely on redundancy 
[20] and on an appropriate logic to remap the defective cache 
parts to functional spare elements [12]. The spare resources 
are organized as extra placeholders intended to host both the 
data and tag parts of the defective blocks. However, this 
approach offers a limited scalability due to the limited number 
of faulty blocks that can be tolerated [12] (defined by the 
number of spare blocks). Moreover, when the number of the 
faults is relatively small (e.g., under nominal operation in 
DVFS systems) the spare resources are underutilized [14]. 
The work in [14] addresses the latter issue by combining the 
functionality of a typical spare cache [20] with the 
functionality of a victim cache [10]. Another recent work [13], 
called DARCA, presents an alternative usage of the redundant 
memory space. Instead of using the redundant elements for 
hosting the data and tag parts of the defective blocks (data-
based redundancy), DARCA devotes the extra storage to hold 
information (extra tag and status bits) to control how the cache 
data array stores and disambiguates the cached data (control-
based redundancy). Nevertheless, the main disadvantage of 
the two latter schemes stems from their basic functionality: the 
additional storage required to hold the required information. 

In response to the problems with redundancy, a broad 
category of CFT designs are based on the graceful degradation 
concept [18]. In graceful degradation, there are no spares. The 
idea is to disable cache portions, such as blocks or words that 
contain defective bits, and reconfigure operational (physically 
or logically neighborhood) blocks to serve as substitutes. For 
example, the PADed cache redirects the accesses in faulty 
cache frames to sound ones by modifying the cache decoding 
logic [17]. The WDIS [23] scheme combines two consecutive 
faulty cache blocks into a single sound block. BFIX [23] 
sacrifices a sound block to repair defects in three other cache 
blocks. Finally, the FFT-cache [15] describes a multi-bank 
cache organization to avoid performance degradation when 
accessing the substituted block or word. 

As noted, in [1], a subblock disabling based scheme was 
proposed. The main advantage of this technique is each low 
storage overheads i.e., one faulty bit for each subblock (four 
extra bits in a 64Bytes block). The main disadvantage of the 
technique in [1] was that a fixed subblock granularity is 
assumed. As we show in this work, by adapting the cache 
block granularity significant benefits can be reported. This is 
due to the unique and changing memory behavior of the 
different executing applications even for the same pfail and 
fault map, as well as of the same application for different pfails 
and/or fault maps. 

Cache Line Adaptivity. The cache block defines the 
fundamental unit of data movement and space allocation in 
caches. Typically, the cache blocks are uniformly sized to 
simplify the insertion/removal of blocks and cache refill 
requests, and to support low complexity tag organization. 

Unfortunately, this one-size-fits-all approach results in poor 
cache efficiency. In order to palliate this, the superloading [9] 
or superblocking [21] techniques were proposed i.e., upon a 
cache miss, the missing line and surrounding lines are brought 
into the cache if it deemed profitable.  

One of the first approaches for accommodating variable 
line sizes was in [19]. The authors fetched adjacent blocks into 
a separate buffer to exploit spatial locality and avoid cache 
pollution. A study for dynamically allocating data across 
caches with different line sizes (one optimizing temporal 
locality and the other one spatial locality) is described in [8].  

Our approach also relies on the spatial locality 
characteristics of the application, but instead of adjusting the 
number of cache lines that will be fetched in a cache miss, we 
adjust the number of the active (powered-up) subblocks within 
a cache frame. To the best of our knowledge, this is the first 
work that proposes a dynamic mechanism to adapt at run-time 
the cache block granularity in faulty data caches. 

IV. EVALUATION FRAMEWORK 

Baseline faulty cache. As noted, our proposal assumes that 
DL1s are enhanced with the ability of disabling their defective 
parts at subblock granularity. The baseline faulty cache that 
we consider in this work is the four-subblock disabling 
scheme (statically defined) proposed in [1]. Exploring finer 
granularities is left for future work. As noted, subblock 
disabling allows keeping data in the cache lines even if they 
have some faulty subblocks. By tracking which subblocks are 
faulty, hits in those subblocks can be detected. The 
implementation of the baseline faulty cache is straightforward 
[1]. Whenever a hit happens in a faulty subblock, the hit/miss 
cache logic reports a false hit (the tag comparison logic 
indicates a match, but the address offset points to a faulty 
subblock). Then, the cache line is evicted and treated as a 
normal miss. Finally, it is assumed that faulty caches are 
already managed by a modified version of the LRU-based 
replacement policy [1]. More specifically, the cache defect 
map is exposed to the baseline LRU algorithm. Fully defective 
cache frames are totally excluded from the (re)placement 
decisions. However, partially defective cache frames serve as 
placement candidates, no matter if the just-requested-address 
(requested portion of the block) corresponds to the sound or 
the defective physical area of the target frame. 

