

Delft University of Technology

Dependability of Future Edge-AI Processors
Pandora’s Box
 Gomony, Manil Dev; Gebregiorgis, Anteneh; Fieback, Moritz; Geilen, Marc; Stuijk, Sander; Richter-
Brockmann, Jan ; Bishnoi, Rajendra; Taouil, Mottaqiallah; Hamdioui, Said; More Authors
DOI
10.1109/ETS56758.2023.10174180
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE European Test Symposium (ETS)

Citation (APA)
Gomony, M. D., Gebregiorgis, A., Fieback, M., Geilen, M., Stuijk, S., Richter-Brockmann, J., Bishnoi, R.,
Taouil, M., Hamdioui, S., & More Authors (2023). Dependability of Future Edge-AI Processors: Pandora’s
Box. In Proceedings of the 2023 IEEE European Test Symposium (ETS) (Proceedings of the European Test
Workshop; Vol. 2023-May). IEEE. https://doi.org/10.1109/ETS56758.2023.10174180
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ETS56758.2023.10174180
https://doi.org/10.1109/ETS56758.2023.10174180

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Dependability of Future Edge-AI Processors:
Pandora’s Box

Manil Dev Gomony1, Anteneh Gebregiorgis2, Moritz Fieback2, Marc Geilen1, Sander Stuijk1, Jan Richter-Brockmann3,
Rajendra Bishnoi2, Sven Argo3, Lara Arche Andradas4, Tim Güneysu3, Mottaqiallah Taouil2,

Henk Corporaal1, and Said Hamdioui2

1Eindhoven University of Technology, 2Delft University of Technology, 3Ruhr-Universität Bochum,
4Thales Alenia Space

Abstract—This paper addresses one of the directions of the
HORIZON EU CONVOLVE project being dependability of
smart edge processors based on computation-in-memory and
emerging memristor devices such as RRAM. It discusses how
how this alternative computing paradigm will change the way
we used to do manufacturing test. In addition, it describes how
these emerging devices inherently suffering from many non-
idealities are calling for new solutions in order to ensure accurate
and reliable edge computing. Moreover, the paper also covers
the security aspects for future edge processors and shows the
challenges and the future directions.

Index Terms—ULP, dynamic DL, edge-AI, SoC, memristor,
approximate computing, DSE, compiler stack.

I. INTRODUCTION

Artificial Intelligence (AI) has evolved into a technology for
a wide range of purposes; it impacts economy and society in an
accelerated manner. Furthermore, the IoT-edge partnership is
expected to revolutionize data computing. Today’s AI solutions
mainly target cloud and datacenters; they are expensive, power
hungry, consume lots of silicon area, and off-chip mem-
ory burns power and taxes memory bandwidth. This makes
them unsuitable for energy constrained edge applications.
Hence, both academia and industry have been investigating
and exploring new energy efficient smart edge computing
engines in the light of traditional scaled CMOS technologies
as well as of emerging post-CMOS device technologies,
while incorporating radically new brain-inspired concepts [1],
[2]. Although all of these seem to be extremely promising,
these alternative, energy-efficient computing paradigms are
worthless if the hardware dependability is not ensured, which
includes quality, reliability, and security. Quality is defined
as the ability of the computing engine to perform its function
according the specification at time zero, i.e., right after its
production, hence ensuring the detection of all manufacturing
defects through appropriate tests [3], [4]. Reliability is defined
as the ability to perform the function for the lifetime of the
targeted application; hence ensuring the correct function in the
presence of; e.g., ageing defects is essential [5], [6]. Security
is defined as the ability to ensure resiliency against any attack
that could target data, IP (intellectual property) or alternation
of the function [7].

Although hardware dependability of CMOS-based com-
puting engines is quite established, it is still in its infancy
stage when it comes to non von-Neumann architectures, such
as Compute-in-Memory (CIM) and post-CMOS device-based

(e.g., memristor-based) computing [8]–[10]. Such emerging
architectures and devices are not only giving rise to new
and unique defect and failure mechanism during their man-
ufacturing, but they also suffer (inherently) from many non-
idealities. Non-idealities consists of internal factors (e.g., drift
of components) causing intermittent faults or permanent faults,
and external factors (e.g., slow changes in its environment)
causing transient faults. Moreover, one of the major drawbacks
of using memristor computing for edge AI is the serious theft
threats they face; e.g., well-trained neural network models are
seen as intellectual property and, when loaded in the memristor
computing systems at the edge, they may be easily stolen if
no special countermeasures are put in place.

This paper addresses one of the directions the CONVOLVE
(Smart and seamless design of smart edge processors) project
[11] covers; i.e., hardware dependability for edge AI proces-
sors based on emerging device technology. The paper discusses
the three mains aspects of hardware dependability: quality,
reliability, and security. It highlights the challenges, the state
of the art and further research directions. In summary, the
contributions of the paper are:

• Quality: it shows how alternative computing paradigms
(such as CIM) based on emerging devices is changing
the way we used to perform manufacturing test. It also
illustrates how new defects mechanisms are involved,
which calls for new ways of defect modeling and testing.

• Reliability: it highlights the challenge computing-in-
memory faces from non-idealities of emerging devices,
and presents different solutions to deal with them. It
discusses the non-ideality challenges that need to be
addressed for reliable operations and illustrates the di-
rections addressing those issues at different levels of
abstraction.

• Security: it highlights the different adversarial mod-
els and the challenges in providing long-term Security
in emerging computing paradigms such as compute-in-
memory and neuromorphic computing. In addition, the
challenges in incorporating Post Quantum Crypto security
and Trusted Execution Environments (TEE) in edge-AI
processors are discussed.

The rest of the paper is organized as follows. Section II
briefly gives and overview on CONVOLVE and its main
objectives. Section III covers Quality, Section VI reliability
and Section V security. Section VI concludes the paper.

2023 28th IEEE European Test Symposium (ETS)
- European Project -

979-8-3503-3634-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

79
-8

-3
50

3-
36

34
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S5

67
58

.2
02

3.
10

17
41

80

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 11:54:54 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Classification of computer architectures [12]

II. CONVOLVE OVERVIEW

Computer architectures can be classified based on where the
computation takes place with respect to where the data are
stored. Fig. 1 shows that there are four classes [12]. Classes
1 and 2 are Compute-in-Memory (CIM) implementation, as
they perform the computation in the memory core itself; class
3 is a Compute-Near Memory (CNM) implementation, as it
performs computation directly next to the memory; finally,
class 4 is a traditional Von Neumann computer architecture
where the computation is performed in a separate processor
that is connected to the memory. The higher the class number,
the lower the bandwidth (BW) is to perform computations and
the more costly it is to move data for computations. The CIM
classes can be further divided based on where the result of the
computation is generated: In class 1, the result is generated
within the memory array (A) itself, called CIM-A; while in
class 2 the result is generated in the peripheral (P) circuits,
e.g., by using dedicated sense amplifiers (SAs), called CIM-P.
An example of CIM-A is Majority logic [13], and an example
of CIM-P is Scouting logic [14].

CONVOLVE project [11] aims at developing a novel frame-
work consisting of hardware and software that allows anyone
to deploy a custom designed secure and reliable SoC with
100X energy efficiency for edge AI applications in 10X less
design time. This involves the development of an ultra-low-
power (ULP) library with novel (CIM) - both digital (SRAM
based) and analog (RRAM based), and a flexible processing
array with CNM architecture keeping processing very close to
the memory to reduce energy consumption. The ULP blocks
will be designed with common or standard interfaces, and
optimized at micro-architecture, circuit and device levels. The
accelerator blocks are optimized to execute the computation
patterns of both Artificial Neural Networks (ANN) and Spik-
ing Neural Networks (SNN) efficiently.

CONVOLVE researches efficient design-space exploration
(DSE) techniques combining different levels of hierarchy in
a compositional way, i.e., hardware and software components
can be seamlessly glued together, while guaranteeing overall
behaviour and reliability; this deals with the SoC heterogeneity
and supports efficient mapping of applications to hardware
architectures consisting of CIM-based accelerators. An SoC

architecture will be generated using these modular architecture
templates after performing automated DSE; this allows the
evaluation of all architecture possibilities while considering
the dependability requirements. Since CIM based architectures
are far less reliable than traditional CMOS circuits, novel
mechanisms will be devised to deal with hardware variability.
The techniques will include increasing the robustness by dy-
namically adapting computational precision, data path width,
early-termination, skipping layers/neurons, etc. at different
levels of design hierarchy.