Failures. Cache sections containing malfunctioning cells are 
disabled, so it is not necessary to consider a specific fault 
model. Disabling takes place at block or subblock level, 
therefore we consider that each subblock is accompanied by a 
separate fault bit. All the fault bits constitute the cache fault 
map. We consider random distribution of malfunctioning cells 
(both at tag and data arrays of the cache), while for the valid 
bits, fault bits, and replacement bits we assume that are not 
affected by process variation-induced failures e.g., by 
employing more reliable SRAM cells [11].  

Moreover, since our effort is to provide a dynamic and pfail-
depended block resizing approach, we study five pfails: 
5.00E-04 (pfail1), 8.00E-04 (pfail2), 1.00E-03 (pfail3), 
1.50E-03 (pfail4), and 2.00E-03 (pfail5). Finally, we produce 
random fault maps and run simulations to ensure results are 
within an error of 5% and a confidence level of (1 − α) = 0.95. 
For each benchmark, the averaged results across all fault maps 
are presented. 



Simulation infrastructure. Our evaluations are based on 
trace-based simulations. The memory traces have been created 
using gem5/x86 simulator assuming a 8-stage pipeline, 2-
issue, out-of-order processor with a 20-entries instruction 
window. The extracted memory traces are fed to a custom 
cache simulator1. The reason for using a custom trace driven 
simulator was to reduce the simulation times. More 
specifically, for each case (benchmark, cache configuration, 
and reliability technique) and in order to ensure the target 
confidence level in our measurements, each simulation was 
repeated for 150 random fault maps (on average). Due to the 
large number of required simulations (for 30 SPEC2000 and 
SPEC20006 benchmarks), performing cycle accurate 
simulations using gem5 would have led to huge simulation 
times.  

Benchmarks. Two benchmark suites, namely SPEC2000 and 
SPEC2006, comprise our collection of benchmarks used in 
this work. For each suite, 15 applications with the highest DL1 
miss ratios are presented. In all cases, we simulate 200M 
instructions using the reference inputs after skipping 1B 
instructions to avoid unrepresentative startup behavior. 

BIST mechanism. We assume that the cache is equipped with 
a built-in-self-test (BIST) circuitry. The BIST mechanism 
detects the defective cache parts and updates the fault map 
either during production testing or under periodic testing in 
the field of the application in order to detect aging problems 
too. A description of the BIST mechanism is out of the scope 
of this work. 

V. ORGANIZATION OF THE PROPOSED MECHANISM 

Having demonstrated the need for adaptive cache line 
granularities in faulty caches, this section presents our 
proposal. Much like conventional adaptive computing, our 
proposal uses a set of parameters to monitor and dynamically 
to be adapted to changes in application cache behavior. To 
monitor cache performance, the execution time is divided into 
fixed windows measured in DL1 accesses. Also, the number 
of misses is used as the main cache performance metric. 

Figure 3 illustrates our framework for dynamically tuning 
the cache block granularity. The proposed framework is 
inspired by the approach proposed in [6] where the authors 
relied on a lossy-compressed representation (signature) of the 
application working sets in order to detect new program 
phases. As Figure 3 shows, the time windows2 are divided into 
a tuning phase (called sense intervals) in which the available 
configurations are run for a small interval and the cache 
misses of each option are recorded by two miss counters. The 
configuration with the lowest number of misses is selected to 
be used in the remaining window (execution interval in Figure 
3). In the context of this work, our approach is formulated to 
select among two block granularities: BDIS and SBDIS4. 
Exploiting more block granularities is left for future work. 

However, since our proposal targets to resize the block 
granularities at run-time, specific cache items must be flushed 
(invalidated) during transitioning from our cache granularity 
to another3. While this might sound detriment to cache interval 
performance, it is important to note that the flushing operation 
is: i) restricted only to the cache blocks that contain one or 
more malfunctioning SRAM cells and ii) required only during 

                                                           
1 https://github.com/mmavrop/faulty-cache-simulator 
2 Employing variable length windows to better capture the program phases 

of the applications is left for future work. 

block granularity upsizing (from SBDIS4 to BDIS). 
Moreover, in the rest of this section, we will present an 
additional prediction mechanism that is able to further reduce 
the needed number of cache flushes. In any case, 
independently of the selected block configuration only one 
cache flush must be enforced in each window. 