CONVOLVE aims to provide hardware security against
known attacks and real-time guarantees by compositional im-
plementation of Post Quantum Cryptography (PQC) and real-
time Trusted Execution Environment (TEE). PQC accelerator
blocks will be designed with standard interfaces that can be
plugged into a modular architecture template to make hard-
ware secure, even in the long term (over a decade). Further-
more, CONVOLVE develops design-for-security methodology
and makes sure that all security features can be added in a
compositional manner while providing real-time guarantees.
We will explore design for robustness, to deal with in-field
failures and non-ideal real-world environments.

CONVOLVE considers four different use-cases with diverse
dependability requirements: (1) On-board computer vision in
Earth Observation (EO) satellites (2) Deep Noise Suppression
and Spech Quality Prediction in audio devices, (3) Acoustic
Scene Analysis in automotive systems, and (4) Video-based
Traffic Analysis for traffic monitoring systems. The micropro-
cessors in these systems needs to be designed for robustness
against environmental changes and security attacks. For e.g.
secure firmware updates refer to the process of securely and
trust-worthily updating the software controlling the hardware
components of an (edge) device, such as a smartphone, IoT
device or headset. This is important because vulnerabilities
or bugs in the firmware could potentially be exploited by
attackers to gain unauthorised access or cause damage to the
(edge) device, and to ensure that the device remains secure
and up-to-date.

III. TESTING

Emerging memories based CIM-based accelerators can op-
erate in two different configurations: as a regular memory in
the Memory Configuration (MC), or as a computing device in
the Computation Configuration (CC). To operate in the CC,
design changes to existing memories need to be made, e.g., in
CIM-A, the array needs to be modified so that the compute
results can be written back, while in CIM-P the peripheral
circuits needs to be modified to perform computations. These
adapted circuits introduce new faults that are not seen in
regular memories [3], [15], [16]. For example, Scouting logic
[14] based CIM-P (which supports the execution of logic
operations) requires the modification of the sense amplifier
to ensure the comparison with multiple references, and the
redesign of the address decoders to ensure the selection of
multiple operands (i.e., rows) simultaneously. Obviously, not
all circuits used in the MC are used in the CC, and vice-
versa. Therefore, regular memory tests cannot guarantee the
detection of all CIM faults. Instead, to guarantee high product
quality, CIM-based accelerators needs to be tested in both

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 11:54:54 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Faults in MC and CC [15]

configurations: MC and CC [3], [15], [16]. Next, we discuss
testing of these two configurations for a RRAM-based CIM
implementation supporting Scouting logic [14].

A. Testing in the Memory Configuration
In the memory configuration, the CIM circuit works as a

regular memory. As such, in this configuration, defects will
sensitize the same faults in the cell array as in regular memo-
ries. RRAM devices suffer from manufacturing defects that re-
sult in faults that are not observed in traditional memories [17].
Furthermore, because a RRAM device is a non-linear device,
these defects cannot be modelled using the traditional defect
modeling approaches that use linear resistors and doing so will
to test escapes [17]. Therefore, appropriate defect modeling
approaches that accurately incorporate the defective behavior
in the defect model are needed, such as the Device-Aware
Test (DAT) approach [18]. DAT was successfully deployed to
accurately model and detect unique defects in RRAM memory
cell array of a CIM-P supporting scouting logic; examples
of such defects/faults are forming defects and intermittent
undefined state faults [3], [15], [19]. Moreover, testing CIM in
the MC is more than just testing the memory array. Dedicated
test solutions are required to deal with defects in the peripheral
circuits, such as address decoders, sense amplifiers, drivers,
etc.

B. Testing in the Computation Configuration
In the computation configuration, the CIM circuit works as

a computation device. For Scouting logic with two operands
this means that two cells can be addressed at once, requiring
an additional address decoder, and that the resulting current
is compared against an appropriate reference that depends on
the selected logic operation. Due to this, different faults are
sensitized in the CC for the array, the address decoders, and
the sense amplifiers. In the array, compute faults are sensitized,
e.g., an OR operation may cause a cell to flip its state [20]. In
the address decoders, port interference faults can be sensitized,
e.g., the address in one decoder influences the address in the
other decoder [3]. In the sense amplifiers, similar faults as
in the MC are sensitized, but now also for the additional
reference, e.g., in the CC the sense amplifier may be slow
for an OR operation, but not for an AND operation [3].

The fault analysis results show that using CIM in the CC
gives rise to unique faults that requires special operations to
detect them. Hence, faults sensitized in the CC are not a subset
of faults in the MC, nor are they a superset, as shown in
Fig. 2 [15]. For example, there exist bridging defects that only
sensitize a fault in the CC. Besides exclusive faults, there are
also many defects that sensitize faults in both configurations.
This gives an opportunity to optimize a test solution so that a
maximal number of defects can be detected with a minimum of
sensitizing sequences. From the above, it follows that a CIM-
based accelerators need to be tested in both configurations to

achieve the highest quality possible, but that testing in both
configurations also allows to optimize test solutions.

C. Directions
Research and development for CIM-based accelerators that

make use of emerging devices is still in its infancy stage and
many open questions need to be worked out.

Other architectures and kernels: It is expected that
the above procedure of defining the architectural differences
also apply when testing other CIM architectures and kernels,
such as matrix-vector multiplication accelerators, or arithmetic
CIM. In these applications, more hardware changes are made
with respect to a regular memory, e.g., through the addition
of analog-to-digital converters. Hence, it can be expected that
even more unique faults will be identified and that new test
solutions need to be developed to detect them.

Emerging memories: CIM-based accelerators can also be
made using other emerging memory technologies, such as
STT-MRAM and PCM. These are also susceptible to novel
defects and thus require proper defect modeling in order to
develop high-quality tests [18]. Furthermore, when used in a
CIM-based accelerator, more novel faults may be observed.
These need to be detected with appropriate test solutions, as
well.

Optimizations: Compute operations can be used to speed
up testing and increase the detection capabilities. For example,
in [21], compute operations are used to detect unique RRAM
faults in a more efficient manner than could be achieved using
only memory operations. As such, the usage of CIM also gives
opportunities to increase test efficiency and fault coverage.

IV. RELIABILITY

Memristors suffer from several non-idealities where some
occur at the production time before shipping and others, during
the product life cycle. Thus, they are classified as time-zero
and time-dependent non-idealities, respectively.

Time-zero non-idealities [21]–[24]: these consist of: a)
Variation (Variation is the deviation of the memristor resis-
tance value after programming from the expected value, due to
fabrication imperfections.), b) Wire parasitics (Due to the finite
parasitic resistance and capacitance of the interconnect wires,
signals suffer from delay mismatch and voltage degradation.),
c) Non-zero Gmin error (Non-zero Gmin error occurs when a
non-zero output current is produced by applying a non-zero
input voltage to a memristor with Gmin conductance), etc.

Time-dependent non-idealities [20], [25]–[27]: these con-
sist of: a) Endurance (Memristors suffer from limited en-
durance due to the destructive nature of the programming
operations.), b) Device degradation (Due to stress and age-
ing, CMOS periphery and memristors in CIM suffer from
device degradation), c) Conductance drift (The conductance
states of the memristors drifts with time and can eventually
lead to unwanted bit-flips), d) Read disturb (Read disturb is
a phenomenon where a correct value is returned during a
read operation, while the stored value is flipped by the read
operation), etc.

Next, we will highlight some solutions to mitigate the
impact of non-ideality on RRAM-based CIM, and thereafter
briefly describe some further directions.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 11:54:54 UTC from IEEE Xplore. Restrictions apply.

… …

BL NBLCSL
WLNORWLNAND

… … … …

ION 2ION 2ION ION 3ION ~

NOR-logic

In IBL INBL O
00 ION 2ION 1
01 2ION ION 0
10 2ION ION 0
11 3ION ~ 0

I B
L

I N
BL

01 0

Signal Value
WLNOR VDD
WLNAND 0
WL VDD

WL
0
0

0
1

1
1

Dummy BitcellsSelected Bitcells

Figure 3. Complementary 2T2R bitcell configuration for NOR operation [30].

A. Potential solutions
Solutions for mitigating the impact of non-idealities can be

developed at various abstraction levels such as circuit-level
[28], architecture-level [29] and application-level [5]. Next two
solution examples will be illustrated.

1) Referencing-in-Array scheme: This circuit level scheme
aims at using 2T2R cell structure rather than 1T1R to create
a complementary bitcell structure that inherently acts also as
a reference during the operation execution [30]; this results
in a high sensing margin. The higher sensing margin of this
scheme can effectively mitigate the impact of process variation
and wire parasitics and increase the number of operands upto
56 in a single cycle. Figure 3 shows the 2T2R-based cell
structure and configuration that can be used for NOR and
AND bit-wise operations; a dummy row is an integral part
of such structure (e.g., top row). Each dummy cell is pre-
programmed, while each 2T2R cell presents one bit; the data-
bit ’1’ is represented by dark blue (LRS) RRAM device
and the complementary data-bit as light blue (HRS). Pass
transistors are use to connect these memristors to bitline (BL)
and negative bitline (NBL). Dummy cells have two two inde-
pendent WLs, namely WLNOR (selected for NOR operation)
and WLNAND (selected for NAND operation), connected to
the BL and NBL-sided pass transistors, respectively. The two
memristor devices of each dummy cell is set to LRS. The
right side of Figure 3 illustrates NOR logic operation; two
rows storing operands are activated simultaneously along with
WLNOR of the dummy row. This results not only in accurate
and and reliable NOR operations as the sensing margin is now
higher, but also in an energy efficient operation (more than
11X as compared to state-of-the-art 1T1R based solutions).