The monitoring circuitry is responsible to formulate the 
sense and execution intervals and accordingly notify the cache 
controller about the choice of reconfiguration (BDIS or 
SBDIS4). As noted, for a cache block divided into four 
subblocks, each subblock (16 bytes) is enhanced by a fault bit 
(called sfault bit). However, an additional bit for each cache 
block is required (called bfault bit). The role of the bfault bit 
is to indicate if the corresponding cache block has one or more 
defective SRAM cells. This bit can be set either by OR’ing the 
four sfault bits or it can be part of the cache fault map. Finally, 
the cache controller is responsible to control the granularity of 
choice: either by conveying the per-subblock sfault bits 
(SBDIS4) or the per-block bfault bit (BDIS) in the 
read/write/invalidate operations of the target cache. 

Reducing the cache flushes. To reduce the number of 
required cache flushes, a simple prediction mechanism is 
introduced in our design (not showed in Figure 3). If in two 
subsequent windows the same block configuration is selected, 
then the sense intervals (thus the cache flushes) are omitted in 
the consecutive (third) window. In this case, the previous 
block configuration is used. As we will show in the next 
section, this simple prediction mechanism is able to reduce the 
number of the required cache flushes by 30% on average with 
negligible impact in cache performance. Employing more 
sophisticated prediction mechanisms is left for future work. In 
any case, the impact of cache flushes (i.e., extra misses) are 
fully accounted in our evaluation results. 

Time considerations and hardware overheads. With 
respect to the baseline (subblock-disabled) faulty cache, our 
proposal does not introduce extra delays in the cache 
access/lookup path. This is important since our target is to 
increase the reliability of the latency-sensitive DL1s. The 
extra components in Figure 3 are: two 32-bit cache-wide 
counters for measuring the three intervals (measured in cache 
accesses) + two 32-bit counters for measuring the misses in 
the two sense intervals + a comparison logic for comparing 
the misses collected in the previous sense intervals. 
Obviously, the hardware overheads of these extra components 
are negligible. In our analysis, we do not account for the 

3 During cache flushes the necessary write-backs of the dirty sections are 

also enforced. 

 

Figure 3: The proposal internal-based block selection scheme 



additional circuitry required for the cache flushes, since this 
feature is typically included in almost all contemporary cache 
controllers. Finally, the whole monitoring logic runs in 
parallel to the normal cache operation, while the selection 
between BDIS and SBDIS4 is activated only once per window 
and it does not reside in the critical path of the cache 
read/write/lookup operations. 

VI. EXPERIMENTAL RESULTS 

This section presents our evaluation results when the 
proposed dynamic policy is employed in DL1s. Four different 
cache organizations are considered varying the cache size 
(32KB, 64KB) and associativity (4-way, 8-way). In all cases, 
a 64Β cache block is used. We experiment with six different 
windows and eight different sense internal parameters. 
According to our results, the best performing combination is 
when the window is configured to 1.8M DL1 accesses while 
the sense intervals for 32K/4ways, 32K/8ways, 64K/4ways, 
and 64K/8ways are 12K, 18K, 22.5K, and 22.5K accesses 
respectively.  

The first part of this section quantifies the efficiency of the 
two separate prediction schemes that employed in our 
proposal. In the second part, our mechanism is compared 
against its two main counterparts (BDIS and SBDIS4) in a 
per-benchmark basis for the 1.0e-03 pfail. The third part 
contains our overall range of results for all studied pfails, 
cache configurations, and block disabling granularities. 

Prediction accuracy. Working with trace-driven simulations 
is possible to calculate the accuracy of an oracle predictor by 
post-processing the memory traces. Figure 4 depicts the 
accuracy (vertical axis) of our sense-interval based prediction 
scheme i.e., how many times the configuration selected, by 
comparing the misses obtained during the two sense intervals, 
matches the oracle block granularity. As Figure 4 shows in 73 
out of 90 cases (30 benchmarks x 3 pfails) the achieved 
accuracy is more than 80%, but there are 7 cases in which it is 
less than 60% which means that there is ample room for 
improvement. Overall, our complexity effective proposal 
manages to report an 88% accuracy wrt. an oracle predictor. 