2) Unbalanced bit-slicing scheme: This architecture level
scheme aims to employ an unbalanced bit-slicing (UBS)
scheme in [31], which changes the way neural weights are
mapped into a CIM crossbar in order to mitigate the impact of
non-zero Gmin error. The UBS scheme splits the bits of neural
weights into unbalanced slices and different number of RRAM
devices are allocated per slices in order to minimize the impact
of non-zero Gmin error and improve the sensing margin. Thus,
the UBS scheme allocates a one-bit RRAM for the MSB slices
and multi-bit (e.g., 2-bit) RRAM for the LSB slices. This
provides sufficient sensing margin to the MSB column output
and make them immune to non-zero Gmin error. Moreover,
the USB scheme uses of 2’s complement arithmetic to further
reduce the impact of accumulative non-zero Gmin error after
combining the partial outputs due to weighted subtraction as
shown in Eq. 1a and Eq. 1b.

Ef = 64·E1 + 16·E2 + 4·E3 + E4 (1a)
Ef = (−128)·E1 + 64·E2 + 16·E3 + 4·E4 + E5 (1b)

The UBS scheme can effectively mitigate the impact of non-
zero Gmin error and achieve up to 8.8× and 1.8× classification
accuracy compared to state-of-the-art CIM architectures for
single-bit memristors and two-bit memristors respectively, at
reasonable energy overheads.

B. Directions
In order to deal with non-idealities for a complete system,

it is important to provide solutions at all abstraction layers.
Following are the potential solutions:

Device level solutions involve improving the device struc-
ture and material composition for better characteristics to
ensure well-defined distinctive resistance states with low vari-
ation.

Circuit level solutions include innovative circuit designs
to improve accuracy in the presence of non-idealities. This
involves the design space exploration of several bitcell config-
urations, dedicated referencing schemes, and variation-aware
ADC and DAC converters.

Architecture level solutions involve mitigate the impact of
non-idealities by changing the way in which an application
is mapped to CIM hardware, changing how the data flows
through various CIM system components or introducing error
correction mechanisms.

Application level solutions involve adapting the underlying
applications so that inexact computations will suffice instead
of exact ones. Applications that require one or more static-
valued operands also are well suited for memristor-based CIM
as endurance problem is alleviated.

V. SECURITY

CONVOLVE aims at providing high security guarantees
to edge-AI processors with CIM based accelerators against
a wide range of powerful adversary models precisely fitted
to its application domain. This covers current state-of-the-
art adversaries but also potential future attackers to ensure
its longevity and endurance even when confronted with new
technologies. To this end, we first introduce our adversary
models, followed by presenting four main research challenges
which should be addressed by CONVOLVE.

A. Adversary Model
CONVOLVE considers two categories of adversary models

based on their level of access to the device: Adversaries
restricted to digital access and with physical access.

Adversaries restricted to digital access: In the first ad-
versary model, we assume that the access to the device is
constrained to the provided communication streams of the tar-
get, i.e., remote (or local) connections to digital data channels
or memories. An attacker can record, filter or manipulate the
incoming and outgoing data or communicate with the device.
This also includes having remote access to the same target
computing unit which, for example, allows the attacker to
measure runtime differences [32] or mount more advanced
attacks like Rowhammer [33]. Moreover, we assume that an
adversary is capable of recording and storing encrypted com-
munications. More precisely, data that is today encrypted by
common asymmetric schemes could eventually be decrypted
by large-scale quantum computers. One prominent approach
for this purpose is Shor’s algorithm [34].

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 11:54:54 UTC from IEEE Xplore. Restrictions apply.

Adversaries with Physical Access: The second adversary
model considers advanced attackers with local, physical access
to the device. In addition to the input-output behavior of the
device and regular communication channels, the adversary can
use additional physical information about the target device,
e.g., its power consumption [35] or electromagnetic radiation
[36]. More precisely, the power consumption of edge-AI
processors highly depends on the processed data. Hence, in the
context of cryptographic implementations, an adversary can
extract information about the secret key material from power
traces acquired during an encryption or decryption process.
While these power side-channel attacks are seen as passive
attacks, fault-injection attacks are considered as active attacks
and aim to alter an intermediate state of a cryptographic
algorithm [37]. The adversary exploits the faulty output in
order to extract information about the secret key material.

B. Challenges
Within CONVOLVE, we identify four main challenges with

respect to the security of the envisioned architecture.
Long-term Security: Data that is processed today may

be sensitive for decades to come. Consequently, the data must
be secured not only against current but also against potential
future adversaries, such as quantum computers Section V-A.
The strong cryptographic algorithms must provide long-term
security while ensuring alignment with CONVOLVE’s appli-
cation domain. Furthermore, the target algorithms need to run
on devices with limited resources such as power and memory.

Security for CIM architectures: As Computing-in-
Memory (CIM) devices become a reality, numerous threats
arise with them. CIM devices are vulnerable to several types
of attacks including fault-injection and side-channel attacks.
The literature cites examples of each type of attack. Flex et al.
present a fault-injection attack on logic-in-memory (a subset
of CIM) neuromorphic hardware used as BNN accelerator
to demonstrate misclassification in MNIST dataset [38]. In
another instance, Ziyu et al. present a side-channel attack to
reverse engineer the deep neural network (DNN) implemented
on a simulated CIM architecture [39].

Security Aware Design-Flow: Current design flows for
software and hardware implementations are optimized to gen-
erate fast, small, or energy-efficient designs. However, when
implementing cryptographic algorithms for software and hard-
ware, we often introduce additional redundancy to avoid tim-
ing or power side channels. The challenges manifest slightly
differently in software-based and hardware-based design flows.
In the former, we need to avoid any runtime differences based
on confidential data which can, for instance, be introduced
by secret-dependent branching or memory accesses. In the
latter, the most significant challenges lie in preventing physical
attacks as described in Section V-A for the adversary with
physical access to the device.

Modern TEE: Trusted Execution Environment (TEE) aim
to provide additional security by isolating high-risk software
from untrusted code. An example for such high-risk software
could be the cryptographic components that ensure the confi-
dentiality and integrity of an ML model. A typical Operating
System (OS) in this example would be untrusted because OSs
are complex, often containing millions of lines of code that

are almost certain to contain bugs. Thanks to the hardware
enforced isolation, a TEE would ensure that even the OS could
not access the secrets inside the TEE [40], [41].

C. Future Directions

Long-term Security: The de-facto standard countermea-
sure against emerging quantum computers is post-quantum
cryptography. It provides strong formal security guarantees
and can be coupled with "classic cryptography" to further
enhance reliability and security [42]. Also, efficient, timing
side-channel resistant implementations are available for prac-
tical applications [43]. However, resistance against power side
channels or fault injections is more challenging to achieve,
particularly in combination with high-performance or low-
power requirements [44]. Within CONVOLVE, the combina-
tion of strong security and low-resource consumption, as well
as the modularity and composability required for the 10x faster
development process, will be the focus of research.

Security for CIM architectures: The threats can be mini-
mized by adding data authentication mechanisms and embed-
ding effective countermeasures. Similar to long-term security,
the additional latency, power, or chip area overheads required
to implement appropriate countermeasures must be carefully
evaluated and minimized without compromising security.

Security Aware Design-Flow: Within CONVOLVE, we
aim for novel design-flow architectures that inherently con-
sider security aspects in the early design process. For software-
based design flows, any constant-time execution guarantees
with respect to secret data should be automatically de-
tected [45] and maintained. For hardware-based design flows,
physical attacks are the predominant problem to be addressed.
Common countermeasures against side-channel attacks are
based on the secret sharing approach [46], while countermea-
sures against fault-injection attacks often utilize mechanisms
introducing redundancy in time or area [47]. To this end,
modern security-aware synthesizers should recognize parts of
the hardware description belonging to countermeasures and
preserve their security requirements and underlying security
assumptions for predefined models [48], [49].

Modern TEE: Several implementations of TEE already
exist, such as Intel SGX [50] and ARM TrustZone [51].
However, many of these implementations have been attacked
over the years, due to e.g., implementation bugs or side-
channel attacks [52]. Open-source frameworks such as the
Keystone project aim to provide secure, reliable and yet still
flexible TEE implementations for platforms such as RISC-V
edge processors [40].