Figure 5 quantifies the efficiency of the additional 
program-phase based predictor in reducing the number of 
cache flushes. Since the additional predictor relies on the 
information collected in two previous windows to avoid the 
cache flush in the subsequent window, the maximum number 
of the cache flushes that can be skipped is 33.3%. As Figure 5 
indicates the reductions in flushes vary from 28.7% 
(SPEC2000/pfail1) to 30.4% (SPEC2000/pfail5). Employing 
more sophisticated prediction schemes is left for future work. 

Per-benchmark statistics. Figure 6 illustrates our gathered 
results in a per-benchmark basis for the 1.0e-03 pfail and for 
the BDIS (dark green bars), SBDIS4 (light green), and the 
proposed mechanism (red). In all cases, the results (misses) 
are normalized to the fault-free case. As the graph indicates, 
the proposed adaptive mechanism not only manages to follow 
the best performing mechanism (among BDIS and SBDIS4), 
but also to outperform it by more than 5% in 6 benchmarks. 
Although the left part of figure 6 presents per benhmark 
results only for the 32KB/8ways, on the right part we give the 
averaged results for all four studied cache organizations. 

Overall statistics. Figure 7 depicts our full range of results for 
all studied pfails and cache configurations. The x-axis is 
divided in five main parts (one of each pfail) and each part 
contains separate statistics for our proposal (“Dynamic”) and 
four static disabling schemes of different block granularities. 

Figure 4: Accuracy in predicting the block granularity with respect to an oracle prediction scheme. 

Figure 5: Reduction in cache flushes using the additional 

prediction mechanism. 

Figure 6: Per-benchmark comparison between our proposal, BDIS, and SBDIS4 (pfail=1e-03, 32KB/8ways). For clarity, the results above 

80% are shown in the top of the bars. 



The dark/light green bars in Figure 7 correspond to the 
averaged results of SPEC2000/SPEC2006. Note that in 
SBDIS8 scheme, each cache block is divided into eight 
subblocks. Given that our mechanism still selects among the 
BDIS/SBDIS4 schemes, the SBDIS8 exhibits 57.8% (pfail = 
1E-03) more fault-free area with respect to BDIS. As we can 
see, in the first three pfails, our proposal shows significant 
miss-saving capabilities over SBDIS8 (37.7%% in pfail1, 
19.9% in pfail2, and 9.3% in pfail3). On the contrary, in pfail4 
and pfail5, the proposed dynamic scheme fells victim of the 
extra fault-free cache space of BSDIS8. As expected, the 
larger difference between the two schemes (dynamic vs. 
SBDIS8) appear in pfail5 case (23% in SPEC2000 and 28% 
in SPEC2006). This can be addressed by extending our 
dynamic mechanism to select among a larger groups of block 
granularities and by further reducing the number of required 
cache flushes. Finally, the real strength of our dynamic 
approach is revealed if we compare our dynamic approach 
against the best performing mechanism among the BDIS and 
BDIS4 schemes (vertical arrows in Figure 7). In this case, the 
average relative gain of our scheme over the best performing 
scheme (among BDIS and SBDIS4) starts from 8.2% in pfail5 
up to 36.3% in pfail1. 

VII. CONCLUSIONS 

A subblock disabling technique when compared to the 
block disabling increases the effective area of a data cache 
with malfunctioning cells. However, in this paper we reveal 
that depending on the percentage of the malfunctioning cells, 
the fault map and the running application, the use of the block 
disabling technique can lead to less misses than the use of a 
subblock disabling technique. To take advantage of this 
outcome for the benefit of performance, we propose a run time 
decision making mechanism for the dynamic selection of the 
block or a subblock disabling technique. The effectiveness of 
the proposed technique was shown with simulations. 

ACKNOWLEDGMENT  

This work has received funding from the European 
Union’s Horizon 2020 Research and Innovation Programme 
under Grant Agreement No 871738 - CPSoSaware: Cross-
layer cognitive optimization tools & methods for the lifecycle 
support of dependable CPSoS. 

REFERENCES 

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González. Low 
Vccmin Fault-Tolerant Cache with Highly Predictable Performance. 
Intl. Symp. on Microarchitecture, 2009. 

[2] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Maximizing Spare 
Utilization by Virtually Reorganizing Faulty Cache Lines. Trans. on 
Computers, 2011. 

[3] S. Borkar. Design Perspectives on 22nm CMOS and Beyond. Intl. 
Design Automation Conference, 2009. 

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. 
De. Parameter Variations and Impact on Circuits and 
Microarchitecture. Intl. Design Automation Conference, 2003. 