VI. SUMMARY

This paper briefly addressed one of the key aspects of future
edge-AI processors based on emerging devices (RRAM as an
example). It is clear that solving the dependability challenges
to ensure high quality, reliable and secure computing engines
is crucial and critical for the deployment of such devices in
real applications. Computation-in-memory based on emerging
devices uses new device technologies, requires new designs,
modified system architecture, disparate programming models,
etc; all of these are fundamentally changing the assumptions,

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 11:54:54 UTC from IEEE Xplore. Restrictions apply.

the models and solutions with regards to quality, reliability
and security as compared with traditional computing.

ACKNOWLEDGMENT

This work is funded by EU’s Horizon Europe research and
innovation programme under grant agreement No. 101070374.

REFERENCES

[1] A. Lines et al., “Loihi asynchronous neuromorphic research chip,” in
IEEE ASYNC, 2018.

[2] C.-X. Xue et al., “A cmos-integrated compute-in-memory macro based
on resistive random-access memory for ai edge devices,” Nature Elec-
tronics, 2021.

[3] S. Hamdioui et al., “Testing computation-in-memory architectures based
on emerging memories,” in 2019 IEEE International Test Conference
(ITC), 2019, pp. 1–10.

[4] E. I. Vatajelu et al., “Challenges and solutions in emerging memory
testing,” in IEEE Transactions on Emerging Topics in Computing, vol.
7(3), 2017, pp. 493–506.

[5] A. Gebregiorgis et al., “Dealing with Non-Idealities in Memristor
Based Computation-In-Memory Designs,” in IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), 2022, pp. 1–6.

[6] J.-F. Li, “Testing and reliability of computing-in memories: Solutions
and challenges,” in IEEE International Test Conference in Asia, 2022.

[7] M. Tehranipoor et al., Introduction to Hardware Security and Trust.
Springer Publishing Company, Incorporated, 2011.

[8] M. Zhao et al., “Reliability of analog resistive switching memory for
neuromorphic computing,” in DATE, 2015.

[9] S. Hamdioui et al., “Testing computation-in-memory architectures based
on emerging memories,” in ITC, 2019.

[10] M. Zou et al., “Review of security techniques for memristor computing
systems,” in Frontiers in Electronic Materials, 2022.

[11] M. D. Gomony et al., “Convolve: Smart and seamless design of smart
edge processors,” in DATE, 2023.

[12] H. A. D. Nguyen et al., “A classification of memory-centric computing,”
J. Emerg. Technol. Comput. Syst., vol. 16, no. 2, jan 2020.

[13] E. Linn et al., “Beyond von neumann—logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
no. 30, p. 305205, jul 2012.

[14] L. Xie et al., “Scouting logic: A novel memristor-based logic design
for resistive computing,” in 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2017, pp. 176–181.

[15] M. Fieback et al., “Testing scouting logic-based computation-in-memory
architectures,” in IEEE European Test Symposium (ETS), 2020, pp. 1–6.

[16] T.-L. Tsai et al., “Testing of in-memory-computing 8T SRAMs,” in 2019
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). IEEE, 2019, pp. 1–4.

[17] M. Fieback et al., “Testing resistive memories: Where are we and what
is missing?” in ITC, 2018.

[18] ——, “Device-aware test: A new test approach towards dppb level,” in
2019 IEEE International Test Conference (ITC), 2019, pp. 1–10.

[19] ——, “Structured test development approach for computation-in-
memory architectures,” in 2022 IEEE International Test Conference in
Asia (ITC-Asia), 2022, pp. 61–66.

[20] ——, “Testing scouting logic-based computation-in-memory architec-
tures,” in ETS, 2020.

[21] A. Singh et al., “Accelerating rram testing with low-cost computation-
in-memory based dft,” in ITC, 2022.

[22] J.-H. Lee et al., “Exploring cycle-to-cycle and device-to-device variation
tolerance in MLC storage-based neural network training,” TED, 2019.

[23] Y. Jeong et al., “Parasitic effect analysis in memristor-array-based
neuromorphic systems,” Nanotech, 2018.

[24] P. Chen et al., “Technological Benchmark of Analog Synaptic Devices
for Neuroinspired Architectures,” IDT, 2019.

[25] M. Fieback et al., “Defects, fault modeling, and test development
framework for rrams,” JETC, 2022.