[5] K. Bowman, J. Tschanz, C. Wilkerson, S.L. Lu, T. Karnik, V. De, and 
S. Borkar. Circuit Techniques for Dynamic Variation Tolerance. Intl. 
Design Automation Conference, 2009. 

[6] A.S. Dhodapkar and J.E. Smith Managing multi-configuration 
hardware via dynamic working prediction. Intl. Symp. on Computer 
Architecture, 2002. 

[7] S. Gabapathy, J. Kalamatianos, K. Kasprak, and S. Raasch. On 
Characterizing Near-Threshold SRAM Failures in FinFET 
Technology. Intl. Design Automation Conference, 2017. 

[8] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with multiple 
caching strategies tuned to different types of locality. Intl. Conf. on 
Supercomputing, 1995. 

[9] T. Johnson, M. Merten, and W. Hwu. Run-time spatial locality 
detection and optimization. Intl. Symp. on Microarchitecture, 1997. 

[10] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the 
Addition of a Small Fully-Associative Cache and Prefetch Buffers. Intl. 
Symposium on Computer Architecture, 1990. 

[11] J.P. Kulkarni, K. Kim, and K. Roy. A 160 mV Robust Schmitt Trigger 
Based Subthreshold SRAM. Journal of Solid-State Circuits, 2007. 

[12] H. Lee, S. Cho, and B.R. Childers. DEFCAM: A Design and 
Evaluation Framework for Defect-Tolerant Cache Memories. Trans. on 
Architecture and Code Optimization, 2011. 

[13] M. Mavropoulos, G. Keramidas, and D. Nikolos. A Defect-Aware 
Reconfigurable Cache Architecture for Low-Vccmin DVFS-Enabled 
Systems. Intl. Conf. in Design, Automation, and Test in Europe, 2015. 

[14] M. Mavropoulos, G. Keramidas, G. Adamopoulos and D. Nikolos. 
Reconfigurable Self Adaptive Fault Tolerant Cache Memory for DVS 
Enabled Systems. Intl. Symp. of Great Lakes on VLSI, 2015. 

[15] A.B. Mofrad, H. Homayoun, N. Dutt. FFT-cache: A Flexible Fault 
Tolerant Cache Architecture for Ultra Low Voltage Operation. Intl. 
Conf. on Compilers, Architectures and Synthesis for Embedded 
Systems, 2011. 

[16] S.R. Nassif, N. Mehta, and Y. Cao. A Resilience Roadmap. Intl. Conf. 
in Design, Automation, and Test in Europe, 2010. 

[17] P.P. Shirvani and E.J. McCluskey. PADded Cache: New Fault 
Tolerance Technique for Cache Memories. VLSI Test Symp., 1999. 

[18] G.S. Sohi. Cache Memory Organization to Enhance the Yield of High-
Performance VLSI Processors. Trans. on Computers, 1989. 

[19] O. Temam and Y. Jegou. Using virtual lines to enhance locality 
exploitation. Intl. Conf. on Supercomputing, 1994. 

[20] H.T. Vergos and D. Nikolos. Performance Recovery in Direct Mapped 
Faulty Caches via the Use of a Very Small Fully Associative Spare 
Cache. Computer Performance and Dependability Symp., 1995. 

[21] P.V. Vleet, E. Anderson, L. Brown, J.L. Baer, and A. Karlin. Pursuing 
the performance potential of dynamic cache line sizes. Intl. Conf. on 
Computer Design, 1999. 

[22] J. Wang, Y. Liu, W. Zhang, K. Lu, K. Qiu, X. Fu, and T. Li. Exploring 
Variation-Aware Fault-Tolerant Cache under Near-Threshold 
Computing. Intl. Conf. on Parallel Processing, 2016. 

[23] C. Wilkerson, H. Gao, A.R. Alameldeen, Z. Chishti, M. Khellah, and 
S.L. Lu. Trading off Cache Capacity for Reliability to Enable Low 
Voltage Operation. Intl. Symp. on Computer Architecture, 2008. 

[24] S. Zafar, B.H. Lee, J. Stathis, A. Callegari, and T. Ning. A Model For 
Negative Bias Temperature Instability (NBTI) in Oxide and Kappa. 
Intl.  Symp. on VLSI Technology, 2004. 

Figure 7: Comparison (avg. results) for 5 pfails between our proposal and 4 (static) block-disabling techniques of different granularities. 