[26] S. Ambrogio et al., “Reducing the impact of phase-change memory con-
ductance drift on the inference of large-scale hardware neural networks,”
in IEDM, 2019.

[27] W. Shim et al., “Investigation of read disturb and bipolar read scheme
on multilevel rram-based deep learning inference engine,” TED, 2020.

[28] A. Singh et al., “Cim-based robust logic accelerator using 28 nm stt-
mram characterization chip tape-out,” in AICAS, 2022.

[29] M. Cheng et al., “Time: A training-in-memory architecture for
memristor-based deep neural networks,” in DAC, 2017.

[30] A. Singh et al., “Referencing-in-array scheme for rram-based cim
architecture,” in DATE, 2022.

[31] S. Diware et al., “Unbalanced bit-slicing scheme for accurate memristor-
based neural network architecture,” in AICAS, 2021.

[32] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, 1996, pp. 104–113.

[33] Y. Kim et al., “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ACM/IEEE
41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Society,
2014, pp. 361–372.

[34] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999.

[35] P. C. Kocher et al., “Differential Power Analysis,” in Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, ser.
Lecture Notes in Computer Science, M. J. Wiener, Ed., vol. 1666.
Springer, 1999, pp. 388–397.

[36] K. Gandolfi et al., “Electromagnetic analysis: Concrete results,” in
Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings,
ser. Lecture Notes in Computer Science, Ç. K. Koç et al., Eds., vol.
2162. Springer, 2001, pp. 251–261.

[37] E. Biham et al., “Differential Fault Analysis of Secret Key Cryp-
tosystems,” in Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings, 1997, pp. 513–525.

[38] F. Staudigl et al., “Fault Injection in Native Logic-in-Memory Compu-
tation on Neuromorphic Hardware,” 2023.

[39] Z. Wang et al., “Side-Channel Attack Analysis on In-Memory Comput-
ing Architectures,” IEEE Transactions on Emerging Topics in Comput-
ing, pp. 1–13, 2023.

[40] D. Lee et al., “Keystone: An open framework for architecting trusted
execution environments,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020, pp. 1–16.

[41] D. Kohlbrenner et al., “Building open trusted execution environments,”
IEEE Security & Privacy, vol. 18, no. 5, pp. 47–56, 2020.

[42] A. Giron et al., “Post-quantum hybrid key exchange: a systematic
mapping study,” Journal of Cryptographic Engineering, vol. 13, pp. 1–
18, 04 2022.

[43] T. Pornin, “New efficient, constant-time implementations of falcon,”
Cryptology ePrint Archive, Paper 2019/893, 2019, https://eprint.iacr.org/
2019/893.

[44] S. Kundu et al., “Higher-order masked saber,” in Security and Cryptog-
raphy for Networks: 13th International Conference, SCN 2022, Amalfi
(SA), Italy, September 12–14, 2022, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2022, p. 93–116.

[45] J. Wichelmann et al., “Microwalk: A framework for finding side
channels in binaries,” in Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA,
December 03-07, 2018. ACM, 2018, pp. 161–173.

[46] S. Chari et al., “Towards sound approaches to counteract power-analysis
attacks,” in Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, ser. Lecture Notes in Computer Science, M. J.
Wiener, Ed., vol. 1666. Springer, 1999, pp. 398–412.

[47] H. Bar-El et al., “The Sorcerer’s Apprentice Guide to Fault Attacks,”
Proc. IEEE, vol. 94, no. 2, pp. 370–382, 2006.

[48] Y. Ishai et al., “Private Circuits: Securing Hardware against Probing
Attacks,” in Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, ser. Lecture Notes in Computer
Science, D. Boneh, Ed., vol. 2729. Springer, 2003, pp. 463–481.

[49] J. Richter-Brockmann et al., “Revisiting fault adversary models - hard-
ware faults in theory and practice,” IEEE Trans. Computers, vol. 72,
no. 2, pp. 572–585, 2023.

[50] F. McKeen et al., “Innovative instructions and software model for
isolated execution.” Hasp@ isca, vol. 10, no. 1, 2013.

[51] ARM Ltd., “ARM security technology building a secure system using
TrustZone technology,” Whitepaper, 2016.

[52] A. Nilsson et al., “A survey of published attacks on Intel SGX,” arXiv
preprint arXiv:2006.13598, 2020.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2023 at 11:54:54 UTC from IEEE Xplore. Restrictions apply.

